CSE 421 Introduction to Algorithms

Lecture 28: Dealing with NP-completeness:

Fixed Parameter Tractability

SAT Solving

Reminder/Announcement

- The Final Exam is Monday December 9, 2:30-4:45 pm in this room since nobody had a conflict with the extra time.
- I sent an email over the weekend with information about the exam and a sample final
 - It will be comprehensive and similar in style to the midterm.

What to do if the problem you want to solve is NP-hard

Maybe you only need to solve it if the solution size is small...

- What if you only need to find cliques or vertex covers of constant size?
- For both Clique and Vertex Cover, the obvious brute force algorithm would have time $\Theta(n^k)$: try all subsets of size k.
- For Clique the best algorithms known are all $n^{\Omega(k)}$
- However, Vertex Cover has a much better algorithm...

The theory of fixed parameter tractability looks at NP problems using a second parameter k in addition to input size n and seeks algorithms with running times $f(k) \cdot n^{O(1)}$ where f might be exponential.

Fixed Parameter Algorithms

The theory of fixed parameter tractability looks at NP problems using a second parameter k in addition to input size n and seeks algorithms with running times $f(k) \cdot n^{O(1)}$ where f might be exponential.

Clique: Extra parameter k for clique size target:

Brute force algorithm: try all subsets of size k and check: $\Theta(k^2n^k)$ time.

Vertex-Cover: Extra parameter **k** for clique size target:

Brute force algorithm: try all subsets of size k and check: $\Theta(mn^k)$ time.

Neither is a good fixed parameter algorithm

Vertex-Cover Fixed Parameter Algorithm

```
Vertex-Cover(C, b) {
    if there is an edge (u, v) not covered by C {
        if b > 0 {
            Vertex-Cover(C \cup \{u\}, b - 1)
            Vertex-Cover(C \cup \{v\}, b - 1)
        }
    }
    else
        Output YES (and set C) and halt
    }
}

Call Vertex-Cover(\emptyset, k)
if no answer, output NO
```

Analysis:

- Time to identify possible edge (u, v) not covered (and modify C) is O(m + n)
- # of recursive calls $\leq 2^k$
- Total runtime $O(2^k(m+n))$

More on Fixed Parameter Algorithms

Many graph problems can be given a second parameter k called the treewidth of the input graph.

- Treewidth 1 graphs are trees (technically forests).
- Multiple natural definitions of treewidth (here's one):
 - Graph G = (V, E) is treewidth at most k iff there is a tree T such that
 - each node u of T is labelled by a subset V_u of $\leq k$ vertices in V
 - for every edge $(v, w) \in E$ there is a node u of T such that both $v, w \in V_u$.
 - for every $v \in V$ the set of nodes u in T with $v \in V_u$ is connected in T
 - The tree with the sets are called the tree decomposition of G.
 The minimum k and tree decomposition can be found in linear time.
 The tree defines a natural elimination ordering for recursive algorithms on the graph.
- Fact: Obstacle to treewidth k-1: the $k \times k$ grid graph.

Many NP-hard problems are efficiently solvable on graphs of bounded treewidth.

Treewidth also comes up in route-finding in Google Maps: Can't run full-blown Dijkstra on the whole graph every time a user requests a route.

What to do if the problem you want to solve is NP-hard

Try to make an exponential-time solution as efficient as possible.

e.g. Try to search the space of possible hints/certificates in a more efficient way and hope that it is quick enough.

Backtracking search

e.g., for SAT, search through the 2^n possible truth assignments...

...but set the truth values one-by-one so we can able to figure out whole parts of the space to avoid,

e.g. Given $F = (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land (x_4 \lor \neg x_3) \land (x_1 \lor x_4)$ after setting $x_1 = 1$ and $x_2 = 0$ we don't even need to set x_3 or x_4 to know that it won't satisfy F.

Today: More clever backtracking search for **SAT** solutions

SAT Solving

SAT is an extremely flexible problem:

 The fact that SAT is an NP-complete problem says that we can re-express a huge range of problems as SAT problems

This means that good algorithms for **SAT** solving would be useful for a huge range of tasks.

