
CSE 421

Introduction to Algorithms

Lecture 27: Dealing with NP-completeness:

Approximation Algorithms

Local Search

Exponential-time Algorithms
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Reminder/Announcement

• The Final Exam is Monday December 9, 2:30-4:20 pm here 

but we may be able to extend this to 4:45 pm

• If nobody has a conflict that would prevent them staying longer, I 

will extend the time available.

• Email me by the end of day today if you have a conflict with 

staying longer

• I sent an email over the weekend with information about 

the exam and a sample final

• It will be comprehensive and similar in style to the midterm.
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What to do if the  problem you want to solve is NP-hard

2nd thing to try if your problem is a minimization or maximization problem

• Try to find a polynomial-time worst-case approximation algorithm

• For a minimization problem 

• Find a solution with value ≤ � times the optimum

• For a maximization problem

• Find a solution with value ≥ �/� times the optimum

Want � to be as close to � as possible.
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Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP): 

Given: a set of � cities ��, … , �� and distance function 
 that gives distance 
(��, �) between each pair of cities

Find the shortest tour that visits all � cities.   

MetricTSP:

The distance function 
 satisfies the triangle inequality:


 �, � ≤ 
 �, � + 
(�, �)
Proper tour: visit each city exactly once.

4



Minimum Spanning Tree Approximation: Factor of 2
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TSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree 

so ��� � ≤ �������(�)

Euler tour covers each edge twice 

so ������� � = � ���(�)

This visits each node more than once, so not a proper tour.

So ������� � = � ��� � ≤ � �������(�)

Euler Tour of doubled MST: 
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Why did this work?

• We found an Euler tour on a graph that used the edges of the 

original graph (possibly repeated).

• The weight of the tour was the total weight of the new graph.

• Suppose now

• All edges possible

• Weights satisfy the triangle inequality (MetricTSP)

7



MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree 

so ��� � ≤ �������(�)

Euler tour covers each edge twice 

so ������� � = � ���(�)
Euler Tour of doubled MST: 

Instead:  take shortcut to next unvisited vertex on the Euler tour

By triangle inequality this can only be shorter. 

So ������� � = � ��� � ≤ � �������(�)
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MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree 

so ��� � ≤ �������(�)

So ������� � = � ��� � ≤ � �������(�)

Instead:  take shortcut to next unvisited vertex on the Euler tour

By triangle inequality this can only be shorter. 

Euler tour covers each edge twice 

so ������� � = � ���(�)
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MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree 

so ��� � ≤ �������(�)

So ������� � = � ��� � ≤ � �������(�)

Final: 

Instead:  take shortcut to next unvisited vertex on the Euler tour

By triangle inequality this can only be shorter. 

Euler tour covers each edge twice 

so ������� � = � ���(�)
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Christofides Algorithm: A factor 3/2 approximation

Any subgraph of the weighted complete graph that has an Euler Tour will work also!

Fact:  To have an Euler Tour it suffices to have all degrees even.  

Christofides Algorithm:

• Compute an MST �
• Find the set � of odd-degree vertices in �
• Add a minimum-weight perfect matching* � on the vertices in � to � to make every vertex 

have even degree

• There are an even number of odd-degree vertices!

• Use an Euler Tour � in � ∪ � and then shortcut as before

Theorem:  � !" � ≤ �. $ �������
*Requires finding optimal matchings in general graphs, not just bipartite ones
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Christofides Approximation

Any tour contains a spanning tree 

so ��� ≤ �������

We just need to show that the matching �
has % !" � ≤ �������/�
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Christofides Approximation

� % !" � ≤ % !" �� + % !" �� ≤ �������

Any tour costs at least the cost of two matchings �� and �� on �

Tour
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Christofides Approximation Final Tour

Total % !" � ≤ & �������/�
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Max-3SAT Approximation

Max-3SAT: Given a 3CNF formula ' find a truth assignment that satisfies 

the maximum possible # of clauses of '.

Observation: A single clause on 3 variables only rules out �/( of the possible truth 

assignments since each literal has to be false to be ruled out.

