
CSE 421

Introduction to Algorithms

Lecture 28: Dealing with NP-completeness:

Fixed Parameter Tractability

SAT Solving

1

Reminder/Announcement

• The Final Exam is Monday December 9, 2:30-4:45 pm in this

room since nobody had a conflict with the extra time.

• I sent an email over the weekend with information about

the exam and a sample final

• It will be comprehensive and similar in style to the midterm.

2

What to do if the problem you want to solve is NP-hard

Maybe you only need to solve it if the solution size is small...

• What if you only need to find cliques or vertex covers of constant

size?

• For both Clique and Vertex Cover, the obvious brute force

algorithm would have time �(��): try all subsets of size �.

• For Clique the best algorithms known are all ��(�)

• However, Vertex Cover has a much better algorithm…

The theory of fixed parameter tractability looks at �� problems using a

second parameter � in addition to input size � and seeks algorithms

with running times 	 � ⋅ �� � where 	 might be exponential.

3

Fixed Parameter Algorithms

The theory of fixed parameter tractability looks at �� problems using a second

parameter � in addition to input size � and seeks algorithms with running times

	 � ⋅ �� � where 	 might be exponential.

Clique: Extra parameter � for clique size target:

Brute force algorithm: try all subsets of size � and check: �(�
��) time.

Vertex-Cover: Extra parameter � for clique size target:

Brute force algorithm: try all subsets of size � and check: �(���) time.

• Neither is a good fixed parameter algorithm

4

Vertex-Cover Fixed Parameter Algorithm

Vertex-Cover(�, �) {

if there is an edge (�, �) not covered by �{
if � > � {

Vertex-Cover(� ∪ {�}, � − �)

Vertex-Cover(� ∪ {�}, � − �)

}

}

else

Output YES (and set �) and halt

}

}

Call Vertex-Cover(∅, �)

if no answer, output NO

Analysis:

• Time to identify possible edge (�, �) not

covered (and modify �) is �(� + �)

• # of recursive calls ≤
�

• Total runtime �(
�(� + �))

5

More on Fixed Parameter Algorithms

Many graph problems can be given a second parameter � called the treewidth of the input graph.

• Treewidth 1 graphs are trees (technically forests).

• Multiple natural definitions of treewidth (here’s one):

• Graph � = (, !) is treewidth at most � iff there is a tree " such that

• each node � of " is labelled by a subset � of ≤ � vertices in

• for every edge �, # ∈ ! there is a node � of " such that both �, # ∈ �.

• for every � ∈ the set of nodes � in " with � ∈ � is connected in "

• The tree with the sets are called the tree decomposition of �.

The minimum � and tree decomposition can be found in linear time.

The tree defines a natural elimination ordering for recursive algorithms on the graph.

• Fact: Obstacle to treewidth � − �: the � × � grid graph.

Many NP-hard problems are efficiently solvable on graphs of bounded treewidth.

Treewidth also comes up in route-finding in Google Maps: Can’t run full-blown Dijkstra on the whole

graph every time a user requests a route.

6

What to do if the problem you want to solve is NP-hard

Try to make an exponential-time solution as efficient as possible.

e.g. Try to search the space of possible hints/certificates in a more efficient way and

hope that it is quick enough.

Backtracking search

e.g., for SAT, search through the
� possible truth assignments...

...but set the truth values one-by-one so we can able to figure out whole parts

of the space to avoid,

e.g. Given & = (¬(� ∨ (
) ∧ ¬(
 ∨ (+ ∧ (, ∨ ¬(+ ∧ ((� ∨ (,)

after setting (� = � and (
 = � we don’t even need to set (+ or (, to

know that it won’t satisfy &.

Today: More clever backtracking search for SAT solutions

7

SAT Solving

SAT is an extremely flexible problem:

• The fact that SAT is an ��-complete problem says that we can

re-express a huge range of problems as SAT problems

This means that good algorithms for SAT solving would be useful

for a huge range of tasks.