Since roughly 2001, there has been a massive improvement in our ability to solve **SAT** on a wide range of practical instances

• These algorithms aren't perfect. They fail on many worst-case instances.

Satisfiability Algorithms

Local search: Solve SAT as a special case of MaxSAT (incomplete, may fail to find satisfying assignment)

GSAT – random local search [Selman,Levesque,Mitchell 92]

Walksat – Metropolis [Kautz, Selman 96]

Backtracking search (complete)

- DPLL [Davis, Putnam 60], [Davis, Logeman, Loveland 62]
- CDCL: Adds clause learning and restarts

GRASP, SATO, zchaff, MiniSAT, Glucose, etc.

CNF Satisfiability

SAT: satisfiability problem for CNF formulas with any clause size

Write CNFs with the \land between clauses implicit:

$$F = (x_1 \vee \overline{x_2} \vee x_4)(\overline{x_1} \vee x_3)(\overline{x_3} \vee x_2)(\overline{x_4} \vee \overline{x_3})$$

Write assignment as literals assigned true: $x_1, x_2, x_3, \overline{x_4}$

Defn: Given partial assignment x_3 where

$$F = (x_1 \vee \overline{x_2} \vee x_4)(\overline{x_1} \vee x_3)(\overline{x_3} \vee x_2)(\overline{x_4} \vee \overline{x_3})$$

define **simplify**(F, x_3) by

$$simplify(F, x_3) = (x_1 \lor \overline{x_2} \lor x_4) \qquad x_2 \quad \overline{x_4}$$

That is: remove satisfied clauses and remove unsatisfied literals from clauses.

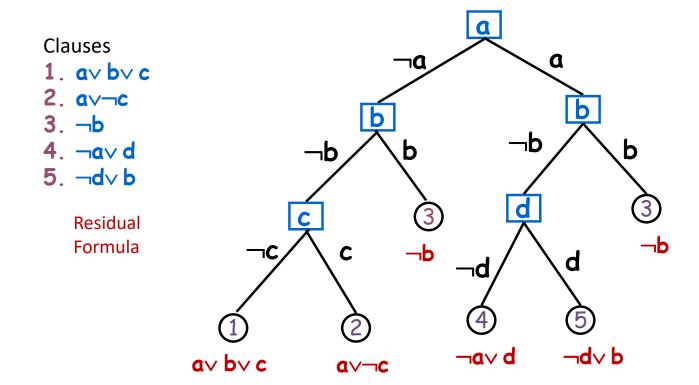
Note: *F* is satisfiable iff all clauses disappear under some assignment.

Backtracking search/DPLL

```
repeat  \begin{array}{c} \textbf{select a literal $\ell$ (some $x$ or $\overline{x}$)} \\ F \leftarrow \textbf{simplify}(F,\ell); \ t \leftarrow \textbf{append}(t,\ell) \\ \textbf{while $F$ contains a $1$-clause $\ell'$} \\ F \leftarrow \textbf{simplify}(F,\ell'); \ t \leftarrow \textbf{append}(t,\ell') \\ \textbf{if $F$ has no clauses $return $t$ as satisfying assignment} \\ \textbf{if $F$ has an empty clause} \\ \textbf{backtrack} \ to \ last \ free \ step \ and \ flip \ assignment \ (step \ no \ longer \ free) \\ \end{array}
```

Recursive view of DPLL (without unit propagation)

DPLL on **UNSAT** formula



Extending DPLL: Clause Learning

 When backtracking in DPLL, add new clauses corresponding to causes of failure of the search

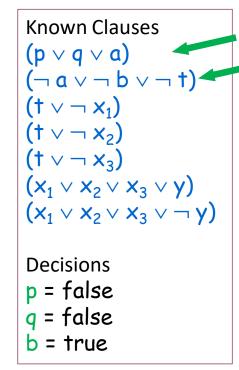
Added conflict clauses

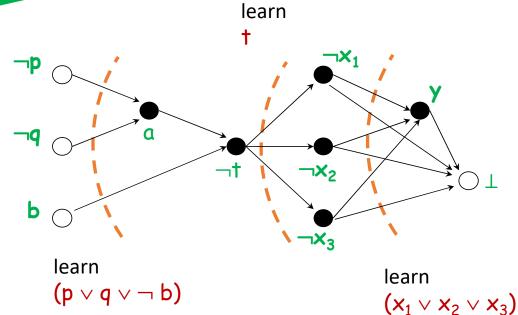
- Capture reasons of conflicts
- Obtained via unit propagations from known ones
- Reduce future search by producing conflicts sooner

