
CSE 421 Section 4

Divide and Conquer



Administrivia



Announcements & Reminders
● HW2

○ Regrade requests are open

○ Answer keys available on Ed

● HW3 
○ Was due yesterday, 10/16

○ Remember the late problems policy (NOT assignments)
○ Total of up to 10 late problem days

○ At most 2 late days per problem

● HW4

○ Due Wednesday 10/23 @ 11:59pm



Ideas for divide and conquer



Problem solving strategy overview

Read and summarize the problem

Decide to use known algorithm or techniques from scratch

Solve examples to get ideas
Check that idea isn’t 

easily falsified or slow

Write pseudocode, proof, 
and running time analysis

not covered this section no idea have idea

…in a “divide and conquer” mindset



Problem 1 – Maximum subarray sum

Input: An array of integers A= 𝑎1, … , 𝑎𝑛 (possibly both positive and negative)

Expected output: The largest sum of any contiguous subarray A[i..j]

Notation: Denote A[i..j] the subarray 𝑎𝑖, 𝑎𝑖+1, … , 𝑎𝑗.

Notes:

● The list of no elements is a valid subarray (the sum is 0).

● The expected output is the sum of the elements, not the actual subarray.

For divide and conquer word problems: Summary is extremely important, because 

recursion demands that you understand exactly what the input and output are.



Problem solving strategy overview

Read and summarize the problem

Decide to use known algorithm or techniques from scratch

Solve examples to get ideas
Check that idea isn’t 

easily falsified or slow

Write pseudocode, proof, 
and running time analysis

not covered this section no idea have idea

…in a “divide and conquer” mindset



Problem 1 – Maximum subarray sum

For problems that can be solved with divide and conquer, there will almost always be 

an easy but slow baseline idea that you can try first.

Input: An array of integers 𝑎1, … , 𝑎𝑛 (possibly both positive and negative)

Expected output: The largest sum of any contiguous subarray A[i..j]

a) Let’s come up with an easy baseline solution (no divide and conquer yet).

i. What is the simplest idea that you can try? What is the running time?

Feel free to work with the people around you!



Problem 1 – Maximum subarray sum

For problems that can be solved with divide and conquer, there will almost always be 

an easy but slow baseline idea that you can try first.

Input: An array of integers 𝑎1, … , 𝑎𝑛 (possibly both positive and negative)

Expected output: The largest sum of any contiguous subarray A[i..j]

a) Let’s come up with an easy baseline solution (no divide and conquer yet).

i. What is the simplest idea that you can try? What is the running time?

Check the sum of every possible subarray A[i..j]. There are 𝑂(𝑛2) different 

subarrays (pick 𝑖 and 𝑗), and sum takes 𝑂(𝑛) time per subarray, for a total of 𝑂 𝑛3 . 

Solution



Problem 1 – Maximum subarray sum

a) Let’s come up with an easy baseline solution (no divide and conquer yet).

i. What is the simplest idea that you can try? What is the running time?

ii. Are there any inefficiencies with this idea that can be easily fixed (still no 

divide and conquer)? If so, what is the running time after fixing?



Problem 1 – Maximum subarray sum

a) Let’s come up with an easy baseline solution (no divide and conquer yet).

i. What is the simplest idea that you can try? What is the running time?

Check the sum of every possible subarray A[i..j]. There are 𝑂(𝑛2) different 

subarrays (pick 𝑖 and 𝑗), and sum takes 𝑂(𝑛) time per subarray, for a total of 𝑂 𝑛3 . 

ii. Are there any inefficiencies with this idea that can be easily fixed (still no 

divide and conquer)? If so, what is the running time after fixing?

Previous Solution

Feel free to work with the people around you!



Problem 1 – Maximum subarray sum

a) Let’s come up with an easy baseline solution (no divide and conquer yet).

i. What is the simplest idea that you can try? What is the running time?