⇒ a random truth assignment will satisfy the clause with probability */(.

So in expectation, if ' has + clauses, a random assignment satisfies *+/( of them.

A greedy algorithm can achieve this:  Choose most frequent literal appearing in 

clauses that are not yet satisfied and set it to true.

If , ≠ ., no better approximation is possible 
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Knapsack Problem

Each item has a value �� and a weight ��.  
Maximize ∑ ���∈� with ∑ ���∈� ≤ 1.

Theorem: For any 2 > 4 there is an algorithm that produces a solution 

within (� + 2) factor of optimal for the Knapsack problem with running 

time 5(��/2�)
“Polynomial-Time Approximation Scheme”  or PTAS 

Algorithm: Maintain the high order bits in the dynamic programming 

solution. 

16



Approximation Algorithms using Linear Programming

The generic approach to creating approximation algorithms for .,-optimization 
problems using  Linear Programming:

1. Express the original problem as an Integer Program (ILP) or 01-Program (01-LP)

2. Keep same linear constraints but remove the integer requirement to get an LP.  
(Called the “LP relaxation”.)

3. Solve the LP to yield a fractional solution

4. “Round” the fractional solution to an integer solution that satisfies all constraints.

Prove a bound on the ratio of the integer solution to the fractional LP solution

Observation: The LP optimum has at least as good an objective function value as the 
original problem since the LP allows all the ILP solutions plus some other fractional 
ones.
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Recall:  Greedy Approximation for Vertex-Cover

On input � = (6, �)
1 ← ∅
�9 ← �
while �9 ≠ ∅

select any : = �, � ∈ �′
1 ← 1 ∪ {�, �}
�9 ← �′ ∖ {edges : ∈ �′ that touch � or �} 

Claim: At most a factor � larger than the optimal vertex-cover 

size. 

Proof: Edges selected don’t share any vertices so any vertex-

cover must choose at least one of � or � each time. 
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Weighted Vertex Cover

Weighted Vertex Cover: 

Given graph � = (6, �) with each vertex � having a weight �� ≥ 4.   

Find a vertex cover � ⊆ 6 of � that minimizes ∑ ���∈� .

The greedy approximation approach doesn’t work for this weighted 

version because for each edge, one of the two endpoints might have 

much larger weight than the other.
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Weighted Vertex-Cover as an Integer Program

Variables   K� for � ∈ 6
Minimize ∑ �� ⋅ K��∈6 
subject to

K� + K� ≥ � for each edge �, � ∈ �
K� ∈ {4, �} for each node � ∈ 6

The last line is equivalent to:

  4 ≤ K� ≤ � for each node � ∈ 6
K� integral for each node � ∈ 6

Write ��� for the optimum cover weight

LP relaxation:

Minimize ∑ �� ⋅ K��∈6 
subject to

K� + K� ≥ � for each edge �, � ∈ �
      4 ≤ K� ≤ � for each node � ∈ 6

Write ���M� for the optimum LP value

How do we round a LP solution achieving 

this value?
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LP-Rounding to Approximate Weighted Vertex Cover

1. Solve the LP Relaxation

a) Solution gives values K� ∈ [4, �] for each � ∈ 6
b) K� + K� ≥ � for each edge (�, �)

2. Round:   Define � ⊆ 6 to be {� ∶  K� ≥ �/�}
3. Observe that � is a vertex cover: 

• By 1 b), for each edge (�, �), at least one of K� ≥ �/� or K� ≥ �/� is true so   

either � ∈ � or � ∈ �.

4. Since K� ≥ �/� for every � ∈ �, the total weight of � is      ∑ ���∈� ≤ ∑ �� ⋅ (�K�)�∈� 
= � ∑ �� ⋅ K�≤�∈� � ∑ �� ⋅ K�= � ���M��∈6 ≤ � ���.
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More on LP and Related Approximation Methods

More sophisticated methods for rounding variables K� ∈ 4, �
• Randomized: View each K� as a probability and independently produce 

solution Q� = R� with probability K�4 with probability � − K�
• Correlated random sampling.  Apply the above but “correlate” choices somehow

Instead of LP relaxations, use “Semi-Definite Programming (SDP)” 

relaxations.

