
CSE 421 Section 6

Midterm Review



Announcements & Reminders

● HW4 regrade requests are open, answer keys on Ed

● HW5 was due yesterday, 10/30

○ Late submissions open until tomorrow, 11/1 @ 11:59pm

● There is no homework this week.

● Your midterm exam is on Monday, 11/4 @ 6:00–7:30pm, Gates G04

○ Let us know by tomorrow, Friday 11/1 if you cannot make it

○ If you are sick, let us know as soon as you know

○ A practice midterm is available on Ed



Midterm format

● Several multiple choice/short answer problems

● 3 long-form problems

○ Similar in style to homework

● 90 minutes

● You will be given a standard reference sheet, view it on Ed

● You may bring one sheet of double sided 8.5x11” paper containing your own 

handwritten notes.

○ Must write name, student number, and UW NetID

○ Must turn in with exam



Today’s plan

1. (35 min) 6 stations around the room with practice problems

• Station 1: Short answer

• Station 2: Stable matching reduction*

• Station 3: Graph algorithms

• Station 4: Greedy algorithms*

• Station 5: Divide and conquer*

• Station 6: Dynamic programming

2. (10 min) Go over some of these problems

*the problem at this station was an extra problem on a previous section handout



Problems

1

1

2

2

3

3

4

4

5

5

6

6



Problem 1 – Short answer

If 𝑝 ranks 𝑟 first and 𝑟 ranks 𝑝 first, then (𝑝, 𝑟) must be in every stable matching.



Problem 1 – Short answer

If 𝑝 ranks 𝑟 first and 𝑟 ranks 𝑝 first, then (𝑝, 𝑟) must be in every stable matching.

True. If 𝑝 and 𝑟 were not matched, then they prefer each other over the current 

matches, so this is an instability.

Solution



Problem 1 – Short answer

Running DFS on a directed acyclic graph may produce:

❑ Tree edges

❑ Back edges

❑ Forward edges

❑ Cross edges



Problem 1 – Short answer

Running DFS on a directed acyclic graph may produce:

❑ Tree edges

❑ Back edges

❑ Forward edges

❑ Cross edges

All except back edges, since they create cycles.

Solution

1/8

2/5

3/4

6/7

F T

T

T

C



Problem 1 – Short answer

The recurrence 𝑇(𝑛) = 2𝑇(𝑛/3) + Θ(𝑛2) simplifies to…?



Problem 1 – Short answer

The recurrence 𝑇(𝑛) = 2𝑇(𝑛/3) + Θ(𝑛2) simplifies to…?

Θ(𝑛2). By master theorem, since 2 < 32.

Solution



Problem 1 – Short answer

Suppose 𝐺 has positive, distinct edge costs. If 𝑇 is an MST of 𝐺, then it is still an MST 

after replacing each edge cost 𝑐𝑒 with 𝑐𝑒
2.



Problem 1 – Short answer

Suppose 𝐺 has positive, distinct edge costs. If 𝑇 is an MST of 𝐺, then it is still an MST 

after replacing each edge cost 𝑐𝑒 with 𝑐𝑒
2.

True. Kruskal’s (or Prim’s) only depends on the relative order of edge costs. 

Furthermore, because costs are distinct, there is a unique MST, so Kruskal’s algorithm 

found 𝑇 before and will still find 𝑇 now.

Solution



Problem 1 – Short answer

Let 𝐺 = (𝑉, 𝐸) be a weighted, undirected graph. Consider any cut 𝑆 ⊆ 𝑉, and let 𝑒 be 

an edge of minimum weight across the cut 𝑆. Then every MST contains 𝑒.



Problem 1 – Short answer

Let 𝐺 = (𝑉, 𝐸) be a weighted, undirected graph. Consider any cut 𝑆 ⊆ 𝑉, and let 𝑒 be 

an edge of minimum weight across the cut 𝑆. Then every MST contains 𝑒.

False. The theorem requires edge weights be distinct. Consider:

Solution

11

1

1

Return to problem select

Return to problem select



Problem 2 – Stable matching reduction

There are 𝑅 riders, 𝐻 horses with 2𝐻 < 𝑅 < 3𝐻. Riders and horses have preferences 

for each other. Also, riders prefer the first 2 rounds. Horses prefer to ride every round. 

