
Section 9: Solutions
This section reviews the concepts of P, NP, NP-completeness, and reduction.

First, let’s review some definitions:

• Problem: a set of inputs and the correct outputs

• Instance: a single input to a problem

• Decision problem: a problem where the output is “yes” or “no”

• Reduction: We write A ≤p B, and read “A reduces to B”, “A is not harder than B”, or “Solve A using B”.

Formally, A ≤p B if there is an algorithm that solvesA using polynomially many calls to a solver forB, running
in polynomial time (excluding calls to B). (In this class, such algorithms will almost always use just one call,
but generally, it is allowed to use many calls.)

• P: (“polynomial”) The set of decision problems A that can be solved in polynomial time.

• NP: (“nondeterminisitic polynomial”) The set of decision problems A for which YES-instances can be verified
in polynomial time.

Formally, there is a polynomial time algorithm VerifyA such that for all inputs x,

– If x is a YES-instance to A, then there exists a polynomial length string y such that VerifyA(x, y) = YES.

– If x is a NO-instance to A, then for all polynomial length strings y, VerifyA(x, y) = NO.

• NP-hard: A problem B is NP-hard if A ≤p B for all A in NP.

• NP-complete: A problem B is NP-complete if B is in NP and B is NP-hard.

• Boolean literal: A Boolean variable xi or its negation ¬xi

• Clause: OR of zero or more literals

• CNF formula: AND of zero or more clauses

• 3SAT problem:

Input: A CNF formula with exactly 3 literals per clause
Output: Is there an assignment to the variables that makes the formula true?

3SAT is a fundamental NP-complete problem.

1. SATisfy This

Determine whether each instance of 3SAT is satisfiable. If it is, list a satisfying variable assignment.

(a) (¬a ∨ ¬b ∨ c) ∧ (a ∨ c ∨ ¬d) ∧ (b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ b ∨ c) ∧ (¬b ∨ c ∨ ¬d)

Solution:

Satisfiable. Many possible solutions (students only need to list one of these):

• a = 0, b = 0, c = 0, d = 0

• a = 0, b = 0, c = 1, d = 0

• a = 0, b = 1, c = 0, d = 0

• a = 0, b = 1, c = 1, d = 0

• a = 0, b = 1, c = 1, d = 1

• a = 1, b = 0, c = 1, d = 0
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• a = 1, b = 1, c = 1, d = 0

• a = 1, b = 1, c = 1, d = 1

(b) (¬a∨ b∨d)∧ (¬b∨ c∨d)∧ (a∨¬c∨d)∧ (a∨¬b∨¬d)∧ (b∨¬c∨¬d)∧ (¬a∨ c∨¬d)∧ (a∨ b∨ c)∧ (¬a∨¬b∨¬c)

Solution:

Not satisfiable. Although you might be able to try some ad hoc arguments for why, there is generally no
explanation significantly faster than “try everything”.

2. 5SAT

To prove NP-completeness, we recommend following this 7-step pattern:

First, to show B is in NP:

1. State what the certificate is.

2. Say why the certificate can be checked in polynomial time.

To show B is NP-hard:

3. Identify an NP-hard problem A and say, “We will reduce from A to B”.

4. Define a reduction function f , which converts instances of A into instances of B.

5. Say why f is computable in polynomial time.

6. Show that “x is a YES-instance for A” =⇒ “f(x) is a YES-instance for B”.

• Do this by converting a certificate for x into a certificate for f(x).

7. Show that “f(x) is a YES-instance for B” =⇒ “x is a YES-instance for A”.

• Do this by converting a certificate for f(x) into a certificate for x.

Let’s give it a try.

Define the problem 5SAT to be:

Input: A CNF formula with exactly 5 literals per clause
Output: Is there an assignment to the variables that makes the formula true?

We will show that 5SAT is NP-complete.

First, we will show that 5SAT is in NP.

(a) State what the certificate is.

Solution:

An assignment to the variables that makes the formula true.

(b) Say why the certificate can be checked in polynomial time.

Solution:

Verifier takes as input the original 5SAT input and the certificate (the assignment). Just apply the assign-
ment to every clause, and return whether all clauses are satisfied. Runs in linear time.
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Recall 3SAT:

Input: A CNF formula with exactly 3 literals per clause
Output: Is there an assignment to the variables that makes the formula true?

