CSE 421 Section 6

Midterm Review

Announcements & Reminders

- **HW4** regrade requests are open, answer keys on Ed
- **HW5** was due yesterday, 10/30
 - Late submissions open until tomorrow, 11/1 @ 11:59pm
- There is no homework this week.
- Your midterm exam is on Monday, 11/4 @ 6:00-7:30pm, Gates G04
 - Let us know by tomorrow, Friday 11/1 if you cannot make it
 - If you are sick, let us know as soon as you know
 - A practice midterm is available on Ed

Midterm format

- Several multiple choice/short answer problems
- 3 long-form problems
 - Similar in style to homework
- 90 minutes
- You will be given a standard reference sheet, view it on Ed
- You may bring one sheet of double sided 8.5x11" paper containing your own handwritten notes.
 - Must write name, student number, and UW NetID
 - Must turn in with exam

Today's plan

- 1. (35 min) 6 stations around the room with practice problems
 - Station 1: Short answer
 - Station 2: Stable matching reduction*
 - Station 3: Graph algorithms
 - Station 4: Greedy algorithms*
 - Station 5: Divide and conquer*
 - Station 6: Dynamic programming
- 2. (10 min) Go over some of these problems

*the problem at this station was an extra problem on a previous section handout

Problems

1 2 3 4 5 6

Problem 1 – Short answer

If p ranks r first and r ranks p first, then (p, r) must be in every stable matching.

Problem 1 - Short answer

If p ranks r first and r ranks p first, then (p, r) must be in every stable matching.

True. If p and r were not matched, then they prefer each other over the current matches, so this is an instability.

Problem 1 – Short answer

Running DFS on a directed acyclic graph may produce:

- ☐ Tree edges
- Back edges
- ☐ Forward edges
- Cross edges

Problem 1 - Short answer

Running DFS on a directed acyclic graph may produce:

- ☐ Tree edges
- Back edges
- ☐ Forward edges
- Cross edges

All except back edges, since they create cycles.

Problem 1 – Short answer

The recurrence $T(n) = 2T(n/3) + \Theta(n^2)$ simplifies to...?

Solution

Problem 1 - Short answer

The recurrence $T(n) = 2T(n/3) + \Theta(n^2)$ simplifies to...?

 $\Theta(n^2)$. By master theorem, since $2 < 3^2$.

Problem 1 – Short answer

Suppose G has positive, distinct edge costs. If T is an MST of G, then it is still an MST after replacing each edge cost c_e with c_e^2 .

Problem 1 - Short answer

Suppose G has positive, distinct edge costs. If T is an MST of G, then it is still an MST after replacing each edge cost c_e with c_e^2 .

True. Kruskal's (or Prim's) only depends on the relative order of edge costs. Furthermore, because costs are distinct, there is a unique MST, so Kruskal's algorithm found *T* before and will still find *T* now.

Problem 1 – Short answer

Let G = (V, E) be a weighted, undirected graph. Consider any cut $S \subseteq V$, and let e be an edge of minimum weight across the cut S. Then every MST contains e.

Problem 1 - Short answer

Let G = (V, E) be a weighted, undirected graph. Consider any cut $S \subseteq V$, and let e be an edge of minimum weight across the cut S. Then every MST contains e.

False. The theorem requires edge weights be distinct. Consider:

Return to problem select

Problem 2 – Stable matching reduction

There are R riders, H horses with 2H < R < 3H. Riders and horses have preferences for each other. Also, riders prefer the first 2 rounds. Horses prefer to ride every round.

Set up 3 rounds of rides, so that every rider will ride a horse exactly once, every horse does exactly 2 or 3 rides, and there are no unstable matches.

Problem 2 – Stable matching reduction

There are R riders, H horses with 2H < R < 3H. Riders and horses have preferences for each other. Also, riders prefer the first 2 rounds. Horses prefer to ride every round.

Set up 3 rounds of rides, so that every rider will ride a horse exactly once, every horse does exactly 2 or 3 rides, and there are no unstable matches.