Set up 3 rounds of rides, so that every rider will ride a horse exactly once, every horse 

does exactly 2 or 3 rides, and there are no unstable matches. 



Problem 2 – Stable matching reduction

There are 𝑅 riders, 𝐻 horses with 2𝐻 < 𝑅 < 3𝐻. Riders and horses have preferences 

for each other. Also, riders prefer the first 2 rounds. Horses prefer to ride every round. 

Set up 3 rounds of rides, so that every rider will ride a horse exactly once, every horse 

does exactly 2 or 3 rides, and there are no unstable matches. 

For all horses ℎ, create ℎ1, ℎ2, and ℎ3. Add 3𝐻 − 𝑅 dummy riders. For preference lists: 

● For real riders: original list with ℎ1 and ℎ2 replacing ℎ, then original list with ℎ3’s.

● For dummy riders: all ℎ3 (in any order), then everything else (in any order).

● For horse-in-rounds: original list, then dummy riders in any order.

Solution



Problem 2 – Stable matching reduction

For all horses ℎ, create ℎ1, ℎ2, and ℎ3. Add 3𝐻 − 𝑅 dummy riders. For preference lists: 

● For real riders: original list with ℎ1 and ℎ2 replacing ℎ, then original list with ℎ3’s.

● For dummy riders: all ℎ3 (in any order), then everything else (in any order).

● For horse-in-rounds: original list, then dummy riders in any order.

Then:

● Every rider is matched because library returns perfect matching.

● Dummy matched to horse in round 1 or 2 is unstable.

● Horse and real rider who prefer each other is unstable.

Solution

Return to problem select

Return to problem select



Problem 3 – Graph modeling

Given 𝑎1, 𝑏1 , … , (𝑎𝑛, 𝑏𝑛), the person living in unit 𝑎𝑖 is moving to 𝑏𝑖. Some people 

may be new arrivals (𝑎𝑖 = null) or moving out (𝑏𝑖 = null). Give an algorithm that 

returns a valid moving order (every unit is vacated before someone moves in), or “not 

possible” and a minimal list of pairs that explains why.



Problem 3 – Graph modeling

Given 𝑎1, 𝑏1 , … , (𝑎𝑛, 𝑏𝑛), the person living in unit 𝑎𝑖 is moving to 𝑏𝑖. Some people 

may be new arrivals (𝑎𝑖 = null) or moving out (𝑏𝑖 = null). Give an algorithm that 

returns a valid moving order (every unit is vacated before someone moves in), or “not 

possible” and a minimal list of pairs that explains why.

Solution

1, 22, null

3, 4

null, 1

4, 3

𝐴 → 𝐵 iff 𝐴 must happen before 𝐵



Problem 3 – Graph modeling

Given 𝑎1, 𝑏1 , … , (𝑎𝑛, 𝑏𝑛), the person living in unit 𝑎𝑖 is moving to 𝑏𝑖. Some people 

may be new arrivals (𝑎𝑖 = null) or moving out (𝑏𝑖 = null). Give an algorithm that 

returns a valid moving order (every unit is vacated before someone moves in), or “not 

possible” and a minimal list of pairs that explains why.

Solution

1, 22, null

3, 4

null, 1

4, 3

1. Check for cycles with B/DFS.
a. If there is a cycle, not possible.



Problem 3 – Graph modeling

Given 𝑎1, 𝑏1 , … , (𝑎𝑛, 𝑏𝑛), the person living in unit 𝑎𝑖 is moving to 𝑏𝑖. Some people 

may be new arrivals (𝑎𝑖 = null) or moving out (𝑏𝑖 = null). Give an algorithm that 

returns a valid moving order (every unit is vacated before someone moves in), or “not 

possible” and a minimal list of pairs that explains why.

