
CSE 421 Section 5

Dynamic Programming

Administrivia

Announcements & Reminders

● HW3 regrade requests are open, answer keys on Ed

● HW4 was due yesterday, 10/23

○ Late submissions open until tomorrow, 10/25 @ 11:59pm

● HW5 is due Wednesday, 10/30 @ 11:59pm

○ Last homework before the midterm exam

● Your midterm exam is in about 1.5 weeks!

○ Monday, 11/4 @ 6:00–7:30pm, Gates G04

○ If you can’t make it, let us know and we will schedule a makeup exam

Ideas for dynamic programming

What is dynamic programming?

Warmup! Compare and contrast divide and conquer with dynamic programming.

What the defining features of each? When might you want to use each?

This problem is not on your handout.

Feel free to work with the people around you!

What is dynamic programming?

Warmup! Compare and contrast divide and conquer with dynamic programming.

What the defining features of each? When might you want to use each?

Divide and conquer Dynamic programming

• Subproblems are significantly
smaller, disjoint pieces (e.g. half)

• Memory not needed because
every subproblem is used once

• Subproblems can be as large as
“one smaller” and overlap

• Memory is useful because each
subproblem is used many times

Solution

What is dynamic programming?

Unlike divide and conquer, where subproblems are typically obvious, subproblems in

dynamic programming have many flavors:

Prefixes Intervals Other

• Fibonacci
• Weighted interval

scheduling
• Longest increasing

subsequence
• Edit distance (two

prefixes)

• RNA secondary
structure

• Knapsack (prefix of
items with capacity
bound)

• Bellman-Ford
(tomorrow’s lecture,
vertex with path
length bound)

Problem solving strategy overview

Read and summarize the problem

Decide to use known algorithm or techniques from scratch

Solve examples to get ideas
Check that idea isn’t

easily falsified or slow

Write pseudocode, proof,
and running time analysis

not covered this section no idea have idea

Problem solving strategy overview

Read and summarize the problem

Decide to use known algorithm or techniques from scratch

Solve examples to get ideas
Check that idea isn’t

easily falsified or slow

Write pseudocode, proof,
and running time analysis

not covered this section no idea have idea

Dynamic programming is difficult
because examples rarely help until
you know your subproblems. You
need to abstractly analyze the problem
to determine subproblems first.

We’ll go over some strategies today.

You are planning your calendar for 𝑛 days, where every day, there is a party that you

can go to. Every day, you can choose to go to that party or stay in and catch-up on

sleep. If you party, you will enjoy yourself. But you can only party for two consecutive

days – if you party three days in a row, you’ll fall too far behind on sleep and miss

class. Luckily, you have an excellent social sense, so you know exactly how much you

will enjoy any of the parties, and you have assigned each day a positive integer

happiness score in an array 𝐻[1. . 𝑛]. You get 0 happiness if you do not go to the party.

Maximize the sum of your happiness for these 𝑛 days, while not going out for more

than two consecutive days.

a) Write a summary for this problem.

Problem 1 – Going to parties

Feel free to work with
the people around you!

a) Write a summary for this problem.

Input: An array of positive integers 𝐻[1. . 𝑛].

Expected output: The maximum value of σ𝑖∈𝑆𝐻[𝑖] over all 𝑆 ⊆ {1, … , 𝑛} with no

three consecutive indices.

Problem 1 – Going to parties

Solution

When examples don’t help

Here’s an in-class exercise to show why examples are not so helpful before you know

your subproblems.

Without trying any particular class of subproblems, just try to maximize your

happiness given the following array, using your personal logic and heuristics:

[9, 2, 3, 8, 6, 6, 4, 7, 1]

Try this for a minute, we’ll see who can get the best!

When examples don’t help

Here’s an in-class exercise to show why examples are not so helpful before you know

your subproblems.

Without trying any particular class of subproblems, just try to maximize your

happiness given the following array, using your personal logic and heuristics:

[9, 2, 3, 8, 6, 6, 4, 7, 1]

The answer is 36, by taking [9, 2, 8, 6, 4, 7].

