CSE 421
Introduction to Algorithms

Lecture 28: Dealing with NP-completeness:

Fixed Parameter Tractability
SAT Solving




Reminder/Announcement

* The Final Exam is Monday December 9, 2:30-4:45 pm in this
room since nobody had a conflict with the extra time.

* | sent an email over the weekend with information about
the exam and a sample final
* It will be comprehensive and similar in style to the midterm.
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What to do if the problem you want to solve is NP-hard

Maybe you only need to solve it if the solution size is small...
* What if you only need to find cliques or vertex covers of constant
size?
* For both Clique and Vertex Cover, the obvious brute force
algorithm would have time ®(n"): try all subsets of size k.

* For Clique the best algorithms known are all n®()

 However, Vertex Cover has a much better algorithm...

The theory of fixed parameter tractability looks at NP problems using a
second parameter k in addition to input size 1 and seeks algorithms

with running times f (k) - n°) where f might be exponential.
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Fixed Parameter Algorithms

The theory of fixed parameter tractability looks at NP problems using a second
parameter k in addition to input size n and seeks algorithms with running times

f(k) - n%D where f might be exponential.

Clique: Extra parameter k for clique size target:

Brute force algorithm: try all subsets of size k and check: ©(k?*n’) time.

Vertex-Cover: Extra parameter k for clique size target:

Brute force algorithm: try all subsets of size k and check: ®(mn’) time.

* Neither is a good fixed parameter algorithm
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Vertex-Cover Fixed Parameter Algorithm

Vertex-Cover(C, b) {
if there is an edge (u, v) not covered by C {
if b > 0{
Vertex-Cover(C U {u}, b — 1)
Vertex-Cover(C U {v}, b — 1)

}
}
else

Output YES (and set C) and halt
}

}

Call Vertex-Cover(d, k)
if no answer, output NO
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Analysis:

* Time to identify possible edge (u, v) not
covered (and modify C) is O(m + n)

 # of recursive calls < 2k

« Total runtime 0(2*(m + n))




More on Fixed Parameter Algorithms

Many graph problems can be given a second parameter k called the treewidth of the input graph.
* Treewidth 1 graphs are trees (technically forests).
* Multiple natural definitions of treewidth (here’s one):
* Graph G = (V,E) is treewidth at most k iff there is a tree T such that
* each node u of T is labelled by a subset V,, of < k vertices in V
» for every edge (v,w) € E there is a node u of T such that both v,w € V,,.
e foreveryv € V the set of nodesu in T withv € V,, is connected in T

* The tree with the sets are called the tree decomposition of G.
The minimum k and tree decomposition can be found in linear time.
The tree defines a natural elimination ordering for recursive algorithms on the graph.
* Fact: Obstacle to treewidth k — 1: the k X k grid graph.

Many NP-hard problems are efficiently solvable on graphs of bounded treewidth.

Treewidth also comes up in route-finding in Google Maps: Can’t run full-blown Dijkstra on the whole
graph every time a user requests a route.
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What to do if the problem you want to solve is NP-hard

Try to make an exponential-time solution as efficient as possible.

e.g. Try to search the space of possible hints/certificates in a more efficient way and
hope that it is quick enough.

Backtracking search

e.g., for SAT, search through the 2™ possible truth assignments...

...but set the truth values one-by-one so we can able to figure out whole parts
of the space to avoid,

e.g. Given F = (ﬂxl V xZ) N (ﬂXz V X3) N (X4 V ﬂXg) N (x1 V X4_)

after setting x; = 1 and x, = 0 we don’t even need to set x5 or x4 to
know that it won’t satisfy F.

Today: More clever backtracking search for SAT solutions
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SAT Solving

SAT is an extremely flexible problem:

e The fact that SAT is an NP-complete problem says that we can
re-express a huge range of problems as SAT problems

This means that good algorithms for SAT solving would be useful
for a huge range of tasks.

Since roughly 2001, there has been a massive improvement in our
ability to solve SAT on a wide range of practical instances
* These algorithms aren’t perfect. They fail on many worst-case instances.
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Satisfiability Algorithms

Local search: Solve SAT as a special case of MaxSAT
(incomplete, may fail to find satisfying assignment)

GSAT — random local search [Selman,Levesque,Mitchell 92]

Walksat — Metropolis [Kautz,Selman 96]

Backtracking search (complete)
* DPLL [Davis,Putnam 60], [Davis,Logeman,Loveland 62]

* CDCL: Adds clause learning and restarts
GRASP, SATO, zchaff, MiniSAT, Glucose, etc.
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CNF Satisfiability

SAT: satisfiability problem for CNF formulas with any clause size

Werite CNFs with the A between clauses implicit:
F=(x1VX3Vx)(x1Vx3)(x3Vxy)(xyVxs)

Write assignment as literals assigned true: xq, x5, X3, X4

Defn: Given partial assignment x; where
F=(x1VX3V2x4)(X1Vx3)(X3VX2)(Xy V X3)

define simplify(F, x3) by
simplify(F, x3)= (x1 V X3 V x4) X2 Xy

That is: remove satisfied clauses and remove unsatisfied literals from clauses.

