
CSE 421 Section 7

Network Flows

Administrivia

Announcements & Reminders

● Midterm exam

o Congrats on finishing half of the course!

o We’ll be grading it over the next several days.

● HW6

○ Due Wednesday 11/13 @ 11:59pm

Algorithms for network flows

Algorithms for network flows

Ford–Fulkerson is a class of algorithms to compute maximum flow.

1. Let the residual graph 𝐺𝑓 be initialized to 𝐺.

2. While there exists an 𝑠-𝑡 path 𝑃 in 𝐺𝑓,

a. Let 𝑐 be the minimum capacity along this path.

b. Update 𝑓 to push 𝑐 flow along 𝑃.

c. Update edges in 𝐺𝑓 along 𝑃.

Warmup: How does the update work?

Algorithms for network flows

Ford–Fulkerson is a class of algorithms to compute maximum flow.

1. Let the residual graph 𝐺𝑓 be initialized to 𝐺.

2. While there exists an 𝑠-𝑡 path 𝑃 in 𝐺𝑓,

a. Let 𝑐 be the minimum capacity along this path.

b. Update 𝑓 to push 𝑐 flow along 𝑃.

c. Update edges in 𝐺𝑓 along 𝑃.

If 𝑒 ∈ 𝑃 is a forward edge, increase 𝑓(𝑒) by 𝑐.

If 𝑒 ∈ 𝑃 is a backward edge, decrease 𝑓(𝑒) by 𝑐.

Ex: next step of this

Solution

Algorithms for network flows

Ford–Fulkerson is a class of algorithms to compute maximum flow.

● Edmonds–Karp implementation: BFS (unweighted shortest path) to select 𝑠-𝑡 path

Capacity scaling algorithm: Process capacities one bit at a time

Ford–Fulkerson with BFS
Capacity scaling

Ford–Fulkerson bound Edmonds–Karp bound

𝑂(𝑚𝑛𝐶) 𝑂(𝑚2𝑛) 𝑂(𝑚2log 𝐶)

good when all capacities
are small

good with many large
capacities

good when there are a
few large capacities

Flow algorithms practice

Problem 1 – Flow algorithms practice
Using Ford–Fulkerson with BFS, find the maximum 𝑠-𝑡 flow in the graph 𝐺 below, the

corresponding residual graph, and minimum cut.

Work on this with the people around you, then we’ll check!

Problem 1 – Flow algorithms practice

𝑠

𝑏𝑎 𝑐

𝑒𝑑 𝑓

𝑡

3

4 3

5

1

6 3

34

Solution

Here is our starting residual graph.

Problem 1 – Flow algorithms practice

𝑠

𝑏𝑎 𝑐

𝑒𝑑 𝑓

𝑡

3

4 3

5

1

6 3

34

Solution

Find the shortest 𝑠-𝑡 path.

Problem 1 – Flow algorithms practice

𝑠

𝑏𝑎 𝑐

𝑒𝑑 𝑓

𝑡

2

4 3

5

1

6 3

24

1

1

Solution

Update the residual graph.

Problem 1 – Flow algorithms practice

𝑠

𝑏𝑎 𝑐

𝑒𝑑 𝑓

𝑡

1/3

0/4 0/3

0/5

1/1

0/6 0/3

1/30/4

Solution

Update the flow.

Problem 1 – Flow algorithms practice

𝑠

𝑏𝑎 𝑐

𝑒𝑑 𝑓

𝑡

2

4 3

5

1

6 3

24

1

1

Solution

Here is our current residual graph.

Problem 1 – Flow algorithms practice

𝑠

𝑏𝑎 𝑐

𝑒𝑑 𝑓

𝑡

2

4 3

5

6 3

24

1

1
1

Solution

Find the shortest 𝑠-𝑡 path.

Problem 1 – Flow algorithms practice

𝑠

𝑏𝑎 𝑐

𝑒𝑑 𝑓

𝑡

2

3

6 3

24

1

2

2

1

2

1

3

Solution

Update the residual graph.