We will now prove that 5SAT is NP-hard with a reduction involving 3SAT.

(c) Fill in the blank: “We will reduce from ___ to ___”. Which is A, and which is B?

Solution:

We will reduce from A = 3SAT to B = 5SAT. In other words, convert instances of 3SAT into instances of
5SAT.

(d) Define a reduction function f , which converts instances of A into B.

Solution:

Let C1, C2, ..., Cm be the clauses of the 3SAT instance.

Create two dummy variables y and z. For each clause Ci, create four clauses:

(Ci ∨ y ∨ z) (Ci ∨ ¬y ∨ z) (Ci ∨ y ∨ ¬z) (Ci ∨ ¬y ∨ ¬z)

Our 5SAT instance is the AND of all 4m clauses described above.

(e) Say why f is computable in polynomial time.

Solution:

We loop through the clauses and create a constant number of new clauses for each, thus linear time.

(f) Show that “x is a YES-instance for A” =⇒ “f(x) is a YES-instance for B”.

(Remember: convert a certificate for x into a certificate for f(x)!)

Solution:

• There is an assignment α that makes the original 3SAT YES-instance true.

• Let us define an assignment β that satisfies our constructed 5SAT instance:

β(xi) = α(xi) for all xi in the original instance
β(y) = 0 (or 1, doesn’t matter)
β(z) = 0 (or 1, doesn’t matter)

• Satisfies our constructed 5SAT instance because every clause contains one of the original 3SAT clauses.

(g) Show that “f(x) is a YES-instance for B” =⇒ “x is a YES-instance for A”.

(Remember: convert a certificate for f(x) into a certificate for x!)

Solution:

• There is an assignment β that makes the formula we constructed true.
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• But our formula has clauses

(Ci ∨ y ∨ z) (Ci ∨ ¬y ∨ z) (Ci ∨ y ∨ ¬z) (Ci ∨ ¬y ∨ ¬z)

– In one of these clauses, the literals involving y and z will both be false in β.

– Because β satisfies every clause, it must satisfy Ci alone.

• Thus, if we define α(xi) = β(xi) for all xi, then α satisfies the original instance.

3. Reduction with different types

The Integer Linear Programming problem (ILP) is:

Input: An integer matrix A and integer vector b
Output: Is there an integer vector x such that Ax ≤ b?

In lecture, you saw that 3SAT ≤p ILP via a long series of reductions. Prove this directly using a single reduction. We
will skip proving that ILP is in NP.

(c) Fill in the blank: “We will reduce from ___ to ___”. Which is A, and which is B?

Solution:

We will reduce from A = 3SAT to B = ILP. In other words, convert instances of 3SAT into instances of ILP.

(d) Define a reduction function f , which converts instances of A into B.

Solution:

To avoid confusion, denote y1, . . . , yn the variables in the 3SAT instance and C1, C2, . . . , Cm the clauses,
and we will use xi is the ILP variable corresponding to yi.

Our constraints are:

• 0 ≤ xi and xi ≤ 1 for all i = 1, . . . , n

•
∑

yi∈Cj
(xi) +

∑
¬yi∈Cj

(1− xi) ≥ 1 for all j = 1, . . . ,m

We would convert these to standard form.

(e) Say why f is computable in polynomial time.

Solution:

We create 2 constraints for every variable and 1 constraint for every clause. Every constraint is a row in
the ILP input matrix A, so the reduction takes (m+ n)n time, which is polynomial.

(f) Show that “x is a YES-instance for A” =⇒ “f(x) is a YES-instance for B”.

(Remember: convert a certificate for x into a certificate for f(x)!)

Solution:

• There is an assignment α that makes the original 3SAT YES-instance true.

• Let x be the vector whose ith entry is α(yi). We claim that x satisfies the ILP.

– Certainly 0 ≤ xi and xi ≤ 1 for all i.
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– Note that
∑

yi∈Cj
(xi) +

∑
¬yi∈Cj

(1− xi) is a sum of non-negative terms.

– Because α satisfies Cj , there is yi ∈ Cj for which α(yi) = 1, so xi = α(yi) = 1, or ¬yi ∈ Cj , for
which α(yi) = 0, in which case 1− xi = 1− α(yi) = 1.

– Either way we have found a term that evaluates to 1, so the expression is ≥ 1.