Solution

Here is a useful outline for what to try first when doing dynamic programming on a

one-dimensional array. You’ve seen this strategy in lecture before.

1. Let OPT(𝑗) = the optimal solution on inputs up to 𝑗.

2. Divide OPT(𝑗) into cases based on what to do with the 𝒋th element.

3. For each case, can you use OPT(𝑗 − 1) to handle it? Why or why not?

4. If you could not handle it, what additional information would help you? What

kinds of subproblems are these?

A common strategy

We’ll use knapsack as an example. Recall that the problem is to maximize the value of

a knapsack with maximum capacity 𝑊, given items with weights 𝑤𝑖 and values 𝑣𝑖.

1. Let OPT(𝑗) = the optimal solution on inputs up to 𝑗.

Let OPT(𝑗) = the most value you can pack using items up to 𝑗.

2. Divide OPT(𝑗) into cases based on what to do with the 𝑗th element.

Either pack or discard item 𝑗.

A common strategy

3. For each case, can you use OPT(𝑗 − 1) to handle it? Why or why not?

If you discard item 𝑗, the best you can pack is OPT(𝑗 − 1). But if you pack item 𝑗, we

cannot use OPT(𝑗 − 1), because item 𝑗 has some weight and OPT(𝑗 − 1) might

already be nearing capacity.

4. If you could not handle it, what additional information would help you? What

kinds of subproblems are these?

It would help to know the best we can do with various amounts of remaining capacity.

Thus, we can try subproblems that are also parameterized by remaining capacity, i.e.

OPT(𝑗, 𝑤) = the most value you can pack using items up to 𝑗 and at most 𝑤 weight.

A common strategy

One more quick example: Recall that in weighted interval scheduling, you are given 𝑛

jobs with start times 𝑠𝑖, finish times 𝑓𝑖, and weights 𝑤𝑖, and you want to maximize the

weight of a valid schedule.

1. Let OPT(𝑗) = the optimal solution on inputs up to 𝑗.

Let OPT(𝑗) = the maximum weight of a valid schedule, using jobs up to 𝑗th largest

finish time.

2. Divide OPT(𝑗) into cases based on what to do with the 𝑗th element.

Either schedule or discard the job with 𝑗th largest finish time.

A common strategy

3. For each case, can you use OPT(𝑗 − 1) to handle it? Why or why not?

If you discard the job, the best you can do is OPT(𝑗 − 1). But if you schedule the job,

we cannot use OPT(𝑗 − 1), because the job with 𝑗th largest finish time may overlap

with some jobs taken in OPT(𝑗 − 1).

4. If you could not handle it, what additional information would help you? What

kinds of subproblems are these?

We don’t need to introduce extra parameters this time, we just need to look back

further. If we discard the overlapping jobs, we are left with a subproblem that is still a

prefix of the original. In other words, we can continue to use our definition of OPT(𝑗).

A common strategy

b) Now you try. Say how to adapt each step to the party problem at hand.

i. Let OPT(𝑗) = the optimal solution on inputs up to 𝑗.

ii. Divide OPT(𝑗) into cases based on what to do with the 𝑗th element.

iii. For each case, can you use OPT(𝑗 − 1) to handle it? Why or why not?

iv. If you could not handle it, what additional information would help you? What

kinds of subproblems are these?

Problem 1 – Going to parties

b) Now you try. Say how to adapt each step to the party problem at hand.

i. Let OPT(𝑗) = the optimal solution on inputs up to 𝑗.

ii. Divide OPT(𝑗) into cases based on what to do with the 𝑗th element.

iii. For each case, can you use OPT(𝑗 − 1) to handle it? Why or why not?

iv. If you could not handle it, what additional information would help you? What

kinds of subproblems are these?

Input: An array of positive integers 𝐻[1. . 𝑛].

