CSE 421
Introduction to Algorithms

Lecture 28: Dealing with NP-completeness:

Fixed Parameter Tractability
SAT Solving

Reminder/Announcement

* The Final Exam is Monday December 9, 2:30-4:45 pm in this
room since nobody had a conflict with the extra time.

* | sent an email over the weekend with information about
the exam and a sample final
* It will be comprehensive and similar in style to the midterm.

& K@vc‘@w g;ym\ Fpom. o P Q/ﬁv‘tmpr/l
/M fing _
Sllandt - %w%o Loy

@ ONITE GU 67

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

What to do if the problem you want to solve is NP-hard

Maybe you only need to solve it if the solution size is small...
* What if you only need to find cliques or vertex covers of constant
size?
* For both Clique and Vertex Cover, the obvious brute force
algorithm would have time ©(n"): try all subsets of size k.

 For Cligue the best algorithms known are a
* However, Vertex Cover has a much better algorithm v@h

The theory of fixed parameter tractability looks at NP problems using a
second parameter k in addition to input size 1 and seeks algorithms

with running times f (k) - n°) where f might be exponential.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Fixed Parameter Algorithms

The theory of fixed parameter tractability looks at NP problems using a second
parameter k in addition to input size n and seeks algorithms with running times

f(k) - n%D where f might be exponential.

Clique: Extra parameter k for clique size target:
—

Brute force algorithm: try all subsets of size k and check: ©(k?*n’) time.

Vertex-Cover: Extra parameter k for clique size target:

Brute force algorithm: try all subsets of size k and check: ®(mn’) time.

* Neither is a good fixed parameter algorithm

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Verteeg Cover F| ebg Parameter Algorithm

b ved
Vertex- Cover(C b) { W\“\’)
if there is an edge (u, v) not covered by C{ < .
ifb>0{ Analysis:
Vertex-Cover(CU {u}, b — 1) o éTime to identify possible edge (u, v) not
Vertex-Cover(C U {v}, b — 1) covered (and modify C) is O(m + n)
} - « # of recursive calls < 2%
}
else . k
Output YES (and set C) and halt Total runtime 0(2"(m +n))
} ¥
g Q‘/V] c——/

Call Vertex-Cover(® lg)/
if no answer, output NO \%* \ W st Wf *b/k/

— YANIVAN

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

More on Fixed Parameter Algorithms _ -
e
Many graph problems can be given a second parameter k called the treewidth of the input graph.
* Treewidth 1 graphs are trees (technically forests).
* Multiple natural definitions of treewidth (here’s one):
* Graph G = (V,E) is treewidth at most k iff there is a tree T such that O
* each node u of T is labelled by a subset V,, of < k vertices in V

 for every edge (v, w) € E there is a node u of T such that both v,wevl,.

 foreveryv eV the set of nodesu in T withv € V,, is connected in T

§\U

* The tree with the sets are called the tree decomposition of G.
The minimum k and tree decomposition can be found in linear time.
The tree defines a natural elimination ordering for recursive algorithms on the graph.
* Fact: Obstacle to treewidth k — 1: the k X k grid graph.

Many NP-hard problems are efficiently solvable on graphs of bounded treewidth.

Treewidth also comes up in route-finding in Google Maps: Can’t run full-blown Dijkstra on the whole
graph every time a user requests a route.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

What to do if the problem you want to solve is NP-hard

Try to make an exponential-time solution as efficient as possible.

e.g. Try to search the space of possible hints/certificates in a more efficient way and
hope that it is quick enough.

Backtracking search

e.g., for SAT, search through the 2™ possible truth assignments...

...but set the truth values one-by-one so we can able to figure out whole parts
of the space to avoid,

e.g. Given F = (ﬂxl V xZ) N (ﬂXz V X3) N (X4 V ﬂXg) N (x1 V X4)

after setting x; = 1 and x, = 0 we don’t even need to set x5 or x4 to
know that it won’t satisfy F.

Today: More clever backtracking search for SAT solutions

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

SAT Solving

SAT is an extremely flexible problem:

e The fact that SAT is an NP-complete problem says that we can
re-express a huge range of problems as SAT problems

This means that good algorithms for SAT solving would be useful
for a huge range of tasks.