Note: F is satisfiable iff all clauses disappear under some assignment.
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Backtracking search/DPLL

<€
repeat
select a literal £ (some x or x)
. . free step
F < simplify(F,?); t < append(t,¥) }
while F contains a 1-clause ¢’ | |
F < simplify(F,¢"); t < append(t, ¢") Unft propagation
if F has no clauses return t as satisfying assignment
if F has an empty clause
backtrack to last free step and flip assignment (step no longer free)
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Recursive view of DPLL (without unit propagation)

DPLL(F):

if F is empty report satisfiable and halt
if F contains the empty clause

return

—

with unit propagation choose x to be the literal of a 1-clause if possible

else choose a literal x
DPLL(simplify(F, x))
DPLL(simplify(F, x))
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DPLL on UNSAT formula

Clauses
avbvc
av—C
—b
—av d
—|d\/ b

ODWN =

Residual
Formula —1C

@

av bvc av—C —av d —dv b

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING




Extending DPLL: Clause Learning

* When backtracking in DPLL, add new clauses
corresponding to causes of failure of the search

* Added conflict clauses
e Capture reasons of conflicts
e Obtained via unit propagations from known ones
e Reduce future search by producing conflicts sooner
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Conflict Graph: Graph of Unit Propagations

At each conflict (derivation of them empty clause) the negations of the
predecessor node labels across any cut form an implied clause.
» if clause is false then could derive L

Known Clauses

(—|av—|bv—|1')/ learn

(T\/—l ) _'P
(v o) L oy
(X1 VvV Xav X3VY) q Q/:\

(XIVXZVX:))\/_IY)

Decisions

q = false s

b = true learn learn
(pvqv—b) (X; Vv X, v X3)
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Best Current SAT Solvers

Conflict-Directed Clause-Learning (CDCL) Algorithms
Minisat, Glucose, MapleSAT, CaDiCal

They rely on many optimizations:

* No explicit computation of residual formulas, just fast calculation of the unit
propagations that will happen. “watched literals”

No explicit backtracking: New clauses always chosen to generate unit
propagations higher in the tree. “asserting clauses”

Heuristics based on learned clauses to decide what free choices to make. “VSIDS”

Pruning of cache of learned clauses so only recently used ones are kept.

Periodic restarting search with original formula plus learned clauses.

etc...
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Best Current SAT Solvers

Conflict-Directed Clause-Learning (CDCL) Algorithms
Minisat, Glucose, MapleSAT, CaDiCal

They work well on many practical formulas even with hundreds of thousands of
variables or more.

e Often used in proving properties of human-produced designs.

* They are incorporated in software verification tools and a variety of automated
reasoning (SMT Solvers)

* We really don’t know why they work so well.
» Definitely worth a try!

However, they provably perform very badly even on some small formulas of a few
hundred or thousand variables. We have a pretty good idea why.
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Other Exponential-Time Algorithms

Branch-and-bound search for optimization problems:
* Branch: Use backtracking search through a tree representing partial solutions

* Bound: In addition to keeping track of the best full solution found so far, at each step
produce a bound on the quality of the best possible completion of the current
partial solution

* If that best possible completion is worse than the best full solution found so far,
prune the search and backtrack instead.

Example: In backtracking search for MetricTSP one can use linear programming to
provide lower bounds

Note: An excellent exact solver for MetricTSP called Concorde combines branch-
and-bound and LP/ILP methods and will solve problems involving thousands of cities.
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Other Heuristic Algorithms you might hear about

Genetic algorithms:
* View each solution as a string (analogy with DNA)
* Maintain a population of good solutions
* Allow random mutations of single characters of individual solutions

* Combine two solutions by taking part of one and part of another (analogy
with crossover in sexual reproduction)

* Get rid of solutions that have the worst values and make multiple copies of
solutions that have the best values (analogy with natural selection -- survival
of the fittest).

Usually very slow. In the rare cases when they produce answers with better
objective function values than other methods they tend to produce very brittle
solutions — that are very bad with respect to small changes to the requirements.
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Deep Neural Nets and NP-hardness?

e Artificial neural networks
* based on very elementary model of human neurons
e Set up a circuit of artificial neurons

 each artificial neuron is an analog circuit gate whose
computation depends on a set of connection strengths

* Train the circuit

» Adjust the connection strengths of the neurons by giving
many positive & negative training examples and seeing if it
behaves correctly

* The network is now ready to use

Despite their wide array of applications, they have not been shown to
be useful for NP-hard problems.
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Quantum Computing and NP-hardness?

Use physical processes at the guantum level to implement “weird” kinds of circuit gates
based on unitary transformations
* Quantum objects can be in a “superposition” of many pure states at once

e Can have n objects together in a superposition of 2™ states

* Each quantum circuit gate operates on the whole superposition of states at once

* Inherent parallelism but classical randomized algorithms have a similar
parallelism: not enough on its own

* Advantage over classical: copies interfere with each other.

* Exciting direction - theoretically able to factor efficiently.
Major practical problems wrt errors, decoherence to be overcome.

* Small brute force improvement but unlikely to produce exponential advantage for NP.
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