Expected output: The maximum value of σ𝑖∈𝑆𝐻[𝑖] over all 𝑆 ⊆ {1, … , 𝑛} with no

three consecutive indices.

Problem 1 – Going to parties

Feel free to work with the people around you!

Previous Solution

i. Let OPT(𝑗) = the optimal solution on inputs up to 𝑗.

Let OPT(𝑗) = the maximum happiness you can get on days 1. . 𝑗.

ii. Divide OPT(𝑗) into cases based on what to do with the 𝑗th element.

On day 𝑗, you will either sleep or party.

iii. For each case, can you use OPT(𝑗 − 1) to handle it? Why or why not?

If you sleep, your happiness will be OPT 𝑗 − 1 . However, if you party, there is no way

to use OPT 𝑗 − 1 , because maybe OPT 𝑗 − 1 called for partying both yesterday and

the day before.

Problem 1 – Going to parties

Solution

If you haven’t gotten part (iv) yet, take a moment to think about it!

iv. If you could not handle it, what additional information would help you? What

kinds of subproblems are these?

Keep track of the last time you slept (equivalently, how many days you’ve been

partying). This way, you could choose to only party if you slept within the last 2 days.

Two equivalent ways to implement this:

1. Let OPT(𝑗, 𝑠) = maximum happiness from days 1. . 𝑗, assuming you last slept 𝑠

days ago, for 𝑠 = 0, 1, 2.

2. Look back to OPT 𝑗 − 2 if you last slept on day 𝑗 − 1, or look back to OPT 𝑗 − 3

if you last slept on day 𝑗 − 2.

Both ways involve only prefixes as subproblems.

Problem 1 – Going to parties

Solution

c) Now that you know what form you want your subproblems to take, retry this

example to flesh out the details of your recurrence and convince yourself that it

works.

[9, 2, 3, 8, 6, 6, 4, 7, 1]

d) Write the recurrence relation (for either of the two ideas from last slide). Don’t

forget the base case(s).

Problem 1 – Going to parties

Feel free to work with the people around you!

c) Now that you know what form you want your subproblems to take, retry this

example to flesh out the details of your recurrence and convince yourself that it

works. In other words, since our subproblems are prefixes, compute OPT(𝑗, 𝑠) or

OPT(𝑗) (your choice) for every prefix of the following array:

[9, 2, 3, 8, 6, 6, 4, 7, 1]

d) Write the recurrence relation (for either of the two ideas from last slide). Don’t

forget the base case(s).

Problem 1 – Going to parties

Feel free to work with the people around you!

Previous Solution

If using OPT(𝑗, 𝑠):

If using OPT(𝑗):

Problem 1 – Going to parties

𝐻[𝑗] 9 2 3 8 6 6 4 7 1

OPT(𝑗, 0) 0 9 11 12 20 25 26 30 36

OPT(𝑗, 1) 9 2 12 19 18 26 29 33 31

OPT(𝑗, 2) 9 11 5 20 25 24 30 36 34

𝐻[𝑗] 9 2 3 8 6 6 4 7 1

OPT(𝑗) 9 11 12 20 25 26 30 36 36

Solution

If using OPT(𝑗, 𝑠):

OPT 𝑗, 0 = max OPT 𝑗 − 1, 0 , OPT 𝑗 − 1, 1 , OPT 𝑗 − 1, 2

OPT 𝑗, 1 = OPT 𝑗 − 1, 0 + 𝐻 𝑗

OPT 𝑗, 2 = OPT 𝑗 − 2, 0 + 𝐻 𝑗 − 1 + 𝐻 𝑗

Nice to also notice OPT 𝑗, 2 = OPT 𝑗 − 1, 1 + 𝐻[𝑗], can avoid looking back 2 days.