Solution

Return to problem select

Return to problem select

1, 22, null

3, 5

null, 1

4, 3

1. Check for cycles with B/DFS.
a. If there is a cycle, not possible.
b. If there is no cycle, topo sort.



Problem 4 – Greedy algorithms

Given a set 𝒳 of integer intervals [𝑎, 𝑏] ⊆ ℤ, find the smallest set 𝒴 ⊆ 𝒳 such that 

every point in any interval of 𝒳 belongs to some interval of 𝒴 (i.e. 𝒴 covers 𝒳).



Problem 4 – Greedy algorithms

Given a set 𝒳 of integer intervals [𝑎, 𝑏] ⊆ ℤ, find the smallest set 𝒴 ⊆ 𝒳 such that 

every point in any interval of 𝒳 belongs to some interval of 𝒴 (i.e. 𝒴 covers 𝒳).

Repeatedly pick the interval with the largest end point that covers the smallest yet-

uncovered point. 

(For implementation details, see solutions tonight. Naively finding the “smallest yet-

uncovered point” is technically correct but slow.)

Solution



Problem 4 – Greedy algorithms

Repeatedly pick the interval with the largest end point that covers the smallest yet-

uncovered point. 

Proof sketch: (greedy stays ahead)

● We output 𝑎1, 𝑏1 , … , [𝑎𝑘, 𝑏𝑘] and suppose 𝑜1, 𝑝1 , … , [𝑜𝑙, 𝑝𝑙] is valid and sorted.

● Can prove by induction that 𝑏𝑖 ≥ 𝑝𝑖 for all 𝑖 (explain why this is enough).

○ After selecting 𝑎1, 𝑏1 , … , [𝑎𝑖−1, 𝑏𝑖−1] the smallest uncovered point is larger 

than 𝑏𝑖−1 and hence not covered by 𝑜1, 𝑝1 , … , [𝑜𝑖−1, 𝑝𝑖−1] by induction. 

○ If [𝑜𝑖, 𝑝𝑖] does not cover it, by sortedness, other solution is invalid.

○ If [𝑜𝑖, 𝑝𝑖] does cover it, then 𝑏𝑖 ≥ 𝑝𝑖 because that was our greedy criterion.

Solution

Return to problem select

Return to problem select



Problem 5 – Divide and conquer

𝐴[1. . 𝑛] is a mountain if there is a peak 𝑖 such that

𝐴 1 < ⋯ < 𝐴 𝑖 − 1 < 𝐴[𝑖] and 𝐴 𝑖 > 𝐴 𝑖 + 1 > ⋯ > 𝐴[𝑛].

The peak may be at 1 or 𝑛. Given a mountain, find the peak in 𝑂(log 𝑛) time.



Problem 5 – Divide and conquer

𝐴[1. . 𝑛] is a mountain if there is a peak 𝑖 such that

𝐴 1 < ⋯ < 𝐴 𝑖 − 1 < 𝐴[𝑖] and 𝐴 𝑖 > 𝐴 𝑖 + 1 > ⋯ > 𝐴[𝑛].

The peak may be at 1 or 𝑛. Given a mountain, find the peak in 𝑂(log 𝑛) time.

function peakFinder(𝑖, 𝑗)

1. 𝑚 ←
𝑖+𝑗

2

2. if𝐴[𝑚 + 1] exists and 𝑚 + 1 ≤ 𝑗 and 𝐴[𝑚] < 𝐴[𝑚 + 1]

a. return peakFinder(𝑚 + 1, 𝑗)

3. else if 𝐴[𝑚 − 1] exists and 𝑖 ≤ 𝑚 − 1 and 𝐴[𝑚 − 1] > 𝐴[𝑚]

a. return peakFinder(𝑖, 𝑚 − 1)

4. else return𝑚

Solution

(base case omitted for slide brevity)

(checking for edge cases)



Problem 5 – Divide and conquer

function peakFinder(𝑖, 𝑗)

1. 𝑚 ←
𝑖+𝑗

2

2. if𝐴[𝑚 + 1] exists and 𝑚 + 1 ≤ 𝑗 and 𝐴[𝑚] < 𝐴[𝑚 + 1]

a. return peakFinder(𝑚 + 1, 𝑗)

3. else if 𝐴[𝑚 − 1] exists and 𝑖 ≤ 𝑚 − 1 and 𝐴[𝑚 − 1] > 𝐴[𝑚]

a. return peakFinder(𝑖, 𝑚 − 1)

4. else return𝑚

Induction on 𝑘:

For all 𝑖 and 𝑗 with 𝑗 − 𝑖 = 𝑘, if 𝑨[𝒊. . 𝒋] contains the peak, peakFinder(𝑖, 𝑗) finds it.

