
CSE 421 Section 7

Network Flows



Administrivia



Announcements & Reminders

● Midterm exam

o Congrats on finishing half of the course!

o We’ll be grading it over the next several days.

● HW6

○ Due Wednesday 11/13 @ 11:59pm



Algorithms for network flows



Algorithms for network flows

Ford–Fulkerson is a class of algorithms to compute maximum flow. 

1. Let the residual graph 𝐺𝑓 be initialized to 𝐺.

2. While there exists an 𝑠-𝑡 path 𝑃 in 𝐺𝑓,

a. Let 𝑐 be the minimum capacity along this path.

b. Update 𝑓 to push 𝑐 flow along 𝑃.

c. Update edges in 𝐺𝑓 along 𝑃.

Warmup: How does the update work?



Algorithms for network flows

Ford–Fulkerson is a class of algorithms to compute maximum flow. 

1. Let the residual graph 𝐺𝑓 be initialized to 𝐺.

2. While there exists an 𝑠-𝑡 path 𝑃 in 𝐺𝑓,

a. Let 𝑐 be the minimum capacity along this path.

b. Update 𝑓 to push 𝑐 flow along 𝑃.

c. Update edges in 𝐺𝑓 along 𝑃.

If 𝑒 ∈ 𝑃 is a forward edge, increase 𝑓(𝑒) by 𝑐.

If 𝑒 ∈ 𝑃 is a backward edge, decrease 𝑓(𝑒) by 𝑐.

Ex: next step of this

Solution



Algorithms for network flows

Ford–Fulkerson is a class of algorithms to compute maximum flow. 

● Edmonds–Karp implementation: BFS (unweighted shortest path) to select 𝑠-𝑡 path

Capacity scaling algorithm: Process capacities one bit at a time

Ford–Fulkerson with BFS
Capacity scaling

Ford–Fulkerson bound Edmonds–Karp bound

𝑂(𝑚𝑛𝐶) 𝑂(𝑚2𝑛) 𝑂(𝑚2log 𝐶)

good when all capacities 
are small

good with many large 
capacities

good when there are a 
few large capacities



Flow algorithms practice



Problem 1 – Flow algorithms practice
Using Ford–Fulkerson with BFS, find the maximum 𝑠-𝑡 flow in the graph 𝐺 below, the 

corresponding residual graph, and minimum cut.

Work on this with the people around you, then we’ll check!



Problem 1 – Flow algorithms practice
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Solution

Here is our starting residual graph.



Problem 1 – Flow algorithms practice

𝑠
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Solution

Find the shortest 𝑠-𝑡 path.



Problem 1 – Flow algorithms practice
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Solution

Update the residual graph.



Problem 1 – Flow algorithms practice
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Solution

Update the flow.



Problem 1 – Flow algorithms practice
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Solution

Here is our current residual graph.



Problem 1 – Flow algorithms practice
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Solution

Find the shortest 𝑠-𝑡 path.



Problem 1 – Flow algorithms practice
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Update the residual graph.
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Update the flow.
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Here is our current residual graph.
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Find the shortest 𝑠-𝑡 path.



Problem 1 – Flow algorithms practice
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Update the residual graph.
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Update the flow.
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Here is our current residual graph.



Problem 1 – Flow algorithms practice
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Solution

Find the shortest 𝑠-𝑡 path.



Problem 1 – Flow algorithms practice
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Update the residual graph.



Problem 1 – Flow algorithms practice
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Update the flow.



Problem 1 – Flow algorithms practice
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Solution

There are no more 𝑠-𝑡 paths.



Problem 1 – Flow algorithms practice
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Solution

Max flow is flow out 
of 𝑠, which is 6.



Problem 1 – Flow algorithms practice
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Min cut is reachable set 
from 𝑠, also has value 6

Solution



Problem solving with flows



Problem solving strategy overview

Read and summarize the problem

Decide to use known algorithm or techniques from scratch

Write pseudocode, proof, 
and running time analysis

not covered this sectionPreprocess the input into the 
form required by the technique

Postprocess the technique’s 
output into what you want



Three common preprocessing tricks

To preprocess for network flows:

● If you want “multiple sources/sinks,” add dummy vertices.

● If you want “vertex capacities,” split vertices into two.

● If you want “unconstrained capacity,” just set capacity to infinity.

We’ll see examples of each.