Problem 1 – Flow algorithms practice

𝑠

𝑏𝑎 𝑐

𝑒𝑑 𝑓

𝑡

3/3

2/4 2/3

2/5

1/1

0/6 0/3

1/30/4

Solution

Update the flow.

Problem 1 – Flow algorithms practice

𝑠

𝑏𝑎 𝑐

𝑒𝑑 𝑓

𝑡

2

3

6 3

24

1

2

2

1

2

1

3

Solution

Here is our current residual graph.

Problem 1 – Flow algorithms practice

𝑠

𝑏𝑎 𝑐

𝑒𝑑 𝑓

𝑡

2

3

6 3

24

1

2

2

1

2

1

3

Solution

Find the shortest 𝑠-𝑡 path.

Problem 1 – Flow algorithms practice

𝑠

𝑏𝑎 𝑐

𝑒𝑑 𝑓

𝑡

2

3

1

2

3

2

2

1

2

1

3

2

4

2 2

Solution

Update the residual graph.

Problem 1 – Flow algorithms practice

𝑠

𝑏𝑎 𝑐

𝑒𝑑 𝑓

𝑡

3/3

2/4 2/3

2/5

1/1

2/6 2/3

3/32/4

Solution

Update the flow.

Problem 1 – Flow algorithms practice

𝑠

𝑏𝑎 𝑐

𝑒𝑑 𝑓

𝑡

2

3

1

2

3

2

2

1

2

1

3

2

4

2 2

Solution

Here is our current residual graph.

Problem 1 – Flow algorithms practice

𝑠

𝑏𝑎 𝑐

𝑒𝑑 𝑓

𝑡

2

3

1

2

3

2

2

1

2

1

3

2

4

2 2

Solution

Find the shortest 𝑠-𝑡 path.

Problem 1 – Flow algorithms practice

𝑠

𝑏𝑎 𝑐

𝑒𝑑 𝑓

𝑡

1

2

1

3

3

3 3

3

3

3

3 3

1

Solution

Update the residual graph.

Problem 1 – Flow algorithms practice

𝑠

𝑏𝑎 𝑐

𝑒𝑑 𝑓

𝑡

3/3

3/4 3/3

3/5

0/1

3/6 3/3

3/33/4

Solution

Update the flow.

Problem 1 – Flow algorithms practice

𝑠

𝑏𝑎 𝑐

𝑒𝑑 𝑓

𝑡

1

2

1

3

3

3 3

3

3

3

3 3

1

Solution

There are no more 𝑠-𝑡 paths.

Problem 1 – Flow algorithms practice

𝑠

𝑏𝑎 𝑐

𝑒𝑑 𝑓

𝑡

3/3

3/4 3/3

3/5

0/1

3/6 3/3

3/33/4

Solution

Max flow is flow out
of 𝑠, which is 6.

Problem 1 – Flow algorithms practice

𝑠

𝑏𝑎 𝑐

𝑒𝑑 𝑓

𝑡

1

2

1

3

3

3 3

3

3

3

3 3

1

Min cut is reachable set
from 𝑠, also has value 6

Solution

Problem solving with flows

Problem solving strategy overview

Read and summarize the problem

Decide to use known algorithm or techniques from scratch

Write pseudocode, proof,
and running time analysis

not covered this sectionPreprocess the input into the
form required by the technique

Postprocess the technique’s
output into what you want

Three common preprocessing tricks

To preprocess for network flows:

● If you want “multiple sources/sinks,” add dummy vertices.

● If you want “vertex capacities,” split vertices into two.

● If you want “unconstrained capacity,” just set capacity to infinity.

We’ll see examples of each.

Problem 2 – Reservoir balancing
You have a set of overfilled reservoirs 𝑂 = {𝑜1, … , 𝑜𝑚} and a set of underfilled

reservoirs 𝑈 = {𝑢1, … , 𝑢𝑛}, and want to move 10,000 gallons of water from reservoirs

in 𝑂 to reservoirs in 𝑈. You only care about the total amount of water moved, not each

individual reservoir. You have a directed graph 𝐺 = (𝑉, 𝐸) describing the one-way

pipes connecting the reservoirs, where 𝑂 ⊆ 𝑉 and 𝑈 ⊆ 𝑉. This graph may include

intermediate reservoirs, whose water levels should not change through your solution.