(g) Show that “f(x) is a YES-instance for B” =⇒ “x is a YES-instance for A”.

(Remember: convert a certificate for f(x) into a certificate for x!)

Solution:

• There is a vector x that satisfies all ILP constraints.

• Let α(yi) = xi. We claim that α satisifes the original 3SAT instance.

– α is a valid assignment because xi is an integer with 0 ≤ xi and xi ≤ 1.

– Because
∑

yi∈Cj
(xi) +

∑
¬yi∈Cj

(1− xi) ≥ 1, at least one of the terms must be positive, in which
case the relevant literal is true in Cj , similar to the other direction.

The following problems will not be covered in section, but may be useful to think about.
We recommend trying them by yourself first. Solutions will be posted in the evening.

4. Reduce to decision

NP is a set of decision (yes/no) problems, but in practice we’re often interested in optimization problems (instead of
“is there a vertex cover of size k?” we usually want to “find the smallest vertex cover”). Usually, this isn’t a problem,
though; we’ll see an example in this problem.

Let VCD be the problem: Given a graph G and an integer k, return true if and only if G has a vertex cover of size k.
Let VCO be the problem: Given a graphG, return a list containing the vertices in a minimum size vertex cover.

(a) Show that VCD ≤P VCO (this is the easy direction).

Solution:

On input G, k (for k ≤ n) for VCD, run the library for VCO on input G. Count the number of vertices in the
output. If it is k or less, return true, otherwise return false.

If there is a vertex cover of size at most k, then there is a vertex cover of size k (just add vertices until
you hit k). If there is not a vertex cover of size at most k, then a minimum one is larger, and so the VCD
algorithm will give a longer list, and the reduction will return false, as required.

(b) We’ll now start working on the other reduction. Imagine someone came to you and said “See this vertex u, I
promise it is in a minimum vertex cover.” Use this promise to solve VCO on a graph of size n− 1 instead of n.

Solution:

If u is in a minimum vertex cover, then delete u and all edges incident to u from the graph G. Call the
resulting graph G− u. Call the VCO library on G− u. Return u along with the result of the library call.

Let S be a vertex cover ofG−u. Observe that adding u gives a vertex cover ofG, as every edge not incident
to u was covered in G − u, and u was added to the vertex cover to cover all remaining edges. Moreover,
we find a minimum vertex cover; We know that u is in a minimum vertex cover and removing u from any
vertex cover for G gives a cover of G − u; a smaller cover of G including u would give us a smaller cover
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for G− u, but we called the VCO library which gives us the minimum.

(c) Now imagine the same person said “See this vertex v, I promise it is not in any minimum vertex cover.” Use
this promise to solve VCO on a graph of size at most n− 1 instead of n.

Solution:

If v is not in the vertex cover, then all neighbors w of v must be in the cover (otherwise, we would not cover
the edge (v, w)). So we delete v and all its neighbors denoted N(v) from the graph. Then we can run V C0

on the graph G− v −N(v) and we return the result along with all vertices in N(v).

Let S be a minimum vertex cover of G. Since S does not contain v by our assumption, then every neighbor
w ∈ N(v) has an edge (v, w) that needs to be covered, which means every neighbor must be in S. Then all
edges coming out of v and its neighbors are covered, so we only need to solve the minimum vertex cover
on the graph minus these vertices.

(d) Use the ideas from the last two parts to show VCO ≤P VCD.

Solution:
1: function MinVertexCover(G)
2: Call VCD library for all values of k until you find the size of the min vertex cover of G.
3: Pick an arbitrary vertex u.
4: if VCD library says YES on G− u, k − 1 then
5: return {u} ∪ MinVertexCover(G− u)
6: elsereturn N(u) ∪ MinVertexCover(G− u−N(u)) . N(u) is the neighbors of u

We will skip the proof of correctness, as it is mostly combining the prior parts.

For efficiency, observe that we need polynomial work and n + 1 library calls in each recursive call, and
each recursive call reduces the problem size by at least 1, so we need at most n recursive calls. Thus the
reduction is polynomial.

5. Another Reduction

Consider an undirected graph G, where each vertex has a non-negative integer number of pebbles. A single pebbling
move consists of removing two pebbles from a vertex and adding one pebble to an adjacent vertex, where we can
choose which adjacent vertex. A pebbling move can only be done on a vertex that already has at least two pebbles,
and it will always decrease the total number of pebbles in the graph by exactly one. Our goal is to remove as many
pebbles as we can. Observe that at best, we’ll have at least one pebble remaining in the graph.