Conflict Graph: Graph of Unit Propagations

At each conflict (derivation of them empty clause) the negations of the predecessor node labels across any cut form an implied clause.

if clause is false then could derive ⊥





Best Current SAT Solvers

Conflict-Directed Clause-Learning (CDCL) Algorithms
Minisat, Glucose, MapleSAT, CaDiCaL

They rely on many optimizations:

- No explicit computation of residual formulas, just fast calculation of the unit propagations that will happen. "watched literals"
- No explicit backtracking: New clauses always chosen to generate unit propagations higher in the tree. "asserting clauses"
- Heuristics based on learned clauses to decide what free choices to make. "VSIDS"
- Pruning of cache of learned clauses so only recently used ones are kept.
- Periodic restarting search with original formula plus learned clauses.
- etc...

Best Current SAT Solvers

Conflict-Directed Clause-Learning (CDCL) Algorithms
Minisat, Glucose, MapleSAT, CaDiCaL

They work well on many practical formulas even with hundreds of thousands of variables or more.

- Often used in proving properties of human-produced designs.
- They are incorporated in software verification tools and a variety of automated reasoning (SMT Solvers)
- We really don't know why they work so well.
- Definitely worth a try!

However, they provably perform very badly even on some small formulas of a few hundred or thousand variables. We have a pretty good idea why.

Other Exponential-Time Algorithms

Branch-and-bound search for optimization problems:

- Branch: Use backtracking search through a tree representing partial solutions
- **Bound**: In addition to keeping track of the best full solution found so far, at each step produce a bound on the quality of the best possible completion of the current partial solution
 - If that best possible completion is worse than the best full solution found so far, prune the search and backtrack instead.

Example: In backtracking search for **MetricTSP** one can use linear programming to provide lower bounds

Note: An excellent exact solver for **MetricTSP** called **Concorde** combines branch-and-bound and LP/ILP methods and will solve problems involving thousands of cities.

Other Heuristic Algorithms you might hear about

Genetic algorithms:

- View each solution as a string (analogy with DNA)
- Maintain a population of good solutions
- Allow random mutations of single characters of individual solutions
- Combine two solutions by taking part of one and part of another (analogy with crossover in sexual reproduction)
- Get rid of solutions that have the worst values and make multiple copies of solutions that have the best values (analogy with natural selection -- survival of the fittest).

Usually very slow. In the rare cases when they produce answers with better objective function values than other methods they tend to produce very **brittle** solutions — that are very bad with respect to small changes to the requirements.

Deep Neural Nets and NP-hardness?

- Artificial neural networks
 - based on very elementary model of human neurons
 - Set up a circuit of artificial neurons
 - each artificial neuron is an analog circuit gate whose computation depends on a set of connection strengths
 - Train the circuit
 - Adjust the connection strengths of the neurons by giving many positive & negative training examples and seeing if it behaves correctly
 - The network is now ready to use

Despite their wide array of applications, they have not been shown to be useful for NP-hard problems.

Quantum Computing and NP-hardness?

Use physical processes at the quantum level to implement "weird" kinds of circuit gates based on unitary transformations

- Quantum objects can be in a "superposition" of many pure states at once
 - Can have n objects together in a superposition of 2^n states
- Each quantum circuit gate operates on the whole superposition of states at once
 - Inherent parallelism but classical randomized algorithms have a similar parallelism: *not enough on its own*
 - Advantage over classical: copies interfere with each other.
- Exciting direction theoretically able to factor efficiently.

 Major practical problems wrt errors, decoherence to be overcome.
- Small brute force improvement but unlikely to produce exponential advantage for NP.