Since roughly 2001, there has been a massive improvement in our

abilit lve SAT on a wide range of practical instances
* These algorithms aren’t perfect. They fail on many worst-case insta@
P

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Satisfiability Algorithms

Local search: Solve SAT as a special case of MaxSAT
(incomplete, may fail to find satisfying assignment)

GSAT — random local search [Selman,Levesque,Mitchell 92]

Walksat — Metropolis [Kautz,Selman 96]

Backtracking search (complete)
* DPLL [Davis,Putnam 60], [Davis,Logeman,Loveland 62]

* CDCL: Adds clause learning and restarts
GRASP, SATO, zchaff, MiniSAT, Glucose, etc.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

CNF Satisfiability

SAT: satisfiability problem for CNF formulas with any clause size
= — e
Write CNFs with the A between clauses implicit:

F = (x4 Vx_ZVx4])(x_1V x3) (X3 V x2) (X4 V X3)

Write assignment as literals assigned true: xq, x5, X3, X4
— . —

Defn: Given partial assignment x; where
= (X1 VX2 VX4) (X1 V x3)(x3 V x3) (X4 V X3)
define simplify(F, x3) by

simplify(F, x3)= (x1 VX5 V x4) @ QJ

=
That is: remove satisfied clauses and remove unsatlsfled literals from clauses.

Note: F is satisfiable iff all clauses disappear under some assignment.
— —_—

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Backtracking search/DPLL

t< €
—

repeat
select a literal £ (some x or x)
. . - B free step
F < simplify(F, ¢); t < append(t, £) }
(_
while F contains a 1-clause ¥’
F < simplify(F,¢"); t « append(t,¢’)
if F has no clauses return t as satisfying assignment

if F has an empty clause - ,L
backtrack to last free step and flip assignment (step no longer free)

} unit propagation

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Recursive view of DPLL (without unit propagation)

DPLL(F):

if F is empty report satisfiable and halt
if F contains the empty clause

return

—

with unit propagation choose x to be the literal of a 1-clause if possible

else choose a literal x
-

DPLL(simplify(F, x))

DPLL(simplify(F, x))

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

DPLL on UNSAT formula

Clauses

1. avbvec
2. av—C
3./-b

4 “—~avd
5. =dvb

Residual
Formula —1C

& Qv —avd —dvb

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Extending DPLL: Clause Learning

* When backtracking in DPLL, add new clauses
corresponding to causes of failure of the search

* Added conflict clauses
e Capture reasons of conflicts
e Obtained via unit propagations from known ones
e Reduce future search by producing conflicts sooner

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Conflict Graph:

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Graph of Unit Propagations

At each conflict (derivation of them empty clause) the negations of the
predecessor node labels across any cut form an implied clause.

'Known Clauses * if clause is false then could derive L
(pvqva) |
=av=>bv - 1')/ learn
(T Vi Xl)F T
(tv=x;) P T e
(t v —x3) O .\ y
(X1 V X5V X3 V'Y) QJ/Y.\
X\ VXV Xz v —y) | 4 a
— — —t —X, O 1
Decisions
p = false b O / ©
q = false ~ — X3
b=true 9 learn learn
(pvqv—b)

X1V X,V X
(’1__(2

Best Current SAT Solvers

Conflict-Directed Clause-Learning (CDCL) Algorithms
Minisat, Glucose, MapleSAT, CaDiCal

They rely on many optimizations:
* No explicit computation of residual formulas, just fast calculation of the unit

propagations that will happen. “watched literals”

No explicit backtracking: New clauses always chosen to generate unit
propagations higher in the tree. “asserting clauses”

Heuristics based on learned clauses to decide what free choices to make. “VSIDS”

e
Pruning of cache o IeWe only recently used ones are kept.

Periodic restarting search with original formula plus learned clauses.
"ing searct

etc...

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Best Current SAT Solvers

Conflict-Directed Clause-Learning (CDCL) Algorithms
Minisat, Glucose, MapleSAT, CaDiCal

They work well on many practical formulas even with hundreds of thousands of

variables or more. ——
e Often used in proving properties of h -produced designs.

* They are incorporated in software verification tools and a variety of automated
reasoning (SMT Solvers) ——————+

* We really don’t know why they work so well.
» Definitely worth a try!

However, they provably perform very badly even on some small formulas of a few
hundred or thousand variables. We have a pretty good idea why.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Other Exponential-Time Algorithms

Branch-and-bound search for optimization problems:

» Branch: Use backtracking search through a tree representing partial solutions

* Bound: In addition to keeping track of the best full solution found so far, at each step
produce a bound on the quality of the best possible completion of the current
partial solution

* If that best possible completion is worse than the best full solution found so far,
prune the search and backtrack instead.

Example: In backtracking search for MetricTSP one can use linear programming to
provide lower bounds

Note: An excellent exact solver for MetricTSP called Concorde combines branch-
and-bound and LP/ILP methods and will solve problems involving thousands of cities.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