Since roughly 2001, there has been a massive improvement in our

ability to solve SAT on a wide range of practical instances

• These algorithms aren’t perfect. They fail on many worst-case instances.

8

Satisfiability Algorithms

Local search: Solve SAT as a special case of MaxSAT

(incomplete, may fail to find satisfying assignment)

GSAT – random local search [Selman,Levesque,Mitchell 92]

Walksat – Metropolis [Kautz,Selman 96]

Backtracking search (complete)

• DPLL [Davis,Putnam 60], [Davis,Logeman,Loveland 62]

• CDCL: Adds clause learning and restarts

GRASP, SATO, zchaff, MiniSAT, Glucose, etc.

9

CNF Satisfiability

SAT: satisfiability problem for CNF formulas with any clause size

Write CNFs with the ∧ between clauses implicit:

& = (� ∨ (
 ∨ (, ((� ∨ (+)((+ ∨ (
)((, ∨ (+)

Write assignment as literals assigned true: (�, (
, (+, (,

Defn: Given partial assignment (+ where

& = (� ∨ (
 ∨ (, ((� ∨ (+)((+ ∨ (
)((, ∨ (+)

define simplify(&, (+) by

simplify(&, (+)= (� ∨ (
 ∨ (, ((� ∨ (+)((+ ∨ (
)((, ∨ (+)

That is: remove satisfied clauses and remove unsatisfied literals from clauses.

Note: & is satisfiable iff all clauses disappear under some assignment.

10

& = (� ∨ (
 ∨ (, ((� ∨ (+)((+ ∨ (
)((, ∨ (+)

Backtracking search/DPLL

t ← ε

repeat

select a literal ℓ (some (or ()

& ← simplify(&, ℓ); t ← append(t, ℓ)

while & contains a �-clause ℓ′
& ← simplify(&, ℓ′); t ← append(t, ℓ′)

if & has no clauses return t as satisfying assignment

if & has an empty clause

backtrack to last free step and flip assignment (step no longer free)

11

free step

unit propagation

12

DPLL(&):

if & is empty report satisfiable and halt

if & contains the empty clause

return

else choose a literal (

DPLL(simplify(&, ())

DPLL(simplify(&, ())

with unit propagation choose (to be the literal of a 1-clause if possible

Recursive view of DPLL (without unit propagation)

Clauses

1. a∨∨∨∨ b∨∨∨∨ c
2. a∨¬∨¬∨¬∨¬c
3. ¬¬¬¬b
4. ¬¬¬¬a∨∨∨∨ d
5. ¬¬¬¬d∨∨∨∨ b

13

DPLL on UNSAT formula

a
¬¬¬¬a

b
¬¬¬¬b b

3

¬¬¬¬b

1

a∨∨∨∨ b∨∨∨∨ c

c
¬¬¬¬c

2

a∨¬∨¬∨¬∨¬c

c

a

b

d 3

4 5

¬¬¬¬d d

b

¬¬¬¬b

¬¬¬¬a∨∨∨∨ d ¬¬¬¬d∨∨∨∨ b

¬¬¬¬b

Residual

Formula

Clauses

1. a∨∨∨∨ b∨∨∨∨ c
2. a∨¬∨¬∨¬∨¬c
3. ¬¬¬¬b
4. ¬¬¬¬a∨∨∨∨ d
5. ¬¬¬¬d∨∨∨∨ b

13

Extending DPLL: Clause Learning

• When backtracking in DPLL, add new clauses

corresponding to causes of failure of the search

• Added conflict clauses

• Capture reasons of conflicts

• Obtained via unit propagations from known ones

• Reduce future search by producing conflicts sooner

14

15

Conflict Graph: Graph of Unit Propagations

learn

(x1 ∨ x2 ∨ x3)

learn

(p ∨ q ∨ ¬ b)

learn

t
¬¬¬¬p

¬¬¬¬q

b

a

¬¬¬¬x1

¬¬¬¬x2

¬¬¬¬x3

y

⊥¬t

Known Clauses

(p ∨ q ∨ a)
(¬ a ∨ ¬ b ∨ ¬ t)
(t ∨ ¬ x1)
(t ∨ ¬ x2)
(t ∨ ¬ x3)
(x1 ∨ x2 ∨ x3 ∨ y)
(x1 ∨ x2 ∨ x3 ∨ ¬ y)

Decisions

p = false
q = false
b = true

At each conflict (derivation of them empty clause) the negations of the

predecessor node labels across any cut form an implied clause.