Each pipe 𝑒 ∈ 𝐸 has an integer maximum rate of flow 𝑐(𝑒) in gallons per minute. Find

a method to move the water in the shortest amount of time.

a) Write a summary of the problem.

Work on this with the people around you, then we’ll check!

Problem 2 – Reservoir balancing
a) Write a summary of the problem.

Input: Directed graph 𝐺 = (𝑉, 𝐸) with maximum flow rates 𝑐(𝑒), sets 𝑂, 𝑈 ⊆ 𝑉

Output: Time/method to push 10,000 gallons from 𝑂 to 𝑈 while respecting flow rates

Solution

Problem 2 – Reservoir balancing
a) Write a summary of the problem.

b) Think about the three tricks. Use them to preprocess our input into something

suitable as input for a network flows algorithm.

● If you want “multiple sources/sinks,” add dummy vertices.

● If you want “vertex capacities,” split vertices into two.

● If you want “unconstrained capacity,” just set capacity to infinity.

Problem 2 – Reservoir balancing
a) Write a summary of the problem.

Input: Directed graph 𝐺 = (𝑉, 𝐸) with maximum flow rates 𝑐(𝑒), sets 𝑂, 𝑈 ⊆ 𝑉

Output: Time/method to push 10,000 gallons from 𝑂 to 𝑈 while respecting flow rates

b) Think about the three tricks. Use them to preprocess our input into something

suitable as input for a network flows algorithm.

● If you want “multiple sources/sinks,” add dummy vertices.

● If you want “vertex capacities,” split vertices into two.

● If you want “unconstrained capacity,” just set capacity to infinity.

Previous Solution

Work on this with the people around you, then we’ll check!

Problem 2 – Reservoir balancing
b) Think about the three tricks. Use them to preprocess our input into something

suitable as input for a network flows algorithm.

Create dummy vertices 𝑠 and 𝑡, as well as edges (𝑠, 𝑜𝑖) and (𝑢𝑖, 𝑡) for all 𝑜𝑖 ∈ 𝑂 and

𝑢𝑖 ∈ 𝑈. Give these new edges infinite capacity, and leave the rest of the graph alone.

𝑠
dummy
source

𝑜1

𝑜2

𝑜3

𝑢1

𝑢2

𝑡
dummy

sink.

∞

∞

∞

∞

∞

Solution

Problem 2 – Reservoir balancing
c) After running a max flow algorithm, what do you get? What postprocessing is

needed to get the solution?

Work on this with the people around you, then we’ll check!

Problem 2 – Reservoir balancing
c) After running a max flow algorithm, what do you get? What postprocessing is

needed to get the solution?

We get the maximum flow 𝑟 from 𝑠 to 𝑡 as well as the flow 𝑓: 𝐸′ → ℝ that achieves it,

where 𝐸′ is the edge set of our new graph.

Denote 𝑓ȁ𝐸 the restriction of 𝑓 to the original edge set 𝐸, and our solution will be to

push water at rates according to 𝑓ȁ𝐸 for
10,000

𝑟
minutes.

Solution

Network flows proofs
In a network flow problem, the main claim in your proof will probably be:

“The maximum flow in the graph that I constructed

is equal to the maximum solution in the original problem.”

It should be intuitive, but to write thing formally, the strategy is to prove two things:

1. We can turn any solution of our network into a solution of the original problem

of same quality.

2. We can turn any solution of the original problem into a solution of our network

of same quality.

Then, your output works because (1), and no other solution of the original problem is

better, by applying (2) and the fact that we found the max flow of our network.

Problem 2 – Reservoir balancing
d) Prove your solution is correct.

Work on this with the people around you, then we’ll check!

