
CSE 421 Section 7

Network Flows



Administrivia



Announcements & Reminders

● Midterm exam

o Congrats on finishing half of the course!

o We’ll be grading it over the next several days.

● HW6

○ Due Wednesday 11/13 @ 11:59pm



Algorithms for network flows



Algorithms for network flows

Ford–Fulkerson is a class of algorithms to compute maximum flow. 

1. Let the residual graph 𝐺𝑓 be initialized to 𝐺.

2. While there exists an 𝑠-𝑡 path 𝑃 in 𝐺𝑓,

a. Let 𝑐 be the minimum capacity along this path.

b. Update 𝑓 to push 𝑐 flow along 𝑃.

c. Update edges in 𝐺𝑓 along 𝑃.

Warmup: How does the update work?



Algorithms for network flows

Ford–Fulkerson is a class of algorithms to compute maximum flow. 

● Edmonds–Karp implementation: BFS (unweighted shortest path) to select 𝑠-𝑡 path

Capacity scaling algorithm: Process capacities one bit at a time

Ford–Fulkerson with BFS
Capacity scaling

Ford–Fulkerson bound Edmonds–Karp bound

𝑂(𝑚𝑛𝐶) 𝑂(𝑚2𝑛) 𝑂(𝑚2log 𝐶)

good when all capacities 
are small

good with many large 
capacities

good when there are a 
few large capacities



Flow algorithms practice



Problem 1 – Flow algorithms practice
Using Ford–Fulkerson with BFS, find the maximum 𝑠-𝑡 flow in the graph 𝐺 below, the 

corresponding residual graph, and minimum cut.

Work on this with the people around you, then we’ll check!



Problem solving with flows



Problem solving strategy overview

Read and summarize the problem

Decide to use known algorithm or techniques from scratch

Write pseudocode, proof, 
and running time analysis

not covered this sectionPreprocess the input into the 
form required by the technique

Postprocess the technique’s 
output into what you want



Three common preprocessing tricks

To preprocess for network flows:

● If you want “multiple sources/sinks,” add dummy vertices.

● If you want “vertex capacities,” split vertices into two.

● If you want “unconstrained capacity,” just set capacity to infinity.

We’ll see examples of each.



Problem 2 – Reservoir balancing
You have a set of overfilled reservoirs 𝑂 = {𝑜1, … , 𝑜𝑚} and a set of underfilled 

reservoirs 𝑈 = {𝑢1, … , 𝑢𝑛}, and want to move 10,000 gallons of water from reservoirs 

in 𝑂 to reservoirs in 𝑈. You only care about the total amount of water moved, not each 

individual reservoir. You have a directed graph 𝐺 = (𝑉, 𝐸) describing the one-way 

pipes connecting the reservoirs, where 𝑂 ⊆ 𝑉 and 𝑈 ⊆ 𝑉. This graph may include 

intermediate reservoirs, whose water levels should not change through your solution. 

Each pipe 𝑒 ∈ 𝐸 has an integer maximum rate of flow 𝑐(𝑒) in gallons per minute. Find 

a method to move the water in the shortest amount of time.

a) Write a summary of the problem.

Work on this with the people around you, then we’ll check!



Problem 2 – Reservoir balancing
a) Write a summary of the problem.

b) Think about the three tricks. Use them to preprocess our input into something 

suitable as input for a network flows algorithm.

● If you want “multiple sources/sinks,” add dummy vertices.

● If you want “vertex capacities,” split vertices into two.

● If you want “unconstrained capacity,” just set capacity to infinity.



Problem 2 – Reservoir balancing
c) After running a max flow algorithm, what do you get? What postprocessing is 

needed to get the solution?

Work on this with the people around you, then we’ll check!



Network flows proofs
In a network flow problem, the main claim in your proof will probably be:

“The maximum flow in the graph that I constructed 

is equal to the maximum solution in the original problem.”

It should be intuitive, but to write thing formally, the strategy is to prove two things:

1. We can turn any solution of our network into a solution of the original problem 

of same quality.

2. We can turn any solution of the original problem into a solution of our network 

of same quality.

Then, your output works because (1), and no other solution of the original problem is 

better, by applying (2) and the fact that we found the max flow of our network.



Problem 2 – Reservoir balancing
d) Prove your solution is correct.

Work on this with the people around you, then we’ll check!



Problem 2 – Reservoir balancing
e) Which flow algorithm is best for this problem? Then analyze your running time. 

(Assume 𝑉 = 𝑛, 𝐸 = 𝑚, and 𝑛 ≤ 𝑚.)

Work on this with the people around you, then we’ll check!



Problem 3 – Traffic modeling
In most cities, traffic congestion happens only at intersections – segments without 

intersections are free-flowing. An extremely rough model is that the capacity of an 

intersection (the total number of vehicles per hour that flow through the intersection 

in any direction) is proportional to the number of traffic lanes at the intersection. You 

are given the road network of a city as a graph 𝐺 = (𝑉, 𝐸) (consisting of directed 

edges, i.e. one-way streets), as well as the number of lanes 𝑐(𝑣) at each intersection. 

Suppose each lane adds a capacity of 300 vehicles per hour, and there are no 

intersections with more than 12 lanes. Given an origin 𝑠 and destination 𝑡 (which also 

do have limited capacity), compute how many vehicles per hour can move from 𝑠 to 𝑡.

a) Write a summary of the problem.

Work on this with the people around you, then we’ll check!



Problem 3 – Traffic modeling
a) Write a summary of the problem.

b) Think about the three tricks. Use them to preprocess our input into something 

suitable as input for a network flows algorithm.

● If you want “multiple sources/sinks,” add dummy vertices.

● If you want “vertex capacities,” split vertices into two.

● If you want “unconstrained capacity,” just set capacity to infinity.



Problem 3 – Traffic modeling
c) After running a max flow algorithm, what do you get? What postprocessing is 

needed to get the solution?

This should be quick – what can we do?



Problem 3 – Traffic modeling
d) Prove your solution is correct.

Work on this with the people around you, then we’ll check!



Problem 3 – Traffic modeling
e) Which flow algorithm is best for this problem? Then analyze your running time. 

(Assume 𝑉 = 𝑛, 𝐸 = 𝑚, and 𝑛 ≤ 𝑚.)

Work on this with the people around you, then we’ll check!



Thanks for coming to section this week!

● Three tricks: dummy 𝑠/𝑡, split vertices for vertex capacity, and infinite capacity

● When using Ford–Fulkerson with BFS, pick original FF bound if small capacities, 

and pick Edmonds–Karp bound if large capacities.

● Proof by converting solutions both ways: between solutions to your constructed 

flow network and solutions to the original problem.

Summary


