# CSE 421 Section 8

**Linear Programming and Technique Toolbox** 

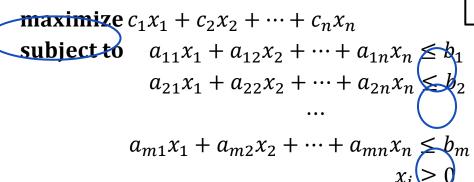
## **Administrivia**

#### **Announcements & Reminders**

- **HW6** was due yesterday, 11/13
  - o Late submissions open until tomorrow, 11/15 @ 11:59pm

#### HW7

- Due Friday 11/22 @ 11:59pm
- o Late submissions will be open until Sunday, 11/24 @ 11:59pm


# Linear programming

#### Review of linear programming

**Linear programming** is the following problem:

maximize  $c^T x$ subject to  $Ax \le b, x \ge 0$ 

In other words,



#### **Standard form** is

maximization with less than or equal to constraints

for all i

#### Problem solving strategy overview

Preprocess the input into the form required by the technique

Postprocess the technique

Postprocess the technique

Write pseudocode, proof, and running time analysis

#### Problem 1 – Cost-effective eating

You are given a list of foods indexed  $1, \ldots, n$ , as well as the calories  $c_i$ , sugars (g)  $s_i$ , and vitamin D (mcg)  $d_i$  per serving of each food. You're trying to maintain a healthy diet by eating exactly 2000 calories per day. You also heard that the American Heart Association recommends at most 30 grams of sugar per day. And because you just moved to Seattle from LA this year, it's your first winter and you need to eat at least 15 mcg of vitamin D to avoid SAD. Along with the nutrition information, you also know that one serving of food i costs  $m_i$  money. Find a way to compute a healthy diet that is as cheap as possible.

a) Write a summary of the problem.

#### Problem 1 - Cost-effective eating

a) Write a summary of the problem.

**Input:** Calories  $c_i$ , sugar  $s_i$ , vitamin D  $d_i$ , and money  $m_i$  per serving for each food.

**Expected output:** Minimum amount of money to meet nutrition standards.

#### Problem 1 – Cost-effective eating

- b) To use linear programming:
  - i. What should the variables  $x_i$  represent?
  - ii. What is the objective function?
  - iii. What are the constraints (directly translated from the problem)?

#### Problem 1 – Cost-effective eating

- b) To use linear programming:
  - i. What should the variables  $x_i$  represent? The number of servings of food i to eat.
  - ii. What is the objective function?

**minimize** 
$$m_1x_1 + \cdots + m_nx_n$$

iii. What are the constraints (directly translated from the problem)?

**subject to** 
$$c_1x_1 + \cdots + c_nx_n = 2000$$
  
 $s_1x_1 + \cdots + s_nx_n \le 30$   
 $d_1x_1 + \cdots + d_nx_n \ge 15$   
 $x_i \ge 0$  for all  $i$ 

### Problem 1 - Cost-effective eating

iv. How can you transform the problem into standard form?

#### Problem 1 - Cost-effective eating

iv. How can you transform the problem into standard form?

**maximize** 
$$-m_1x_1 - \cdots - m_nx_n$$

**subject to** 
$$c_1x_1 + \dots + c_nx_n \le 2000$$
  
 $-c_1x_1 - \dots - c_nx_n \le -2000$   
 $s_1x_1 + \dots + s_nx_n \le 30$   
 $-d_1x_1 - \dots - d_nx_n \le -15$   
 $x_i \ge 0$  for all  $i$ 

- 1. Multiply "minimize" objective by -1.
- 2. Convert equalities into two inequalities.
- 3. Multiply  $\geq$  inequalities by -1.

#### Problem 1 – Cost-effective eating

For basic LP problems, we will only be looking for a brief sketch of correctness, unless there is something nontrivial beyond directly translating the constraints.

c) Sketch the correctness of your solution.

#### Problem 1 - Cost-effective eating

For basic LP problems, we will only be looking for a brief sketch of correctness, unless there is something nontrivial beyond directly translating the constraints.

c) Sketch the correctness of your solution.

Because  $m_i$  is the price per serving, we pay  $m_i x_i$  if we pick  $x_i$  servings of food i, so our goal is to minimize  $m_1 x_1 + \dots + m_n x_n$ . Similarly, we are given per-serving values for the calories, sugar, and vitamin D of each food, so we have  $c_1 x_1 + \dots + c_n x_n = 2000$ ,  $s_1 x_1 + \dots + s_n x_n \leq 30$ , and  $d_1 x_1 + \dots + d_n x_n \geq 15$ . We transformed them to standard form using basic algebra. Relying on an LP algorithm, we output the best  $x_1, \dots, x_n$  as desired.

## Technique toolbox

### Which technique should I try?

We have covered many techniques for algorithms so far.

| Using known algorithms                                                                                                                                        | Developing from scratch                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| <ul> <li>Stable matching</li> <li>Graph traversal algorithms</li> <li>Weighted graph algorithms</li> <li>Network flows</li> <li>Linear programming</li> </ul> | <ul><li> Greedy algorithms</li><li> Divide and conquer</li><li> Dynamic programming</li></ul> |

How should you pick which method to try?

#### Problem solving strategy overview

**Read** and **summarize** the problem

Does the problem remind me of something I already know?

Yes

**Call the known algorithm** as a subroutine



- 1. **Visualize** the problem with **examples**.
- 2. Try a **greedy** idea against your examples.
- 3. Identify **subproblems**, are they halves or just slightly smaller?

### PollEverywhere activity

But the best way to build intuition is to practice!

- Go to pollev.com/[TA's account update me!] and log in with your @uw.edu email.
- The activity will have a public leaderboard.
  - Please anonymize your screen name in the upper right corner!