Problem 2 – Reservoir balancing
d) Prove your solution is correct.

Turn solution of our network into a solution of original problem of same quality:

● Simply restrict to the original edge set (note that this is valid for original problem).

● By flow conservation, the flow out of 𝑠 is equal to the sum of all flow leaving 𝑂, so

the quality is the same.

Turn solution of original problem into a solution of our network of same quality:

● Set 𝑓(𝑠, 𝑜𝑖) to be the sum of all flow out of 𝑜𝑖 (valid because infinite capacity).

● Then, the flow out of 𝑠 is the sum of all flow leaving 𝑂, thus same quality.

Thus, the best solution of our network is equivalent to the best solution of the original.

Solution

Problem 2 – Reservoir balancing
d) Prove your solution is correct.

Lastly, the previous slide only showed that we compute the maximum water pumping

rate from 𝑂 to 𝑈, not yet the “best method to move water”.

To finish, we just note that the best strategy for filling the reservoirs must have the

form “run a fixed strategy with flow rate 𝑟 for
10,000

𝑟
minutes” (no changes over time).

● Suppose a strategy changed over time. Then, we can improve it by taking the

strategy at the point in time where flow rate is fastest, and use that the whole time.

Solution

Problem 2 – Reservoir balancing
e) Which flow algorithm is best for this problem? Then analyze your running time.

(Assume 𝑉 = 𝑛, 𝐸 = 𝑚, and 𝑛 ≤ 𝑚.)

Work on this with the people around you, then we’ll check!

Problem 2 – Reservoir balancing
e) Which flow algorithm is best for this problem? Then analyze your running time.

(Assume 𝑉 = 𝑛, 𝐸 = 𝑚, and 𝑛 ≤ 𝑚.)

Because we have no control over how large the capacities are, Ford–Fulkerson with

BFS and the Edmonds–Karp bound is best for this problem.

The graph we constructed has:

● 𝑉′ = 𝑛 + 2 vertices, and

● 𝐸′ = 𝑚 + 𝑂 + 𝑈 < 𝑚 + 𝑛 ≤ 2𝑚 edges.

Thus, the running time is 𝑂 𝑉′ 𝐸′ 2 = 𝑂(𝑛𝑚2).

Solution

Problem 3 – Traffic modeling
In most cities, traffic congestion happens only at intersections – segments without

intersections are free-flowing. An extremely rough model is that the capacity of an

intersection (the total number of vehicles per hour that flow through the intersection

in any direction) is proportional to the number of traffic lanes at the intersection. You

are given the road network of a city as a graph 𝐺 = (𝑉, 𝐸) (consisting of directed

edges, i.e. one-way streets), as well as the number of lanes 𝑐(𝑣) at each intersection.

Suppose each lane adds a capacity of 300 vehicles per hour, and there are no

intersections with more than 12 lanes. Given an origin 𝑠 and destination 𝑡 (which also

do have limited capacity), compute how many vehicles per hour can move from 𝑠 to 𝑡.

a) Write a summary of the problem.

Work on this with the people around you, then we’ll check!

Problem 3 – Traffic modeling
a) Write a summary of the problem.

Input: Directed graph 𝐺 = (𝑉, 𝐸) with vertex capacities 𝑐(𝑣) ≤ 12, and 𝑠 and 𝑡

Output: Maximum flow rate from 𝑠 to 𝑡

Solution

Problem 3 – Traffic modeling
a) Write a summary of the problem.

b) Think about the three tricks. Use them to preprocess our input into something

suitable as input for a network flows algorithm.

● If you want “multiple sources/sinks,” add dummy vertices.

● If you want “vertex capacities,” split vertices into two.

● If you want “unconstrained capacity,” just set capacity to infinity.

Problem 3 – Traffic modeling
a) Write a summary of the problem.

Input: Directed graph 𝐺 = (𝑉, 𝐸) with vertex capacities 𝑐(𝑣) ≤ 12, and 𝑠 and 𝑡

Output: Maximum flow rate from 𝑠 to 𝑡

b) Think about the three tricks. Use them to preprocess our input into something

suitable as input for a network flows algorithm.