Problem 2 – Reservoir balancing
You have a set of overfilled reservoirs 𝑂 = {𝑜1, … , 𝑜𝑚} and a set of underfilled 

reservoirs 𝑈 = {𝑢1, … , 𝑢𝑛}, and want to move 10,000 gallons of water from reservoirs 

in 𝑂 to reservoirs in 𝑈. You only care about the total amount of water moved, not each 

individual reservoir. You have a directed graph 𝐺 = (𝑉, 𝐸) describing the one-way 

pipes connecting the reservoirs, where 𝑂 ⊆ 𝑉 and 𝑈 ⊆ 𝑉. This graph may include 

intermediate reservoirs, whose water levels should not change through your solution. 

Each pipe 𝑒 ∈ 𝐸 has an integer maximum rate of flow 𝑐(𝑒) in gallons per minute. Find 

a method to move the water in the shortest amount of time.

a) Write a summary of the problem.

Work on this with the people around you, then we’ll check!



Problem 2 – Reservoir balancing
a) Write a summary of the problem.

Input: Directed graph 𝐺 = (𝑉, 𝐸) with maximum flow rates 𝑐(𝑒), sets 𝑂, 𝑈 ⊆ 𝑉

Output: Time/method to push 10,000 gallons from 𝑂 to 𝑈 while respecting flow rates

Solution



Problem 2 – Reservoir balancing
a) Write a summary of the problem.

b) Think about the three tricks. Use them to preprocess our input into something 

suitable as input for a network flows algorithm.

● If you want “multiple sources/sinks,” add dummy vertices.

● If you want “vertex capacities,” split vertices into two.

● If you want “unconstrained capacity,” just set capacity to infinity.



Problem 2 – Reservoir balancing
a) Write a summary of the problem.

Input: Directed graph 𝐺 = (𝑉, 𝐸) with maximum flow rates 𝑐(𝑒), sets 𝑂, 𝑈 ⊆ 𝑉

Output: Time/method to push 10,000 gallons from 𝑂 to 𝑈 while respecting flow rates

b) Think about the three tricks. Use them to preprocess our input into something 

suitable as input for a network flows algorithm.

● If you want “multiple sources/sinks,” add dummy vertices.

● If you want “vertex capacities,” split vertices into two.

● If you want “unconstrained capacity,” just set capacity to infinity.

Previous Solution

Work on this with the people around you, then we’ll check!



Problem 2 – Reservoir balancing
b) Think about the three tricks. Use them to preprocess our input into something 

suitable as input for a network flows algorithm.

Create dummy vertices 𝑠 and 𝑡, as well as edges (𝑠, 𝑜𝑖) and (𝑢𝑖, 𝑡) for all 𝑜𝑖 ∈ 𝑂 and 

𝑢𝑖 ∈ 𝑈. Give these new edges infinite capacity, and leave the rest of the graph alone.

𝑠
dummy 
source

𝑜1

𝑜2

𝑜3

𝑢1

𝑢2

𝑡
dummy 

sink. . . . .

∞

∞

∞

∞

∞

Solution



Problem 2 – Reservoir balancing
c) After running a max flow algorithm, what do you get? What postprocessing is 

needed to get the solution?

Work on this with the people around you, then we’ll check!



Problem 2 – Reservoir balancing
c) After running a max flow algorithm, what do you get? What postprocessing is 

needed to get the solution?

We get the maximum flow 𝑟 from 𝑠 to 𝑡 as well as the flow 𝑓: 𝐸′ → ℝ that achieves it, 

where 𝐸′ is the edge set of our new graph. 

Denote 𝑓ȁ𝐸 the restriction of 𝑓 to the original edge set 𝐸, and our solution will be to 

push water at rates according to 𝑓ȁ𝐸 for 
10,000

𝑟
minutes.

Solution



Network flows proofs
In a network flow problem, the main claim in your proof will probably be:

“The maximum flow in the graph that I constructed 

is equal to the maximum solution in the original problem.”

It should be intuitive, but to write thing formally, the strategy is to prove two things:

1. We can turn any solution of our network into a solution of the original problem 

of same quality.

2. We can turn any solution of the original problem into a solution of our network 

of same quality.

Then, your output works because (1), and no other solution of the original problem is 

better, by applying (2) and the fact that we found the max flow of our network.



Problem 2 – Reservoir balancing
d) Prove your solution is correct.

Work on this with the people around you, then we’ll check!



Problem 2 – Reservoir balancing
d) Prove your solution is correct.