• if clause is false then could derive ⊥

15

Best Current SAT Solvers

Conflict-Directed Clause-Learning (CDCL) Algorithms
Minisat, Glucose, MapleSAT, CaDiCaL

They rely on many optimizations:

• No explicit computation of residual formulas, just fast calculation of the unit
propagations that will happen. “watched literals”

• No explicit backtracking: New clauses always chosen to generate unit
propagations higher in the tree. “asserting clauses”

• Heuristics based on learned clauses to decide what free choices to make. “VSIDS”

• Pruning of cache of learned clauses so only recently used ones are kept.

• Periodic restarting search with original formula plus learned clauses.

• etc...

16

Best Current SAT Solvers

Conflict-Directed Clause-Learning (CDCL) Algorithms
Minisat, Glucose, MapleSAT, CaDiCaL

They work well on many practical formulas even with hundreds of thousands of
variables or more.

• Often used in proving properties of human-produced designs.

• They are incorporated in software verification tools and a variety of automated
reasoning (SMT Solvers)

• We really don’t know why they work so well.

• Definitely worth a try!

However, they provably perform very badly even on some small formulas of a few
hundred or thousand variables. We have a pretty good idea why.

17

Other Exponential-Time Algorithms

Branch-and-bound search for optimization problems:

• Branch: Use backtracking search through a tree representing partial solutions

• Bound: In addition to keeping track of the best full solution found so far, at each step

produce a bound on the quality of the best possible completion of the current

partial solution

• If that best possible completion is worse than the best full solution found so far,

prune the search and backtrack instead.

Example: In backtracking search for MetricTSP one can use linear programming to

provide lower bounds

Note: An excellent exact solver for MetricTSP called Concorde combines branch-

and-bound and LP/ILP methods and will solve problems involving thousands of cities.

18

Other Heuristic Algorithms you might hear about

Genetic algorithms:

• View each solution as a string (analogy with DNA)

• Maintain a population of good solutions

• Allow random mutations of single characters of individual solutions

• Combine two solutions by taking part of one and part of another (analogy
with crossover in sexual reproduction)

• Get rid of solutions that have the worst values and make multiple copies of
solutions that have the best values (analogy with natural selection -- survival
of the fittest).

Usually very slow. In the rare cases when they produce answers with better

objective function values than other methods they tend to produce very brittle

solutions – that are very bad with respect to small changes to the requirements.

19

Deep Neural Nets and NP-hardness?

• Artificial neural networks

• based on very elementary model of human neurons

• Set up a circuit of artificial neurons

• each artificial neuron is an analog circuit gate whose
computation depends on a set of connection strengths

• Train the circuit

• Adjust the connection strengths of the neurons by giving
many positive & negative training examples and seeing if it
behaves correctly

• The network is now ready to use

Despite their wide array of applications, they have not been shown to

be useful for NP-hard problems.

20

Quantum Computing and NP-hardness?

Use physical processes at the quantum level to implement “weird” kinds of circuit gates

based on unitary transformations

• Quantum objects can be in a “superposition” of many pure states at once

• Can have � objects together in a superposition of
� states

• Each quantum circuit gate operates on the whole superposition of states at once

• Inherent parallelism but classical randomized algorithms have a similar

parallelism: not enough on its own

• Advantage over classical: copies interfere with each other.

• Exciting direction - theoretically able to factor efficiently.

Major practical problems wrt errors, decoherence to be overcome.

• Small brute force improvement but unlikely to produce exponential advantage for NP.

21