• SDPs generalize LPs.   They can also be solved efficiently using Ellipsoid and 

Interior Point Methods.   They are a special case of convex programming.

• Currently yield the best approximations known for many .,-hard problems.
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What to do if the problem you want to solve is NP-hard

.,-completeness is a worst-case notion...

• Try an algorithm that is provably fast “on average”.

• To even show this one needs a model of what a typical instance is.

• Typically, people consider “random graphs”

• e.g. all graphs with a given # of edges are equally likely

• In this case one can sometimes show that many NP-hard problems are 

easy

• Problems:

• real data doesn’t look like the random graphs

• distributions of real data aren’t analyzable
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Hardness of Approximation

Polynomial-time approximation algorithms for .,-hard optimization problems 

can sometimes be ruled out unless , = .,.
Easy example:

Coloring: Given a graph � = (6, �) find the smallest Z such that � has a Z-coloring.

Because &-coloring is .,-hard, no approximation ratio better than [/& is possible unless , = .,
because you would have to be able to figure out if a &-colorable graph can be colored in < [
colors. i.e. if it can be &-colored.

• We now know a huge amount about the hardness of approximating ., optimization problems if , ≠ .,.    

• Approximation factors are very different even for closely related problems like 

Vertex-Cover and Independent-Set.
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Approximation Algorithms/Hardness of Approximation

Research has classified many problems based on what kinds of polytime 

approximations are possible if , ≠ .,
• Best: (� + 2) factor for any 2 > 4.  (PTAS)

• packing and some scheduling problems, TSP in plane

• Some fixed constant factor > �. e.g. �, &/�, (/*, �44
• Vertex Cover, Max-3SAT, MetricTSP, other scheduling problems

• Exact best factors or very close upper/lower bounds known for many problems.

• Θ(log �) factor

• Set Cover, Graph Partitioning problems

• Worst: Ω(��_2) factor for every 2 > 4.

• Clique, Independent-Set, Coloring
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Heuristic Algorithms

These algorithms typically do not have proven bounds on solution quality: 

The most important of these methods are based on variants of

Local search:

• Need a notion of two solutions being neighbors

Start at an arbitrary solution �
While there is a neighbor � of � that is better than �

���
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e.g., Neighboring solutions for TSP

Solution � Solution �

Two solutions are neighbors* 

iff there is a pair of edges you can

swap to transform one to the other

*These are called 2-OPT neighbors.  There are other more sophisticated neighbor structures
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Variants of Local Search

Basic local search (greedy)

• Usually fast but often gets stuck in a local optimum that is far from the 

global optimum

• With some notions of neighbor structure even this can take a long time in 

the worst case

Randomized local search:

Start local search several times from random starting points and take the best 

answer found overall.

• More expensive than plain local search but usually much better answers.  It 

is usual easy to control the time spent so this is almost always better to do.
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Variants of Local Search

Metropolis Algorithm

Like randomized local search except that at each step one always chooses a random 

neighbor but doesn’t always move to it: 

e.g. Always move to the neighbor if it is better but move to a worse neighbor    

with some fixed probability depending on how much worse it is.

(Fixed inverse temperature.)   cf. CSE 312 Markov Chain Knapsack assignment.

Advantage: If local optima are not too deep/steep, will not get stuck there.   

However can still get stuck 

Often used in practice.  Drawback:   Each run can be much longer than local search 

but one can hope to try to make it up with solution quality.     A good option to 

compare with randomized local search.  It is unclear which will be better in a given 

circumstance.
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Variants of Local Search

Simulated Annealing

Like Metropolis algorithm but probability of going to a worse neighbor is set to 

decrease with time on a “cooling schedule” as, presumably, solution is closer to 

optimal

(analogy with slow cooling to get to lowest energy state in a crystal (or in 

forging a metal)

Much slower to converge than Metropolis.

Most improvement occurs at some fixed temperature. 

Answers usually not much better than Metropolis, if at all, so not generally worth 

the extra compute time.
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