Turn solution of our network into a solution of original problem of same quality:

● Simply restrict to the original edge set (note that this is valid for original problem).

● By flow conservation, the flow out of 𝑠 is equal to the sum of all flow leaving 𝑂, so 

the quality is the same.

Turn solution of original problem into a solution of our network of same quality:

● Set 𝑓(𝑠, 𝑜𝑖) to be the sum of all flow out of 𝑜𝑖 (valid because infinite capacity).

● Then, the flow out of 𝑠 is the sum of all flow leaving 𝑂, thus same quality.

Thus, the best solution of our network is equivalent to the best solution of the original.

Solution



Problem 2 – Reservoir balancing
d) Prove your solution is correct.

Lastly, the previous slide only showed that we compute the maximum water pumping 

rate from 𝑂 to 𝑈, not yet the “best method to move water”.

To finish, we just note that the best strategy for filling the reservoirs must have the 

form “run a fixed strategy with flow rate 𝑟 for 
10,000

𝑟
minutes” (no changes over time).

● Suppose a strategy changed over time. Then, we can improve it by taking the 

strategy at the point in time where flow rate is fastest, and use that the whole time. 

Solution



Problem 2 – Reservoir balancing
e) Which flow algorithm is best for this problem? Then analyze your running time. 

(Assume 𝑉 = 𝑛, 𝐸 = 𝑚, and 𝑛 ≤ 𝑚.)

Work on this with the people around you, then we’ll check!



Problem 2 – Reservoir balancing
e) Which flow algorithm is best for this problem? Then analyze your running time. 

(Assume 𝑉 = 𝑛, 𝐸 = 𝑚, and 𝑛 ≤ 𝑚.)

Because we have no control over how large the capacities are, Ford–Fulkerson with 

BFS and the Edmonds–Karp bound is best for this problem.

The graph we constructed has:

● 𝑉′ = 𝑛 + 2 vertices, and

● 𝐸′ = 𝑚 + 𝑂 + 𝑈 < 𝑚 + 𝑛 ≤ 2𝑚 edges. 

Thus, the running time is 𝑂 𝑉′ 𝐸′ 2 = 𝑂(𝑛𝑚2).

Solution



Problem 3 – Traffic modeling
In most cities, traffic congestion happens only at intersections – segments without 

intersections are free-flowing. An extremely rough model is that the capacity of an 

intersection (the total number of vehicles per hour that flow through the intersection 

in any direction) is proportional to the number of traffic lanes at the intersection. You 

are given the road network of a city as a graph 𝐺 = (𝑉, 𝐸) (consisting of directed 

edges, i.e. one-way streets), as well as the number of lanes 𝑐(𝑣) at each intersection. 

Suppose each lane adds a capacity of 300 vehicles per hour, and there are no 

intersections with more than 12 lanes. Given an origin 𝑠 and destination 𝑡 (which also 

do have limited capacity), compute how many vehicles per hour can move from 𝑠 to 𝑡.

a) Write a summary of the problem.

Work on this with the people around you, then we’ll check!



Problem 3 – Traffic modeling
a) Write a summary of the problem.

Input: Directed graph 𝐺 = (𝑉, 𝐸) with vertex capacities 𝑐(𝑣) ≤ 12, and 𝑠 and 𝑡

Output: Maximum flow rate from 𝑠 to 𝑡

Solution



Problem 3 – Traffic modeling
a) Write a summary of the problem.

b) Think about the three tricks. Use them to preprocess our input into something 

suitable as input for a network flows algorithm.

● If you want “multiple sources/sinks,” add dummy vertices.

● If you want “vertex capacities,” split vertices into two.

● If you want “unconstrained capacity,” just set capacity to infinity.



Problem 3 – Traffic modeling
a) Write a summary of the problem.

Input: Directed graph 𝐺 = (𝑉, 𝐸) with vertex capacities 𝑐(𝑣) ≤ 12, and 𝑠 and 𝑡

Output: Maximum flow rate from 𝑠 to 𝑡

b) Think about the three tricks. Use them to preprocess our input into something 

suitable as input for a network flows algorithm.

● If you want “multiple sources/sinks,” add dummy vertices.

● If you want “vertex capacities,” split vertices into two.

● If you want “unconstrained capacity,” just set capacity to infinity.

Work on this with the people around you, then we’ll check!