Check the sum of every possible subarray A[i..j]. There are 𝑂(𝑛2) different 

subarrays (pick 𝑖 and 𝑗), and sum takes 𝑂(𝑛) time per subarray, for a total of 𝑂 𝑛3 . 

ii. Are there any inefficiencies with this idea that can be easily fixed (still no 

divide and conquer)? If so, what is the running time after fixing?

To compute the sum of A[i..j+1], you don’t need to spend 𝑂(𝑛), just use 𝑂(1)

time to add 𝑎𝑗+1 to the sum of A[i..j], which is already computed. Now it’s 𝑂 𝑛2 .

Solution



Problem solving strategy overview

Read and summarize the problem

Decide to use known algorithm or techniques from scratch

Solve examples to get ideas
Check that idea isn’t 

easily falsified or slow

Write pseudocode, proof, 
and running time analysis

not covered this section no idea have idea

…in a “divide and conquer” mindset



Problem 1 – Maximum subarray sum

Now, we know that 𝑶 𝒏𝟐 is easy. Thus, we should aim around 𝑶 𝒏 𝐥𝐨𝐠𝒏 .

b) Here are some basic questions to always ask yourself for divide and conquer:

i. How do you want to split up the problem? 

ii. What is returned from the recursive calls? 

iii. How much work can you do in each call, in order to get 𝑂 𝑛 log 𝑛 ?

Feel free to work with the people around you!



Problem 1 – Maximum subarray sum

Now, we know that 𝑶 𝒏𝟐 is easy. Thus, we should aim around 𝑶 𝒏 𝐥𝐨𝐠𝒏 .

b) Here are some basic questions to always ask yourself for divide and conquer:

i. How do you want to split up the problem? 

Two halves, A[1..m] and A[m+1..n], where 𝑚 =
𝑛

2
. (need to call both)

ii. What is returned from the recursive calls? 

The largest sum of any contiguous subarray in each half.

iii. Up to how much work is allowed in each call, in order to get 𝑂 𝑛 log 𝑛 ? 

Up to 𝑂(𝑛) work per recursive call gets 𝑂 𝑛 log 𝑛 , like in merge sort.

Solution



Problem 1 – Maximum subarray sum

c) Solve these examples by hand, as well as the two recursive subproblems in each 

example (just one level of recursion). Then, think about the following to get ideas: 

“How can I use the two answers to the subproblems to get the final answer?” 

Remember how much work you are allowed to do.

i. 2, -10, -5, 8, -1, 7

ii. 6, -3, -4, 4, 2, 1, -7, 5

iii. -3, 2, 4, -1, 3, -10, 6, -4

Continue trying more examples until you have an idea.

Feel free to work with the 
people around you!



Problem 1 – Maximum subarray sum

i. 2, -10, -5, 8, -1, 7

Full solution: [8, -1, 7] with sum 14

Left half: [2] with sum 2

Right half: [8, -1, 7] with sum 14

How to combine: We took the solution from the right half.

Solution



Problem 1 – Maximum subarray sum

ii. 6, -3, -4, 4, 2, 1, -7, 5

Full solution: [4, 2, 1] with sum 7

Left half: [6] with sum 6

Right half: [5] with sum 5

How to combine: Both answers to subproblems were smaller than the full 

solution, which crossed the boundary.

Solution



Problem 1 – Maximum subarray sum

iii. -3, 2, 4, -1, 3, -10, 6, -4

Full solution: [2, 4, -1, 3] with sum 8

Left half: [2, 4] with sum 6

Right half: [6] with sum 6

How to combine: Both answers to subproblems were smaller than the full 

solution, which crossed the boundary.

Solution



Problem 1 – Maximum subarray sum

The largest subarray sum is either in the left or right half, or crosses the boundary.

So, can we find the largest subarray sum that crosses the boundary in 𝑂(𝑛) time?

If you haven’t gotten it yet, take a moment to think. 
Feel free to work with the people around you!