● If you want “multiple sources/sinks,” add dummy vertices.

● If you want “vertex capacities,” split vertices into two.

● If you want “unconstrained capacity,” just set capacity to infinity.

Work on this with the people around you, then we’ll check!

Previous Solution

Problem 3 – Traffic modeling
b) Think about the three tricks. Use them to preprocess our input into something

suitable as input for a network flows algorithm.

First, put infinite capacity on all edges in the original graph.

Then, split every vertex 𝑣 into 𝑣𝑖𝑛 and 𝑣𝑜𝑢𝑡, and change all (𝑢, 𝑣) into (𝑢𝑜𝑢𝑡, 𝑣𝑖𝑛), (as

well as (𝑣, 𝑤) into (𝑣𝑜𝑢𝑡, 𝑤𝑖𝑛)). Put capacity 𝑐(𝑣) on the new edge (𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡).

Lastly, we will compute the flow between 𝑠′ = 𝑠𝑖𝑛 and 𝑡′ = 𝑡𝑜𝑢𝑡.

𝑣 𝑣𝑖𝑛 𝑣𝑜𝑢𝑡

𝑐(𝑣)

Solution

Problem 3 – Traffic modeling
c) After running a max flow algorithm, what do you get? What postprocessing is

needed to get the solution?

This should be quick – what can we do?

Problem 3 – Traffic modeling
c) After running a max flow algorithm, what do you get? What postprocessing is

needed to get the solution?

We get the maximum total flow rate 𝑟, and we should return 300𝑟.

Solution

Problem 3 – Traffic modeling
d) Prove your solution is correct.

Work on this with the people around you, then we’ll check!

Problem 3 – Traffic modeling
d) Prove your solution is correct.

Turn solution of our network into a solution of original problem of same quality:

● For every edge (𝑢𝑜𝑢𝑡, 𝑣𝑖𝑛), give flow 𝑓(𝑢𝑜𝑢𝑡, 𝑣𝑖𝑛) to original edge (𝑢, 𝑣).

● By flow conservation at 𝑣𝑖𝑛 and 𝑐 𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡 = 𝑐(𝑣), the original vertex 𝑣 has at

most 𝑐(𝑣) flow through it, so it is a valid solution.

● By flow conservation, flow out of 𝑠𝑖𝑛 is the same as flow out of 𝑠𝑜𝑢𝑡, which by

construction is the flow out of 𝑠, so the quality is the same.

Solution

Problem 3 – Traffic modeling
d) Prove your solution is correct.

Turn solution of original problem into a solution of our network of same quality:

● Set 𝑓(𝑢𝑜𝑢𝑡, 𝑣𝑖𝑛) to be the traffic flow from 𝑢 to 𝑣, and set 𝑓(𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡) as necessary

to maintain flow conservation.

● Edges of type (𝑢𝑜𝑢𝑡, 𝑣𝑖𝑛) have infinite capacity, so they are fine, and edges of type

(𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡) have capacity 𝑐(𝑣), so they are fine by vertex capacities.

● The quality is the same, since by construction we set the the flow out of 𝑠𝑖𝑛 to be

equal to the flow out of 𝑠𝑜𝑢𝑡, which was the flow out of 𝑠.

Solution

Problem 3 – Traffic modeling
e) Which flow algorithm is best for this problem? Then analyze your running time.

(Assume 𝑉 = 𝑛, 𝐸 = 𝑚, and 𝑛 ≤ 𝑚.)

Work on this with the people around you, then we’ll check!

Problem 3 – Traffic modeling
e) Which flow algorithm is best for this problem? Then analyze your running time.

(Assume 𝑉 = 𝑛, 𝐸 = 𝑚, and 𝑛 ≤ 𝑚.)

Because all (non-infinite) capacities are at most 12, Ford–Fulkerson with BFS and

the original Ford–Fulkerson analysis is best for this problem.