If using OPT(𝑗):

OPT 𝑗 = max

OPT 𝑗 − 1 ,

OPT 𝑗 − 2 + 𝐻[𝑗],

OPT 𝑗 − 3 + 𝐻 𝑗 − 1 + 𝐻[𝑗]

Problem 1 – Going to parties

Solution

If using OPT(𝑗, 𝑠):

OPT 𝑗, 0 = max OPT 𝑗 − 1, 0 , OPT 𝑗 − 1, 1 , OPT 𝑗 − 1, 2

OPT 𝑗, 1 = OPT 𝑗 − 1, 0 + 𝐻 𝑗

OPT 𝑗, 2 = OPT 𝑗 − 2, 0 + 𝐻 𝑗 − 1 + 𝐻 𝑗

Nice to also notice OPT 𝑗, 2 = OPT 𝑗 − 1, 1 + 𝐻[𝑗], can avoid looking back 2 days.

If using OPT(𝑗):

OPT 𝑗 = max

OPT 𝑗 − 1 ,

OPT 𝑗 − 2 + 𝐻[𝑗],

OPT 𝑗 − 3 + 𝐻 𝑗 − 1 + 𝐻[𝑗]

Problem 1 – Going to parties

Solution

Bonus: To see that these are equivalent, just use substitution
to prove that OPT 𝑗 = OPT 𝑗 + 1, 0 .

Now for base cases. If using OPT(𝑗, 𝑠):

OPT 𝑗, 0 = max OPT 𝑗 − 1, 0 , OPT 𝑗 − 1, 1 , OPT 𝑗 − 1, 2

OPT 𝑗, 1 = OPT 𝑗 − 1, 0 + 𝐻 𝑗

OPT 𝑗, 2 = OPT 𝑗 − 2, 0 + 𝐻 𝑗 − 1 + 𝐻 𝑗

We have many equivalent options.

Problem 1 – Going to parties

Solution

OPT 0, 𝑠 = 0
OPT 1, 2 = 𝐻[1]

OPT 1, 0 = 0
OPT 1, 1 = 𝐻 1
OPT 1, 2 = 𝐻 1
OPT 2, 2 = 𝐻 1 + 𝐻[2]

OPT 0, 𝑠 = 0
OPT −1, 0 = 0

Now for base cases. If using OPT(𝑗, 𝑠):

OPT 𝑗, 0 = max OPT 𝑗 − 1, 0 , OPT 𝑗 − 1, 1 , OPT 𝑗 − 1, 2

OPT 𝑗, 1 = OPT 𝑗 − 1, 0 + 𝐻 𝑗

OPT 𝑗, 2 = OPT 𝑗 − 2, 0 + 𝐻 𝑗 − 1 + 𝐻 𝑗

We have many equivalent options.

Problem 1 – Going to parties

Solution

OPT 0, 𝑠 = 0
OPT 1, 2 = 𝐻[1]

OPT 1, 0 = 0
OPT 1, 1 = 𝐻 1
OPT 1, 2 = 𝐻 1
OPT 2, 2 = 𝐻 1 + 𝐻[2]

OPT 0, 𝑠 = 0
OPT −1, 0 = 0

If you recognized OPT 𝑗, 2 = OPT 𝑗 − 1, 1 + 𝐻[𝑗],
you wouldn’t need the last case in each.

Now for base cases. If using OPT(𝑗, 𝑠):

OPT 𝑗, 0 = max OPT 𝑗 − 1, 0 , OPT 𝑗 − 1, 1 , OPT 𝑗 − 1, 2

OPT 𝑗, 1 = OPT 𝑗 − 1, 0 + 𝐻 𝑗

OPT 𝑗, 2 = OPT 𝑗 − 2, 0 + 𝐻 𝑗 − 1 + 𝐻 𝑗

We have many equivalent options.

Problem 1 – Going to parties

Solution

OPT 0, 𝑠 = 0
OPT 1, 2 = 𝐻[1]

OPT 1, 0 = 0
OPT 1, 1 = 𝐻 1
OPT 1, 2 = 𝐻 1
OPT 2, 2 = 𝐻 1 + 𝐻[2]

OPT 0, 𝑠 = 0
OPT −1, 0 = 0

Base cases involving 0 are usually easier.