Previous Solution



Problem 1 – Maximum subarray sum

The largest subarray sum is either in the left or right half, or crosses the boundary.

So, can we find the largest subarray sum that crosses the boundary in 𝑂(𝑛) time?

Yes! From the middle, search down for the largest sum of all arrays of the form 

A[i..m] (where 1 ≤ 𝑖 ≤ 𝑚), and similarly search up for arrays of the form 

A[m+1..j] (where 𝑚 + 1 ≤ 𝑗 ≤ 𝑛), then put them together.

Solution



Writing about divide and conquer



Divide and conquer pseudocode

Reminders for divide and conquer pseudocode:

● Always give your function a name, since you will need to call it recursively.

● In pseudocode, our default will be that function parameters pass by value.

○ If you pass arrays by value, you automatically use 𝑂(𝑛) time.

○ To achieve sub-𝑂(𝑛), you must use references, pointers, global variables 

(or generally variables scoped outside the function), or other equivalents.

■ These slides use global variables, but it’s subjective.

○ Not relevant for this problem since we use 𝑂(𝑛) time anyways.



Problem 1 – Maximum subarray sum

d) Write the pseudocode for your solution.



Problem 1 – Maximum subarray sum

The largest subarray sum is either in the left or right half, or crosses the boundary.

For crossing the boundary, from the middle, search down for the largest sum of all 

arrays of the form A[i..m] (where 1 ≤ 𝑖 ≤ 𝑚), and similarly search up for arrays of 

the form A[m+1..j] (where 𝑚 + 1 ≤ 𝑗 ≤ 𝑛), then put them together.

d) Write the pseudocode for your solution.

Feel free to work with the people around you!

Previous Solution



Problem 1 – Maximum subarray sum

Solution



Problem 1 – Maximum subarray sum

Solution



This passes the array by value!
Fine this time because we are doing 
𝑂(𝑛) work per iteration anyway, but 
would be bad if we trying to be faster.

Problem 1 – Maximum subarray sum

Solution



Problem 1 – Maximum subarray sum

For future reference, we can fix 
it by using a global variable and 
passing indices instead, which 
takes 𝑂(1) time!

Solution



Divide and conquer proofs

Reminders for divide and conquer proofs:

● Always use strong induction. Your IH should be:

“My core function outputs its expected output for all inputs of size ≤ 𝑘.”

● The structure can be inspired by your code, which already has a “base case” and 

“recursive (inductive) step”. 

○ Also, if your code branches on anything (if, max, min, etc.), your proof should 

have cases based on what kinds of inputs end up at each branch.

● You should explain:

○ Why your output is the expected output, AND

○ If the input is “X such that Y holds”, explain why Y holds for recursive calls.



Problem 1 – Maximum subarray sum

e) Write the proof that your pseudocode works.



Problem 1 – Maximum subarray sum

e) Write the proof that your pseudocode works.

Feel free to work with the people around you!

Previous Solution



Solution

Problem 1 – Maximum subarray sum

BC: The largest subarray sum of a length 1 array is itself if positive, or 0 if negative.

IH: MAXSUBARRAYSUM returns the maximum subarray sum for all arrays of length ≤ 𝑘.

IS: Let A be an array of length 𝑘 + 1. 

Case 1: The maximum subarray is entirely in the left or right subarray.
By IH, we find this subarray and return it.

Case 2: The maximum subarray crosses from the left to the right.
• All subarrays A[i..j] that cross can be divided into A[i..m] and A[m+1..j].
• But we know that maxSumToMiddle≥ sum(A[i..m]) and similarly

maxSumFromMiddle≥ sum(A[m+1..j]).
• Adding these, crossSum ≥ sum(A[i..j]) for all subarrays A[i..j] that 

cross, and it certainly represents some subarray, so it is the max subarray sum.



Solution

Problem 1 – Maximum subarray sum

BC: The largest subarray sum of a length 1 array is itself if positive, or 0 if negative.