For all horses h, create h_1 , h_2 , and h_3 . Add 3H-R dummy riders. For preference lists:

- For real riders: original list with h_1 and h_2 replacing h, then original list with h_3 's.
- For dummy riders: all h_3 (in any order), then everything else (in any order).
- For horse-in-rounds: original list, then dummy riders in any order.

Solution

Problem 2 – Stable matching reduction

For all horses h, create h_1 , h_2 , and h_3 . Add 3H-R dummy riders. For preference lists:

- For real riders: original list with h_1 and h_2 replacing h, then original list with h_3 's.
- For dummy riders: all h_3 (in any order), then everything else (in any order).
- For horse-in-rounds: original list, then dummy riders in any order.

Then:

- Every rider is matched because library returns perfect matching.
- Dummy matched to horse in round 1 or 2 is unstable.
- Horse and real rider who prefer each other is unstable.

Return to problem select

Given $(a_1, b_1), ..., (a_n, b_n)$, the person living in unit a_i is moving to b_i . Some people may be new arrivals $(a_i = \text{null})$ or moving out $(b_i = \text{null})$. Give an algorithm that returns a valid moving order (every unit is vacated before someone moves in), or "not possible" and a minimal list of pairs that explains why.

Given (a_1, b_1) , ..., (a_n, b_n) , the person living in unit a_i is moving to b_i . Some people may be new arrivals $(a_i = \text{null})$ or moving out $(b_i = \text{null})$. Give an algorithm that returns a valid moving order (every unit is vacated before someone moves in), or "not possible" and a minimal list of pairs that explains why.

$$(2, \text{null}) \rightarrow (1, 2) \rightarrow (\text{null}, 1)$$

 $A \rightarrow B$ iff A must happen before B

$$(3,4)$$
 $(4,3)$

Given $(a_1, b_1), ..., (a_n, b_n)$, the person living in unit a_i is moving to b_i . Some people may be new arrivals $(a_i = \text{null})$ or moving out $(b_i = \text{null})$. Give an algorithm that returns a valid moving order (every unit is vacated before someone moves in), or "not possible" and a minimal list of pairs that explains why.

$$(2, \text{null}) \rightarrow (1, 2) \rightarrow (\text{null}, 1)$$

$$(3, 4) \longrightarrow (4, 3)$$

- 1. Check for cycles with B/DFS.
 - a. If there is a cycle, not possible.

Given (a_1, b_1) , ..., (a_n, b_n) , the person living in unit a_i is moving to b_i . Some people may be new arrivals $(a_i = \text{null})$ or moving out $(b_i = \text{null})$. Give an algorithm that returns a valid moving order (every unit is vacated before someone moves in), or "not possible" and a minimal list of pairs that explains why.

$$(2, \text{null}) \rightarrow (1, 2) \rightarrow (\text{null}, 1)$$

$$(3, 5) \longrightarrow (4, 3)$$

- 1. Check for cycles with B/DFS.
 - a. If there is a cycle, not possible.
 - b. If there is no cycle, topo sort.

Return to problem select

Problem 4 – Greedy algorithms

Given a set \mathcal{X} of integer intervals $[a, b] \subseteq \mathbb{Z}$, find the smallest set $\mathcal{Y} \subseteq \mathcal{X}$ such that every point in any interval of \mathcal{X} belongs to some interval of \mathcal{Y} (i.e. \mathcal{Y} covers \mathcal{X}).

Problem 4 – Greedy algorithms

Given a set \mathcal{X} of integer intervals $[a, b] \subseteq \mathbb{Z}$, find the smallest set $\mathcal{Y} \subseteq \mathcal{X}$ such that every point in any interval of \mathcal{X} belongs to some interval of \mathcal{Y} (i.e. \mathcal{Y} covers \mathcal{X}).

Repeatedly pick the interval with the largest end point that covers the smallest yetuncovered point.

(For implementation details, see solutions tonight. Naively finding the "smallest yet-uncovered point" is technically correct but slow.)

