
Section 1: Stable Matchings and Proofs Workshop

1. Gale–Shapley review

Consider the following lists of preferences:

p1 : r3 > r1 > r2 > r4

p2 : r2 > r1 > r4 > r3

p3 : r2 > r3 > r1 > r4

p4 : r3 > r4 > r1 > r2

r1 : p4 > p1 > p3 > p2

r2 : p1 > p3 > p2 > p4

r3 : p1 > p3 > p4 > p2

r4 : p3 > p1 > p2 > p4

(a) Run the Gale–Shapley algorithm on the instance above, with pi proposing. When multiple pi are free to
propose, choose the one with the smallest index (e.g., if p1 and p2 are both free, have p1 propose).

(b) Run the Gale–Shapley algorithm again on the instance above, with pi proposing. When multiple pi are free to
propose, now choose the one with the largest index. Do you get the same result?

(c) Run the Gale–Shapley algorithm on the instance above, with ri proposing. Whenmultiple ri are free to propose,
choose the one with the smallest index. Do you get the same result?

2. The number of stable matchings

In the previous problem, we saw two distinct stable matchings for the same instance (depending on whether the pi
or ri are the ones to propose). Is it possible to have an instance of the stable matching problem with more than 2
stable matchings? If so, give an instance with at least 3 stable matchings. If not, prove that every instance has at
most 2 stable matchings.

Review of graph concepts

• Degree: The number of edges connected to a vertex.

• Path1: A list of vertices v1, v2, . . . , vk such that each {vi, vi+1} is an edge. ((vi, vi+1) in a directed graph)

• Cycle2: A path v1, v2, . . . , vk with v1 = vk.

• Simple path3: A path with all distinct vertices

• Simple cycle4: A cycle with all distinct vertices, except the first/last.

• Connected: There is a path between any two vertices in the graph.

• Tree: A connected, acyclic (no cycles) graph.

• Rooted tree: A tree with a designated vertex called the root. (Note: Words like “parent” and “child” require a
root. For non-rooted trees, say “neighbor” to refer to vertices connected by a single edge to the current one.)

1Also known as a walk by other sources.
2Also known as a closed walk by other sources.
3Also known as a path by other sources.
4Also known as a cycle by other sources.
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3. Proof-writing workshop

Attached as an appendix to this handout, there are 4 sample proofs of the following statement:

Every tree with at least 2 vertices has at least 2 vertices of degree 1.

(a) Take a minute to think about the problem yourself. (It’s okay if you don’t have a proof.)

(b) Read each sample proof. Discuss with people around you:

(i) Is it correct? (Are there false statements?)

(ii) Is it complete? (Are there unjustified claims, unused hypotheses, or undefined notation?)

(iii) Is it concise? (Are there excessive details, unnecessary notations, or irrelevant arguments?)

(iv) Is it clear? (Are the main ideas obvious or buried? Could stylistic choices like paragraph breaks, diagrams,
bullets, etc. be improved? Are there spelling, grammar, or formatting errors?)

(v) What do you like about the proof? How would you improve this proof?

The following problems will not be covered in section, but may be useful to think about.
We recommend trying them by yourself first. Solutions will be posted in the evening.

4. Find the bug: failed induction

In this problem, you will fix an incorrect induction proof.

Problem: Suppose you have a stable matching instance with n people in P and n people in R. Of the n members
of R, 5 are popular. That is, every person in P has those 5 members of R as their first 5 choices (in some order, not
necessarily the same for each person in P ). Similarly, you have 5 popular members of P , such that every person in
R has those 5 as their top choices. Prove that in every stable matching of such an instance, every popular person is
matched with another popular person.

Spoof. Let P (n) be “In every stable matching of an instance with two groups of size n and 5 popular people per
group, every popular person is matched with another popular person.” We will show P (n) holds for all n ≥ 5 by
induction on n.

Base case (n = 5): With both sets having size 5, every person is popular. Since every stable matching pairs every
person, every person is matched to a popular person.

Inductive hypothesis: Suppose P (n) holds for n = 5, . . . , k for an arbitrary integer k ≥ 5.

Inductive step: Let r1, . . . , rk, p1, . . . , pk be k people in each group, with r1, . . . , r5, p1, . . . , p5 being the popular
ones. We add rk+1 and pk+1. By popularity, rk+1 has p1, . . . , p5 (in some order) as their 5 favorite people and pk+1

has r1, . . . , r5 (in some order) as their 5 favorite people. Further, let pk+1 and rk+1 be each other’s 6th choices (i.e.
top choice outside the popular people).

Now, consider any stable matching in the old (size k) instance. We create a stable matching for the new instance by
pairing rk+1 with pk+1. We now show that this matching is stable for the new instance.

Since it was stable for the small instance, the only possible unstable pairs must involve rk+1 or pk+1. By IH, every
popular person is matched to another popular person. Regardless of where rk+1 and pk+1 was added to the popular
person’s list, they fall after the popular ones, so rk+1 and pk+1 cannot form an unstable pair with the popular people.
And since they have each other as their next choices, they cannot form an unstable pair with anyone else. Thus we
have that there are no unstable pairs. The popular people remain matched to each other, as required.

(a) There are at least two correctness errors in this proof. Describe them.

(b) Write a correct proof of this claim. Do NOT use induction. Use a proof by contradiction instead.
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5. Practice a reduction

A reduction from problem A to problem B is a solution to A in which you can call a library function that solves B.
Typically, that library function does the bulk of the work, and your solution just consists of some preprocessing of
the inputs to A in order to match what B expects, and postprocessing of the output of B to match what A requires.
Note that you have no control over how the library function works internally—you only know what input it takes
and what output it is guaranteed to give you.