IH: MAXSUBARRAYSUM returns the maximum subarray sum for all arrays of length ≤ 𝑘.

IS: Let A be an array of length 𝑘 + 1. 

Case 1: The maximum subarray is entirely in the left or right subarray.
By IH, we find this subarray and return it.

Case 2: The maximum subarray crosses from the left to the right.
• All subarrays A[i..j] that cross can be divided into A[i..m] and A[m+1..j].
• But we know that maxSumToMiddle≥ sum(A[i..m]) and similarly

maxSumFromMiddle≥ sum(A[m+1..j]).
• Adding these, crossSum ≥ sum(A[i..j]) for all subarrays A[i..j] that 

cross, and it certainly represents some subarray, so it is the max subarray sum.

Note how cases are only inspired by code, not regurgitating code.

The cases are high-level: what kinds of inputs end up at each branch? 
NOT necessarily the specific criteria you check in code.



Solution

Problem 1 – Maximum subarray sum

BC: The largest subarray sum of a length 1 array is itself if positive, or 0 if negative.

IH: MAXSUBARRAYSUM returns the maximum subarray sum for all arrays of length ≤ 𝑘.

IS: Let A be an array of length 𝑘 + 1. 

We compute maxSumToMiddle and maxSumFromMiddle, the largest sum of any 
subarray of type A[i..m] and A[m+1..j], respectively. Then, we add them 
together to get crossSum, and return the biggest between crossSum, 
MAXSUBARRAYSUM(A[1..m]), and MAXSUBARRAYSUM(A[m+1..n]).

Case 1: crossSum was the biggest.
Since we were asked to return the maximum, we returned it, which was correct.

Case 2: MAXSUBARRAYSUM(A[1..m])was the biggest. …

Here is a sample BAD proof:



Solution

Problem 1 – Maximum subarray sum

BC: The largest subarray sum of a length 1 array is itself if positive, or 0 if negative.

IH: MAXSUBARRAYSUM returns the maximum subarray sum for all arrays of length ≤ 𝑘.

IS: Let A be an array of length 𝑘 + 1. 

We compute maxSumToMiddle and maxSumFromMiddle, the largest sum of any 
subarray of type A[i..m] and A[m+1..j], respectively. Then, we add them 
together to get crossSum, and return the biggest between crossSum, 
MAXSUBARRAYSUM(A[1..m]), and MAXSUBARRAYSUM(A[m+1..n]).

Case 1: crossSum was the biggest.
Since we were asked to return the maximum, we returned it, which was correct.

Case 2: MAXSUBARRAYSUM(A[1..m])was the biggest. …

Here is a sample BAD proof: Unnecessarily regurgitates the 
pseudocode



Solution

Problem 1 – Maximum subarray sum

BC: The largest subarray sum of a length 1 array is itself if positive, or 0 if negative.

IH: MAXSUBARRAYSUM returns the maximum subarray sum for all arrays of length ≤ 𝑘.

IS: Let A be an array of length 𝑘 + 1. 

We compute maxSumToMiddle and maxSumFromMiddle, the largest sum of any 
subarray of type A[i..m] and A[m+1..j], respectively. Then, we add them 
together to get crossSum, and return the biggest between crossSum, 
MAXSUBARRAYSUM(A[1..m]), and MAXSUBARRAYSUM(A[m+1..n]).

Case 1: crossSum was the biggest.
Since we were asked to return the maximum, we returned it, which was correct.

Case 2: MAXSUBARRAYSUM(A[1..m])was the biggest. …

Here is a sample BAD proof:

Doesn’t explain why crossSum is 
bigger than all other subarray sums 
(only that it’s bigger than the 
recursive calls).

Also, these cases are low-level
criteria copied from the code. 
It’s possible to make them work, 
but they will be much wordier.



Problem 1 – Maximum subarray sum

f) Analyze the running time of your code by solving a recurrence.