Define the PEBBLE problem as the following problem:

Input: An undirected graph and the number of pebbles at each vertex
Output: true if there is a sequence of pebbling moves that leaves exactly one pebble in the graph, false other-
wise.

Define the Hamiltonian Path Problem as the following problem:

Input: An undirected graph.
Output: true if there exists a path in the graph visiting every vertex exactly once, false otherwise.

Given that the Hamiltonian Path Problem is NP-complete, show that PEBBLE is as well. You may assume that the
total number of pebbles in a graph is polynomial in terms of the size of the graph.

Hint: A single pebbling move can be represented as an ordered pair of vertices (u, v) where we take two pebbles
from u and place one pebble in its neighbor v. A sequence of pebbling moves can be represented by a sequence of
these pairs. Is there any way we can order these pairs nicely?
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Follow the standard steps. To show that PEBBLE is in NP,

(a) State what the certificate is.

Solution:

A sequence of pebbling moves that leaves exactly one pebble in the graph.

(b) Say why the certificate can be checked in polynomial time.

Solution:

Given a sequence of pebbling moves, we just have to check if it’s valid and if it’s long enough to remove
enough pebbles. At most this will take polynomial time in terms of the number of pebbles.

Now, to show that PEBBLE is NP-hard,

(c) Fill in the blank: “We will reduce from ___ to ___”. Which is A, and which is B?

Solution:

We will reduce from Hamiltonian Path to Pebble. A is Hamiltonian Path, B is Pebble.

(d) Define a reduction function f , which converts instances of A into B.

Solution:

Let G be the graph given in the Hamiltonian Path Problem. Let’s say that G has n vertices.

Observe there are n possible starting vertices, so it’s sufficient to check if there’s a Hamiltonian Path for
each of these n possible starting vertices.

Let that starting vertex be v1.

Let p(v) be the number of pebbles at vertex v. Define p(v1) = 2 and p(v) = 1 otherwise (i.e. all vertices
start with one pebble except the starting vertex, which starts with an additional pebble).

We assert that there is a Hamiltonian Path if and only if any of these n PEBBLE problems is true.

(e) Say why f is computable in polynomial time.

Solution:

From the reduction, we run the PEBBLE algorithm n times, once for each start vertex, so this only con-
tributes a polynomial factor. Additionally, to modify the graph each time, we simply label each vertex in
constant time, which takes linear time to do so. So overall, this runtime is polynomial.

(f) Show that “x is a YES-instance for A” =⇒ “f(x) is a YES-instance for B”.

(Remember: convert a certificate for x into a certificate for f(x)!)

Solution:

Suppose there is a Hamiltonian Path v1, ..., vn.

Then consider the sequence of pebble moves: (v1, v2), (v2, v3), ..., (vn−1, vn). Observe for any vi where
1 ≤ i < n, since vi, vi+1 is in the Hamiltonian Path, then (vi, vi+1) must be an edge in G. Since (vi, vi+1) is
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the first pebble move that takes away pebbles from vi, and since vi starts with at least one pebble, then vi
has all of its starting pebbles when we attempt to do that pebble move. In the case that i = 1, then vi has
enough pebbles to do the move since it starts with two pebbles. In the case that 1 < i < n, then (vi−1, vi)
was the previous pebble move, so vi just gained a pebble and started with one pebble. So vi has at least
two pebbles and has enough to pebbles to make the pebble move.

After this sequence, observe vn has not lost any pebbles, so it still has its starting pebble, and it also just
gained a pebble from the move (vn−1, vn), so it has two pebbles. Since the graph started with n+1 pebbles
and we made n − 1 moves, there are only two pebbles left, and vn has both of them. Then, simply add
the move (vn, vn−1), which is valid since vn has two pebbles and the edge (vn, vn−1) exists since (vn−1, vn)
was a valid move. Now we have on pebble left.

So there is indeed a sequence of pebble moves removing all but one pebble.

(g) Show that “f(x) is a YES-instance for B” =⇒ “x is a YES-instance for A”.

(Remember: convert a certificate for f(x) into a certificate for x!)