In this question, you will solve a problem by reducing it to the basic stable matching problem.

Problem: Suppose that is a set of r riders and h horses withmanymore riders than horses; in particular, 2h < r < 3h.
You wish to set up a set of 3 rounds of rides which will give each rider exactly one chance to ride a horse. To keep
things fair among the horses, you wish for each to have exactly 2 or 3 rides.

Because it’s winter, by the time the third ride starts it will be very dark, so every rider would prefer any horse on
the first two rides over being on the third ride. Between the first two rides, each rider doesn’t have a preference
over time of day, and have the same preference over horses. If a rider must be on the third ride, it has the same
preference list for that ride as well.

Each horse has a single list over riders, which doesn’t change by ride. Since horses love their jobs, they prefer to
being one of the horses on the third ride to one of the ones left home.

Design an algorithm which calls the following library exactly once and ensures there are no pairs r, h which would
both prefer to change the matching and get a better result for themselves.

BasicStableMatching
Input: A set of 2k people in two groups of k people each. Each person has an ordered preference list of all k
members of the other group.
Output: A stable matching among the 2k agents.

(a) Give a 1–2 sentence summary of your idea.

(b) Give the algorithm you’re going to run.

(c) Give a 1–2 sentence summary of the idea of your proof.

(d) Write a proof of correctness.

(e) Give the running time of your algorithm, and briefly justify (1–3 sentences).
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Appendix — Problem 3 — Sample Solution? 1

Every tree with at least 2 vertices has at least 2 vertices of degree 1.

Proof. Suppose for contradiction that at most 1 vertex has degree 1, so the rest have degree at least 2. Then
the sum of the degrees is at least 2n− 1. However, recall that a tree has n− 1 edges, so the sum of degrees
should be 2n− 2, contradiction.
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Appendix — Problem 3 — Sample Solution? 2

Every tree with at least 2 vertices has at least 2 vertices of degree 1.
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Appendix — Problem 3 — Sample Solution? 3

Every tree with at least 2 vertices has at least 2 vertices of degree 1.

Let P(n) be the statement, “Every tree on n vertices has at least 2 vertices of degree 1.” We will
prove P(n) by induction for n >= 2.

Base Case: n=2. There is only one undirected tree with exactly 2 nodes, and it has 2 vertices
that are both degree 1.

Inductive Hypothesis: Suppose P(n) is true for n = 2, …, k for an arbitrary k >= 2.

Inductive Step: Let T be an arbitrary tree with k nodes. By inductive hypothesis, T has at least
two nodes of degree one. Call them u and v, and create a new node w. Since we are interested
in connected trees, we must attach w; we break into cases depending on what it is adjacent to.

Case 1: w is attached to neither u nor v. If w is adjacent to a node other than u, v then u and v
still have degree one, so the claim holds on T’.

Case 2: w is attached to one of u, v but not the other. If w is adjacent to u or v, then the other of
u, v, and w will both be degree one.

Case 3: w is attached to both u, v. In this case, the graph would be left with no vertices of
degree 1, but luckily this case is impossible! If w were connected to both u and v, then the path
in T between u and v (which exists because T was connected) along with (u, w) and (v, w) form
a cycle, which is not allowed in a tree.

In all (allowed) cases, T’ has the required degree one vertices. Since we constructed T’ to have
k + 1 vertices, we have shown P(k+1).
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Appendix — Problem 3 — Sample Solution? 4

Every tree with at least 2 vertices has at least 2 vertices of degree 1.

Proof. Let T = (V, E) be an arbitrary tree. Let P be a simple path of maximal
length in the tree, so P cannot be extended any longer by definition of maximal.
Let x1, ..., xn be the vertices in the path, so {x1, x2}, {x2, x3}, ..., {xn −
1, xn} ∈ E. Suppose that deg(xn) >= 2. So ∃y ∈ V such that y 6= xn−1 and
xn, y ∈ E. If ∃i = 1, ..., n− 2 such that y = xi, then xi, xi + 1, ..., xn, xi = y
is a cycle, which is a contradiction because trees are always acyclic. If
∀i = 1, ..., n − 2 we have y 6= xi then x1, . . . , xn, y is a longer path, which
is a contradiction because we said P had maximal length. So now we’ve
covered all the cases and we can conclude that deg(xn) < 2. And deg(xn) 6= 0
because {xn − 1, xn} is an edge, according to P. So deg(xn) = 1.

Next, suppose that deg(x1) >= 2. So ∃z ∈ V such that z 6= x2 and x1, z ∈ E.
If ∃i = 3, ..., n such that z = xi, then xi = z, x1, ...xi is a cycle, which is a
contradiction because trees are always acyclic. If ∀i = 3, ..., n we have z 6= xi
then z, x1, . . . , xn is a longer path, which is a contradiction because we said
P had maximal length. So now we’ve covered all the cases again and we can
conclude that deg(x1) < 2. And deg(x1) 6= 0 because {x1, x2} is an edge,
according to P. So deg(x1) = 1.

Lastly, considering that every tree with at least two vertices contains at least
one edge, and the longest simple path P contains at least two distinct vertices,
it follows that x1 != xn. So x1 and xn are our two vertices that satisfy the
claim, and we conclude that the claim holds. Q.E.D.
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