(crucial point!)

Solution



Problem 5 – Divide and conquer

Induction on 𝑘:

For all 𝑖 and 𝑗 with 𝑗 − 𝑖 = 𝑘, if 𝑨[𝒊. . 𝒋] contains the peak, peakFinder(𝑖, 𝑗) finds it.

Three cases for where the peak is:

1. The peak is in 𝐴[𝑚 + 1. . 𝑗].

• We end up in the first if branch (explain why). 

• Can apply IH to peakFinder(𝑚 + 1, 𝑗) because the peak is in 𝐴[𝑚 + 1. . 𝑗]!

2. The peak is in 𝐴[𝑖. . 𝑚 − 1]. Similar.

3. The peak is 𝐴[𝑚]. 

• We end up in the else branch (explain why). 

Solution

Return to problem select

Return to problem select



Problem 6 – Dynamic programming

Compute the maximum reward going from (1, 1) to (𝑚, 𝑛) on a grid, where you gain 

𝑅[𝑖, 𝑗] whenever passing through (𝑖, 𝑗). Starting/ending count as passing through. 

𝑅[𝑖, 𝑗] may be negative (penalty) or −∞ (impassible).



Problem 6 – Dynamic programming

Compute the maximum reward going from (1, 1) to (𝑚, 𝑛) on a grid, where you gain 

𝑅[𝑖, 𝑗] whenever passing through (𝑖, 𝑗). Starting/ending count as passing through. 

𝑅[𝑖, 𝑗] may be negative (penalty) or −∞ (impassible).

OPT 𝑖, 𝑗 = 𝑅 𝑖, 𝑗 + max OPT 𝑖 − 1, 𝑗 , OPT 𝑖, 𝑗 − 1 𝑖, 𝑗 > 2

OPT 1, 1 = 𝑅 1, 1

OPT 1, 𝑗 = 𝑅 1, 𝑗 + OPT 1, 𝑗 − 1 𝑗 > 2

OPT 𝑖, 1 = 𝑅 𝑖, 1 + OPT(𝑖 − 1, 1) 𝑖 > 2

Solution

Return to problem select

Return to problem select


	Slide 1: CSE 421 Section 6
	Slide 2: Announcements & Reminders
	Slide 3: Midterm format
	Slide 4: Today’s plan
	Slide 5: Problems
	Slide 6: Problem 1 – Short answer
	Slide 7: Problem 1 – Short answer
	Slide 8: Problem 1 – Short answer
	Slide 9: Problem 1 – Short answer
	Slide 10: Problem 1 – Short answer
	Slide 11: Problem 1 – Short answer
	Slide 12: Problem 1 – Short answer
	Slide 13: Problem 1 – Short answer
	Slide 14: Problem 1 – Short answer
	Slide 15: Problem 1 – Short answer
	Slide 16: Problem 2 – Stable matching reduction
	Slide 17: Problem 2 – Stable matching reduction
	Slide 18: Problem 2 – Stable matching reduction
	Slide 19: Problem 3 – Graph modeling
	Slide 20: Problem 3 – Graph modeling
	Slide 21: Problem 3 – Graph modeling
	Slide 22: Problem 3 – Graph modeling
	Slide 23: Problem 4 – Greedy algorithms
	Slide 24: Problem 4 – Greedy algorithms
	Slide 25: Problem 4 – Greedy algorithms
	Slide 26: Problem 5 – Divide and conquer
	Slide 27: Problem 5 – Divide and conquer
	Slide 28: Problem 5 – Divide and conquer
	Slide 29: Problem 5 – Divide and conquer
	Slide 30: Problem 6 – Dynamic programming
	Slide 31: Problem 6 – Dynamic programming