The graph we constructed has:

● 𝑉′ = 2𝑛 vertices, and

● 𝐸′ = 𝑚 + 𝑛 ≤ 2𝑚 edges.

Since 𝑉′ 𝐸′ 𝐶 = 48𝑛𝑚, the running time is 𝑂 𝑉′ 𝐸′ 𝐶 = 𝑂(𝑛𝑚).

Solution

Thanks for coming to section this week!

● Three tricks: dummy 𝑠/𝑡, split vertices for vertex capacity, and infinite capacity

● When using Ford–Fulkerson with BFS, pick original FF bound if small capacities,

and pick Edmonds–Karp bound if large capacities.

● Proof by converting solutions both ways: between solutions to your constructed

flow network and solutions to the original problem.

Summary

	Intro
	Slide 1: CSE 421 Section 7

	Administrivia
	Slide 2: Administrivia
	Slide 3: Announcements & Reminders

	Algorithms for network flows
	Slide 4: Algorithms for network flows
	Slide 5: Algorithms for network flows
	Slide 6: Algorithms for network flows
	Slide 7: Algorithms for network flows

	Flow algorithms practice
	Slide 8: Flow algorithms practice
	Slide 9: Problem 1 – Flow algorithms practice
	Slide 10: Problem 1 – Flow algorithms practice
	Slide 11: Problem 1 – Flow algorithms practice
	Slide 12: Problem 1 – Flow algorithms practice
	Slide 13: Problem 1 – Flow algorithms practice
	Slide 14: Problem 1 – Flow algorithms practice
	Slide 15: Problem 1 – Flow algorithms practice
	Slide 16: Problem 1 – Flow algorithms practice
	Slide 17: Problem 1 – Flow algorithms practice
	Slide 18: Problem 1 – Flow algorithms practice
	Slide 19: Problem 1 – Flow algorithms practice
	Slide 20: Problem 1 – Flow algorithms practice
	Slide 21: Problem 1 – Flow algorithms practice
	Slide 22: Problem 1 – Flow algorithms practice
	Slide 23: Problem 1 – Flow algorithms practice
	Slide 24: Problem 1 – Flow algorithms practice
	Slide 25: Problem 1 – Flow algorithms practice
	Slide 26: Problem 1 – Flow algorithms practice
	Slide 27: Problem 1 – Flow algorithms practice
	Slide 28: Problem 1 – Flow algorithms practice

	Problem solving with flows
	Slide 29: Problem solving with flows
	Slide 30: Problem solving strategy overview
	Slide 31: Three common preprocessing tricks
	Slide 32: Problem 2 – Reservoir balancing
	Slide 33: Problem 2 – Reservoir balancing
	Slide 34: Problem 2 – Reservoir balancing
	Slide 35: Problem 2 – Reservoir balancing
	Slide 36: Problem 2 – Reservoir balancing
	Slide 37: Problem 2 – Reservoir balancing
	Slide 38: Problem 2 – Reservoir balancing
	Slide 39: Network flows proofs
	Slide 40: Problem 2 – Reservoir balancing
	Slide 41: Problem 2 – Reservoir balancing
	Slide 42: Problem 2 – Reservoir balancing
	Slide 43: Problem 2 – Reservoir balancing
	Slide 44: Problem 2 – Reservoir balancing
	Slide 45: Problem 3 – Traffic modeling
	Slide 46: Problem 3 – Traffic modeling
	Slide 47: Problem 3 – Traffic modeling
	Slide 48: Problem 3 – Traffic modeling
	Slide 49: Problem 3 – Traffic modeling
	Slide 50: Problem 3 – Traffic modeling
	Slide 51: Problem 3 – Traffic modeling
	Slide 52: Problem 3 – Traffic modeling
	Slide 53: Problem 3 – Traffic modeling
	Slide 54: Problem 3 – Traffic modeling
	Slide 55: Problem 3 – Traffic modeling
	Slide 56: Problem 3 – Traffic modeling

	Outro
	Slide 57: Summary