Careful: Not always OPT(0) = 0! But it will usually be true
whenever optimizing for a sum or total of something.

Now for base cases. If using OPT(𝑗, 𝑠):

OPT 𝑗, 0 = max OPT 𝑗 − 1, 0 , OPT 𝑗 − 1, 1 , OPT 𝑗 − 1, 2

OPT 𝑗, 1 = OPT 𝑗 − 1, 0 + 𝐻 𝑗

OPT 𝑗, 2 = OPT 𝑗 − 2, 0 + 𝐻 𝑗 − 1 + 𝐻 𝑗

We have many equivalent options.

Problem 1 – Going to parties

Solution

OPT 0, 𝑠 = 0
OPT 1, 2 = 𝐻[1]

OPT 1, 0 = 0
OPT 1, 1 = 𝐻 1
OPT 1, 2 = 𝐻 1
OPT 2, 2 = 𝐻 1 + 𝐻[2]

OPT 0, 𝑠 = 0
OPT −1, 0 = 0

It’s nice to 1-index the input for dynamic programming.

Reserve 0 for the empty input and easy base case, so that
we can work with 𝐻[𝑗] on day 𝑗.

Likewise, if using OPT(𝑗):

OPT 𝑗 = max

OPT 𝑗 − 1 ,

OPT 𝑗 − 2 + 𝐻[𝑗],

OPT 𝑗 − 3 + 𝐻 𝑗 − 1 + 𝐻[𝑗]

We also have many equivalent options.

Problem 1 – Going to parties

Solution

OPT 0 = 0
OPT 1 = 𝐻 1
OPT 2 = 𝐻 1 + 𝐻[2]

OPT −2 = 0
OPT −1 = 0
OPT 0 = 0

OPT 1 = 𝐻[1]
OPT 2 = 𝐻 1 + 𝐻[2]

OPT 3 = max

𝐻 1 + 𝐻 2 ,
𝐻 1 + 𝐻 3 ,
𝐻 2 + 𝐻[3]

Problem 1 – Going to parties

In dynamic programming, the pseudocode will end up being a fairly direct translation

of the recurrence, so we’ll do the proof first. In this class, we will focus on just proving

the recursive case. A complete formal proof is, of course, induction.

e) Prove your recurrence to be correct.

Feel free to work with the people around you!

Problem 1 – Going to parties

In dynamic programming, the pseudocode will end up being a fairly direct translation

of the recurrence, so we’ll do the proof first. In this class, we will focus on just proving

the recursive case. A complete formal proof is, of course, induction.

e) Prove your recurrence to be correct.

For consistency, please try the OPT 𝑗 version.

OPT 𝑗 = max

OPT 𝑗 − 1 ,

OPT 𝑗 − 2 + 𝐻[𝑗],

OPT 𝑗 − 3 + 𝐻 𝑗 − 1 + 𝐻[𝑗]

Previous Solution

Feel free to work with the people around you!

Problem 1 – Going to parties

Cases based on when we last slept. We must have slept within the last 2 days,

otherwise the schedule violates the excessive partying condition.

Case 1: Sleep today. We get nothing today. All schedules on 1. . 𝑗 − 1 are compatible

with sleeping today, so the maximum happiness we can get in this case is OPT(𝑗 − 1).

Case 2: Slept yesterday. Then we have no reason not to party today, and all

schedules on 1. . 𝑗 − 2 are compatible with sleeping yesterday, so OPT 𝑗 − 2 + 𝐻[𝑗].

Case 3: Slept 2 days ago. Then we had no reason not to party yesterday, nor today,

and all schedules on 1. . 𝑗 − 3 are compatible, thus OPT 𝑗 − 3 + 𝐻 𝑗 − 1 + 𝐻 𝑗 .

Overall, the maximum of three cases is the maximum possible overall happiness.