Problem 1 – Maximum subarray sum

f) Analyze the running time of your code by solving a recurrence.

Feel free to work with the people around you!

Previous Solution



Problem 1 – Maximum subarray sum

f) Analyze the running time of your code by solving a recurrence.

Lines 5 and 6 take 𝑂(𝑛) time each.

Since we then make a recursive call on each half, we have the recurrence:

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑂 𝑛

By the Master Theorem, this means 𝑇(𝑛) = 𝑂(𝑛 log 𝑛).

Solution



Final thoughts

● How to choose between divide and conquer vs. greedy?

○ Try easy algorithms first, like baselines or greedy.

○ If easy ones are slow and subproblems seem useful, try divide and conquer.

● Sometimes, it will be useful to compute more than what’s asked for.

○ Examples: 

■ Problem 2 in your section packet

■ Problem 2 on your homework: today’s problem in 𝑂(𝑛)! It will guide you.

○ In this case, your IH should reflect what you actually compute, not what you 

were asked to compute.

○ Try the usual thing first, only compute more if it doesn’t work/is too slow.



Summary

● First, try an easy but slow baseline algorithm.

○ Use this to estimate how much time you can take per recursive call, in order 

to still get an improvement.

● Ask yourself: How can I use answers to subproblems to find the full answer?

● Keep in mind the cost of copying arrays, and avoid this with global variables.

● Prove using strong induction.

Thanks for coming to section this week!


	Intro
	Slide 1: CSE 421 Section 4

	Administrivia
	Slide 2: Administrivia
	Slide 3: Announcements & Reminders

	Ideas for divide and conquer
	Slide 4: Ideas for divide and conquer
	Slide 5: Problem solving strategy overview
	Slide 6: Problem 1 – Maximum subarray sum
	Slide 7: Problem solving strategy overview
	Slide 8: Problem 1 – Maximum subarray sum
	Slide 9: Problem 1 – Maximum subarray sum
	Slide 10: Problem 1 – Maximum subarray sum
	Slide 11: Problem 1 – Maximum subarray sum
	Slide 12: Problem 1 – Maximum subarray sum
	Slide 13: Problem solving strategy overview
	Slide 14: Problem 1 – Maximum subarray sum
	Slide 15: Problem 1 – Maximum subarray sum
	Slide 16: Problem 1 – Maximum subarray sum
	Slide 17: Problem 1 – Maximum subarray sum
	Slide 18: Problem 1 – Maximum subarray sum
	Slide 19: Problem 1 – Maximum subarray sum
	Slide 20: Problem 1 – Maximum subarray sum
	Slide 21: Problem 1 – Maximum subarray sum

	Writing about divide and conquer
	Slide 22: Writing about divide and conquer
	Slide 23: Divide and conquer pseudocode
	Slide 24: Problem 1 – Maximum subarray sum
	Slide 25: Problem 1 – Maximum subarray sum
	Slide 26: Problem 1 – Maximum subarray sum
	Slide 27: Problem 1 – Maximum subarray sum
	Slide 28: Problem 1 – Maximum subarray sum
	Slide 29: Problem 1 – Maximum subarray sum
	Slide 30: Divide and conquer proofs
	Slide 31: Problem 1 – Maximum subarray sum
	Slide 32: Problem 1 – Maximum subarray sum
	Slide 33: Problem 1 – Maximum subarray sum
	Slide 34: Problem 1 – Maximum subarray sum
	Slide 35: Problem 1 – Maximum subarray sum
	Slide 36: Problem 1 – Maximum subarray sum
	Slide 37: Problem 1 – Maximum subarray sum
	Slide 38: Problem 1 – Maximum subarray sum
	Slide 39: Problem 1 – Maximum subarray sum
	Slide 40: Problem 1 – Maximum subarray sum
	Slide 41: Final thoughts

	Outro
	Slide 42: Summary