Problem 4 – Greedy algorithms

Repeatedly pick the interval with the largest end point that covers the smallest yetuncovered point.

Proof sketch: (greedy stays ahead)

- We output $[a_1, b_1], ..., [a_k, b_k]$ and suppose $[o_1, p_1], ..., [o_l, p_l]$ is valid and sorted.
- Can prove by induction that $b_i \ge p_i$ for all i (explain why this is enough).
 - After selecting $[a_1, b_1], ..., [a_{i-1}, b_{i-1}]$ the smallest uncovered point is larger than b_{i-1} and hence not covered by $[o_1, p_1], ..., [o_{i-1}, p_{i-1}]$ by induction.
 - \circ If $[o_i, p_i]$ does not cover it, by sortedness, other solution is invalid.
 - If $[o_i, p_i]$ does cover it, then $b_i \ge p_i$ because that was our greedy criterion.

Return to problem select

A[1..n] is a mountain if there is a peak i such that

$$A[1] < \cdots < A[i-1] < A[i] \text{ and } A[i] > A[i+1] > \cdots > A[n].$$

The peak may be at 1 or n. Given a mountain, find the peak in $O(\log n)$ time.

A[1..n] is a mountain if there is a peak i such that

$$A[1] < \cdots < A[i-1] < A[i] \text{ and } A[i] > A[i+1] > \cdots > A[n].$$

The peak may be at 1 or n. Given a mountain, find the peak in $O(\log n)$ time.

function peakFinder(i, j)

(base case omitted for slide brevity)

- 1. $m \leftarrow \left\lfloor \frac{i+j}{2} \right\rfloor$
- 2. if A[m+1] exists and $m+1 \le j$ and A[m] < A[m+1] (checking for edge cases)
 - a. **return** peakFinder(m + 1, j)
- 3. else if A[m-1] exists and $i \leq m-1$ and A[m-1] > A[m]
 - a. **return** peakFinder(i, m-1)
- 4. else return m

function peakFinder(i, j)

- 1. $m \leftarrow \left\lfloor \frac{i+j}{2} \right\rfloor$
- 2. if A[m+1] exists and $m+1 \le j$ and A[m] < A[m+1]
 - a. **return** peakFinder(m + 1, j)
- 3. else if A[m-1] exists and $i \leq m-1$ and A[m-1] > A[m]
 - a. **return** peakFinder(i, m-1)
- 4. else return m

Induction on *k*:

For all i and j with j - i = k, **if** A[i..j] **contains the peak**, peakFinder(i, j) finds it. (crucial point!)

Induction on *k*:

For all i and j with j - i = k, if A[i..j] contains the peak, peakFinder(i, j) finds it.

Three cases for where the peak is:

- 1. The peak is in A[m+1..j].
 - We end up in the first if branch (explain why).
 - Can apply IH to peakFinder(m+1,j) because the peak is in A[m+1,j]!
- 2. The peak is in A[i..m-1]. Similar.
- 3. The peak is A[m].
 - We end up in the else branch (explain why).

Return to problem select

Problem 6 - Dynamic programming

Compute the maximum reward going from (1,1) to (m,n) on a grid, where you gain R[i,j] whenever passing through (i,j). Starting/ending count as passing through. R[i,j] may be negative (penalty) or $-\infty$ (impassible).

Problem 6 - Dynamic programming

Compute the maximum reward going from (1,1) to (m,n) on a grid, where you gain R[i,j] whenever passing through (i,j). Starting/ending count as passing through. R[i,j] may be negative (penalty) or $-\infty$ (impassible).

$$OPT(i,j) = R[i,j] + \max(OPT(i-1,j), OPT(i,j-1))$$

$$i,j > 2$$

$$OPT(1,1) = R[1,1]$$

$$OPT(1,j) = R[1,j] + OPT(1,j-1)$$

$$OPT(i,1) = R[i,1] + OPT(i-1,1)$$

$$i > 2$$

$$i > 2$$

Return to problem select