Solution

Problem 1 – Going to parties

Cases based on when we last slept. We must have slept within the last 2 days,

otherwise the schedule violates the excessive partying condition.

Case 1: Sleep today. We get nothing today. All schedules on 1. . 𝑗 − 1 are compatible

with sleeping today, so the maximum happiness we can get in this case is OPT(𝑗 − 1).

Case 2: Slept yesterday. Then we have no reason not to party today, and all

schedules on 1. . 𝑗 − 2 are compatible with sleeping yesterday, so OPT 𝑗 − 2 + 𝐻[𝑗].

Case 3: Slept 2 days ago. Then we had no reason not to party yesterday, nor today,

and all schedules on 1. . 𝑗 − 3 are compatible, thus OPT 𝑗 − 3 + 𝐻 𝑗 − 1 + 𝐻 𝑗 .

Overall, the maximum of three cases is the maximum possible overall happiness.

Solution

This is key! Mention this in your proofs!

This is what allows us to use OPT(𝑗 − 2) when
partying today, and fixes the problem we noticed
initially when we attempted to use OPT(𝑗 − 1).

Implementation details

Problem 1 – Going to parties

Even though we’re use a recurrence relation, do not call your function recursively!

Calling the function recursively can lead to blowing up the running time, so we need to

consider how to remember the solutions to subproblems.

There are two steps:

● State the parameters for your subproblems and what kind of structure you will

use to store them.

● Describe the order for evaluating your subproblems.

f) Give this a try.

Feel free to work with the people around you!

Problem 1 – Going to parties

● State the parameters for your subproblems and what kind of structure you will

use to store them.

Parameters are 𝑗 from 0 to 𝑛 and 𝑠 = 0, 1, 2. We will store OPT in an (𝑛 + 1) × 3

array.

OR

Parameters are 𝑗 from 0 to 𝑛. We will store OPT in an array of length 𝑛 + 1.

OR

other options depending on choice of base cases (𝑗 from -2 to 𝑛, or -1 to 𝑛, or 1 to 𝑛)

Solution

Problem 1 – Going to parties

● Describe the order for evaluating your subproblems.

We will evaluate the base cases, then an outer loop with 𝑗 from 1 to 𝑛, and in each

iteration, we will evaluate the each OPT(𝑗, 𝑠) for 𝑠 = 0, 1, 2.

OR

We will evaluate the base cases, then each OPT(𝑗) for 𝑗 from 3 to 𝑛.

OR

other options depending on choice of base cases (𝑗 from 2 to 𝑛, etc.)

Solution

Problem 1 – Going to parties

g) Write the pseudocode for your iterative algorithm.

Feel free to work with the people around you!

Problem 1 – Going to parties

g) Write the pseudocode for your iterative algorithm.

For consistency, please try the following version:

OPT 𝑗 = max

OPT 𝑗 − 1 ,

OPT 𝑗 − 2 + 𝐻[𝑗],

OPT 𝑗 − 3 + 𝐻 𝑗 − 1 + 𝐻[𝑗]

OPT 0 = 0

OPT 1 = 𝐻 1

OPT 2 = 𝐻 1 + 𝐻[2]

Feel free to work with the people around you!

Previous Solution

Problem 1 – Going to parties

g) Write the pseudocode for your iterative algorithm.

1. Let OPT be a zero-indexed array of length 𝑛 + 1 initialized to anything.
2. Let OPT[0] = 0, OPT[1] = 𝐻[1], and OPT[2] = 𝐻[1] + 𝐻[2].

3. For 𝑗 = 3. . 𝑛,

a. Let OPT 𝑗 = max

OPT[𝑗 − 1],

OPT[𝑗 − 2] + 𝐻[𝑗],

OPT[𝑗 − 3] + 𝐻 𝑗 − 1 + 𝐻[𝑗]
.

4. Return OPT[𝑛].

Extra question: If you use OPT[𝑗, 𝑠], what should you return?

max(OPT 𝑗, 0 , OPT 𝑗, 1 , OPT[𝑗, 2])

Solution

Problem 1 – Going to parties

h) What is the running time of your algorithm?