Previous Solution



Problem 3 – Traffic modeling
b) Think about the three tricks. Use them to preprocess our input into something 

suitable as input for a network flows algorithm.

First, put infinite capacity on all edges in the original graph.

Then, split every vertex 𝑣 into 𝑣𝑖𝑛 and 𝑣𝑜𝑢𝑡, and change all (𝑢, 𝑣) into (𝑢𝑜𝑢𝑡, 𝑣𝑖𝑛), (as 

well as (𝑣, 𝑤) into (𝑣𝑜𝑢𝑡, 𝑤𝑖𝑛)). Put capacity 𝑐(𝑣) on the new edge (𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡).

Lastly, we will compute the flow between 𝑠′ = 𝑠𝑖𝑛 and 𝑡′ = 𝑡𝑜𝑢𝑡.

𝑣 𝑣𝑖𝑛 𝑣𝑜𝑢𝑡

𝑐(𝑣)

Solution



Problem 3 – Traffic modeling
c) After running a max flow algorithm, what do you get? What postprocessing is 

needed to get the solution?

This should be quick – what can we do?



Problem 3 – Traffic modeling
c) After running a max flow algorithm, what do you get? What postprocessing is 

needed to get the solution?

We get the maximum total flow rate 𝑟, and we should return 300𝑟.

Solution



Problem 3 – Traffic modeling
d) Prove your solution is correct.

Work on this with the people around you, then we’ll check!



Problem 3 – Traffic modeling
d) Prove your solution is correct.

Turn solution of our network into a solution of original problem of same quality:

● For every edge (𝑢𝑜𝑢𝑡, 𝑣𝑖𝑛), give flow 𝑓(𝑢𝑜𝑢𝑡, 𝑣𝑖𝑛) to original edge (𝑢, 𝑣).

● By flow conservation at 𝑣𝑖𝑛 and 𝑐 𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡 = 𝑐(𝑣), the original vertex 𝑣 has at 

most 𝑐(𝑣) flow through it, so it is a valid solution.

● By flow conservation, flow out of 𝑠𝑖𝑛 is the same as flow out of 𝑠𝑜𝑢𝑡, which by 

construction is the flow out of 𝑠, so the quality is the same.

Solution



Problem 3 – Traffic modeling
d) Prove your solution is correct.

Turn solution of original problem into a solution of our network of same quality:

● Set 𝑓(𝑢𝑜𝑢𝑡, 𝑣𝑖𝑛) to be the traffic flow from 𝑢 to 𝑣, and set 𝑓(𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡) as necessary 

to maintain flow conservation.

● Edges of type (𝑢𝑜𝑢𝑡, 𝑣𝑖𝑛) have infinite capacity, so they are fine, and edges of type 

(𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡) have capacity 𝑐(𝑣), so they are fine by vertex capacities.

● The quality is the same, since by construction we set the the flow out of 𝑠𝑖𝑛 to be 

equal to the flow out of 𝑠𝑜𝑢𝑡, which was the flow out of 𝑠.

Solution



Problem 3 – Traffic modeling
e) Which flow algorithm is best for this problem? Then analyze your running time. 

(Assume 𝑉 = 𝑛, 𝐸 = 𝑚, and 𝑛 ≤ 𝑚.)

Work on this with the people around you, then we’ll check!



Problem 3 – Traffic modeling
e) Which flow algorithm is best for this problem? Then analyze your running time. 

(Assume 𝑉 = 𝑛, 𝐸 = 𝑚, and 𝑛 ≤ 𝑚.)

Because all (non-infinite) capacities are at most 12, Ford–Fulkerson with BFS and 

the original Ford–Fulkerson analysis is best for this problem.

The graph we constructed has:

● 𝑉′ = 2𝑛 vertices, and

● 𝐸′ = 𝑚 + 𝑛 ≤ 2𝑚 edges. 

Since 𝑉′ 𝐸′ 𝐶 = 48𝑛𝑚, the running time is 𝑂 𝑉′ 𝐸′ 𝐶 = 𝑂(𝑛𝑚).

Solution



Thanks for coming to section this week!

● Three tricks: dummy 𝑠/𝑡, split vertices for vertex capacity, and infinite capacity

● When using Ford–Fulkerson with BFS, pick original FF bound if small capacities, 

and pick Edmonds–Karp bound if large capacities.

● Proof by converting solutions both ways: between solutions to your constructed 

flow network and solutions to the original problem.

Summary
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