Solution:

Suppose we have a sequence of pebble moves removing all but one pebble. We need to show that there
also exists a Hamiltonian Path.

Since we start with n+ 1 pebbles, and each move removes one pebble, this sequence must have exactly n
moves. Denote the pebbling sequence as (v1, w1), . . . , (vn, wn) where vi sends a pebble to wi at step i.

Define the preposition P (k) for 0 ≤ k < n to be true iff after k moves, for i = 1 . . . , k, vi has zero pebbles,
vk+1 2 pebbles and vi+1 = wi. Furthermore all vertices v1, . . . , vk+1 are distinct. We prove by induction on
k.

For k = 0, we trivially satisfy that v1 is distinct.

Suppose P (k− 1) holds for some 0 < k− 1 < n− 1, then we look at the kth move (vk, wk). We know that
the k−1st move was (vk−1, vk) and vk has two pebbles, so now consider all possible moves to wk. We know
that since we still have at least another move (vk+1, wk+1) left that wk can only be vk+1, or otherwise we
only have at most 1 pebble at vk+1. Furthermore wk = vk+1 must be a vertex distinct from vi for 1 ≤ i < k
since these all had 0 pebbles up to move k − 1 and can only get 1 more pebble from the kth move. Finally
we can see that vk will now have 0 pebbles after the kth move.

Then by induction, the first n− 1 moves can be written as the sequence (v1, v2), (v2, v3), ..., (vn−1, vn).

Since this removes n− 1 pebbles, there are 2 pebbles remaining after this sequence and by induction again
the last vertex vn contains two pebbles. Also all the vertices are distinct. Hence this sequence of vertices
v1, . . . , vn form a Hamiltonian path as (vi, vi+1) are all valid edges for each i < n.

6. Vertex Cover and Independent Set

Define IND-SET as follows:
Input: An undirected graph G and a positive integer k
Output: true if there is an independent set in G of size at least k, false otherwise.

Define VER-COVER as follows:
Input: An undirected graph G and a positive integer k
Output: true if there is an vertex cover in G of size at most k, false otherwise.

Prove that VER-COVER is NP-complete using IND-SET.

Follow the standard steps. To show that VER-COVER is in NP,

(a) State what the certificate is.
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Solution:

A vertex cover in G of size at most k.

(b) Say why the certificate can be checked in polynomial time.

Solution:

A verifier would take in the subset of k vertices that are a vertex cover. Given this set of vertices, a verifier
would check that these vertices are actually covering the graph (i.e. are endpoints to each edge in the
graph). This will take time O(|E|+ |V |), so it is polynomial time.

Now, to show that VER-COVER is NP-hard,

(c) Fill in the blank: “We will reduce from ___ to ___”. Which is A, and which is B?

Solution:

We will reduce from IND-SET to VER-COVER. A is IND-SET and B is VER-COVER.

(d) Define a reduction function f , which converts instances of A into B.

Solution:

The idea is taking the complement.

For any graph G = (V,E) , S is an independent set if and only if V−S is a vertex cover.

And using the format given in the problem definition, there is an vertex cover in G of size k if and only if
there is an independent set in G of size |V | − k.

(e) Say why f is computable in polynomial time.

Solution:

Our algorithm just returns the output of VER-COVER but with parameter |V |−k, which is polynomial time.

(f) Show that “x is a YES-instance for A” =⇒ “f(x) is a YES-instance for B”.

(Remember: convert a certificate for x into a certificate for f(x)!)

Solution:

Let G = (V,E) and positive integer k be given by IND-SET.

Suppose G has an independent set of size at least k, we show that our reduction returns true. Let S be the
independent set of size at least k, then every vertex in S touches at most one endpoint of every edge in G.
So V − S touches at least one endpoint of every edge of G. Hence V − S is a vertex cover of size at most
|V | − k and thus our algorithm output true.

(g) Show that “f(x) is a YES-instance for B” =⇒ “x is a YES-instance for A”.

(Remember: convert a certificate for f(x) into a certificate for x!)

Solution:
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For the other direction suppose that our algorithm returns true, meaning there is a vertex cover of size at
least |V | − k in G. Let S be the vertex cover of size at least |V | − k, then S touches at least one endpoint of
every edge in G. So V −S touches at most one endpoint of ever edge in G. Hence V −S is an independent
set of size at least k.
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