Problem 1 – Going to parties

h) What is the running time of your algorithm?

It is one for loop with constant work per iteration, so 𝑂(𝑛).

Solution

Problem 1 – Going to parties

Sometimes, you will be asked to return the optimal object, rather than the optimal
value. However, doing it naively can cost you.

● A first idea might be to track the optimal object at each 𝑗, instead of the optimal
value. In today’s problem, this will use 𝑂(𝑛2) total time and space, very bad!

● Thus, we usually try to backtrack to find the optimal object after finding the
optimal value.

○ You may need to leave some hints for yourself to know where to go.

i) How would you modify the algorithm if you were asked to return the optimal party
schedule?

Feel free to work with the people around you!

Problem 1 – Going to parties

i) How would you modify the algorithm if you were asked to return the optimal party
schedule?

While processing each day 𝑗, additionally remember an arrow pointing to which

OPT(𝑗 − 𝑘) the optimal solution uses (for some 𝑘 = 1, 2, 3). Note that an arrow

pointing to OPT(𝑗 − 𝑘) means we slept 𝑘 − 1 days ago. At the end of the algorithm,
follow the arrows back to collect the set of days we slept.

Thanks for coming to section this week!

● Start by thinking about what to do with the last element.

○ Ask: Why is OPT(𝑗 − 1) not the thing you need? Then fix it.

○ In your proof, mention the key features of your solution that allow you to call

previous iterations of OPT.

● For implementation, determine an execution order that allows you to use

memory instead of recursive calls.

● If asked to return the object, maintain arrows for backtracking.

Summary

	Intro
	Slide 1: CSE 421 Section 5

	Administrivia
	Slide 2: Administrivia
	Slide 3: Announcements & Reminders

	Writing an Algorithm
	Slide 4: Ideas for dynamic programming
	Slide 5: What is dynamic programming?
	Slide 6: What is dynamic programming?
	Slide 7: What is dynamic programming?
	Slide 8: Problem solving strategy overview
	Slide 9: Problem solving strategy overview
	Slide 10: Problem 1 – Going to parties
	Slide 11: Problem 1 – Going to parties
	Slide 12: When examples don’t help
	Slide 13: When examples don’t help
	Slide 14: A common strategy
	Slide 15: A common strategy
	Slide 16: A common strategy
	Slide 17: A common strategy
	Slide 18: A common strategy
	Slide 19: Problem 1 – Going to parties
	Slide 20: Problem 1 – Going to parties
	Slide 21: Problem 1 – Going to parties
	Slide 22: Problem 1 – Going to parties
	Slide 23: Problem 1 – Going to parties
	Slide 24: Problem 1 – Going to parties
	Slide 25: Problem 1 – Going to parties
	Slide 26: Problem 1 – Going to parties
	Slide 27: Problem 1 – Going to parties
	Slide 28: Problem 1 – Going to parties
	Slide 29: Problem 1 – Going to parties
	Slide 30: Problem 1 – Going to parties
	Slide 31: Problem 1 – Going to parties
	Slide 32: Problem 1 – Going to parties

	3
	Slide 33: Problem 1 – Going to parties
	Slide 34: Problem 1 – Going to parties
	Slide 35: Problem 1 – Going to parties
	Slide 36: Problem 1 – Going to parties
	Slide 37: Implementation details
	Slide 38: Problem 1 – Going to parties
	Slide 39: Problem 1 – Going to parties
	Slide 40: Problem 1 – Going to parties

	4
	Slide 41: Problem 1 – Going to parties
	Slide 42: Problem 1 – Going to parties
	Slide 43: Problem 1 – Going to parties
	Slide 44: Problem 1 – Going to parties
	Slide 45: Problem 1 – Going to parties
	Slide 46: Problem 1 – Going to parties
	Slide 47: Problem 1 – Going to parties

	Outro
	Slide 48: Summary

