
CSE 421

Introduction to Algorithms

Lecture 26: Linear Programming

Algorithms

1

Standard Form LP

Maximize ���
subject to

�� ≤ �
� ≥ �

2

Algorithms for Linear Programs

3

Simplex Algorithm

• Simple

• Often fast in practice

• Not polynomial time (on pathological counterexamples)

Ellipsoid Algorithm

• More complicated

• First polynomial time algorithm, but not always fast

Interior Point Methods

• Even more complicated based on differential equation ideas

• Polynomial time, fast in practice; simplex better for small input size

The Simplex Algorithm

Simplex Algorithm:

• Start with a vertex of the polytope

• In each step move to a neighboring

vertex that is lower (larger ���).

Creates a path running along the edges and

vertices on the outside of the polytope

• Since the polytope is convex, this will

never get stuck before reaching the

lowest point.

4

Polytope given by �� ≤ �

Every vertex is defined by

some 	 rows, �
� = �

�

��

�
� =

��

�

5

��

��
� =

��

��

��

��
� =

��

��

Simplex: How to find the start vertex

We can’t just choose any subset of 	 equations since their solution

might not be in the polytope �...

Maximize ���
subject to

�� ≤ �
� ≥ �

Find point s.t.

�� ≤ �
� ≥ �

Minimize �� + ⋯ + ��

subject to

�� − � ≤ �
�, � ≥ �

Given Solve P Solve Q

Polytope � is not empty iff minimum for � has � = � and � ∈ �

⇔⇔⇔⇔

Q is just another LP, but we set it up so we know a start vertex:

� = � and � = max (�, −�) so we can use Simplex on Q to find the start

vertex for the given LP and then run Simplex again!

⇒⇒⇒⇒

The Simplex Algorithm

Simplex Algorithm:

• Start with a vertex of the polytope

• In each step move to a neighboring

vertex that is lower (larger ���).

Creates a path running along the edges and

vertices on the outside of the polytope

• Since the polytope is convex, this will

never get stuck before reaching the

lowest point.

Polytope given by �� ≤ �

Every vertex is defined by

some 	 rows, �
� = �

Neighboring vertices differ

in just one equation

�

��

�
� =

��

�

8

��

��
� =

��

��

��

��
� =

��

��

Simplex: Moving to a better vertex

Maximize ���
subject to

�� ≤ �
� ≥ �

1. At current vertex have 	 tight

equations �
! = �

2. Can find � equation to

replace and a point "
• satisfying the other 	 − �
• with ��(" − !) > �.

3. Move to new vertex of form

!
 = ! + $" ∈ � for $ > �
• Increase $ until some new

constraint becomes tight.

9

!
"

The Simplex Algorithm: The downside

Simplex Algorithm:

• Start with a vertex of the polytope

• In each step move to a neighboring

vertex that is lower (larger ���).

Creates a path running along the edges and

vertices on the outside of the polytope

• Since the polytope is convex, this will

never get stuck before reaching the

lowest point.

Problem: Many paths to choose from; # of vertices on path can be exponential!
10

Initial Vertex

Interior Point Algorithms

Interior Point Idea:

• Start with a point in the polytope, either a

vertex or in the interior

• Follow approximations to a curving

“central path” that

• tunnels through the polytope

• avoids the boundary using loss functions

and eventually gets to the optimum

Can be implemented efficiently using data structure tricks. Also leads to

best randomized algorithms for network flow. Too complicated for us.
11

Ellipsoid Method

Ellipsoid:

• A squished ball

�� + %� ≤ �
�

12

Rati

Ellipsoid Method

Ellipsoid:

• A squished ball

�� + %� ≤ �

(��)�+(%/�)�≤ �

�
Ratio of area of ellipsoid

to the sphere
�

�
⋅

�

�
= �

13

Ellipsoid Method

Ellipsoid:

• A squished ball

�� + %� ≤ �
�

(��)�+(%/�)�≤ �

Ratio of area of ellipsoid

to the sphere
�

�
⋅

�

�
= �

Can shift the center

� � − � � + (% − �)/� � ≤ �

(�, �)

14

Ellipsoid Method

Ellipsoid:

• A squished ball

�� + %� ≤ �
�

�(�

�
%

�

+ ((�

�
% /�)�≤ �

Rotates the ellipsoid by

angle −).

(�, �)

Let (=
(�

(�
=

*�� *��

*�� *��
be a

matrix that rotates space (here the

plane) by some angle).

15

�(�
� − �
% − �

�

+((�
� − �
% − �

/�)�≤ �

The desired solution is bounded

Theorem: If the LP solution is finite then its magnitude is at

most �+,-% input length .

Proof: If the optimum is finite then the solution occurs at a vertex which

is the solution of some �
� = �
, equivalently � = �
 .��
. The

matrix inverse has coordinates with at most # of input bits.

Theorem: If the LP optimum is finite then the volume of the polytope

is at least �. +,-% input length .

Proof: General idea: The smallest angle is at least �. +,-% input length .

16

Ellipsoid Method

Maximize ���
subject to

�� ≤ �
� ≥ �

Is there an � s.t.

��� ≥ /
�� ≤ �

� ≥ � ?

Reduce solving: To solving:

Theorem: If the LP solution is

finite then its magnitude is at

most �+,-% input length .

Corollary: In polytime we can

compute 1 ∈ �+,-% input length

such that if the LP optimum � is

finite then −1 ≤ ��� ≤ 1.

Claim: If we have a polynomial time algorithm FindPoint to find some

point � inside any given polytope then we can solve LPs in polynomial

time using binary search with different values of / as above.

(Only +,-% input length calls.)
17

2 = 3

2 = −3

Using binary search

18

2 = 3

2 = −3

Check if polytope is empty using FindPoint

19

Add new constraint
2 = 3

2 = −3

2 ≤ 0

20

2 = 3

2 = −3

2 ≤ 0

Call FindPoint

21

2 = −3

2 ≤ 0

2 ≤ −3/2

Add new constraint

22

2 = −3

2 ≤ 0

2 ≤ −3/2

FindPoint: Polytope is empty!

23

2 ≤ 0

2 ≤ −3/2

2 ≤ −3/4

Add new constraint

24

2 ≤ 0

2 ≤ −3/2

2 ≤ −3/4

Add new constraint

25

2 ≤ 0

2 ≤ −3/2

2 ≤ −3/4

Find point

26

% ≤ −1/�

% ≤ −1/7

% ≤ −1/8

Add new constraint

27

% ≤ −1/�

% ≤ −1/7

% ≤ −1/8

Find point: Polytope is empty!

28

% ≤ −1/7

% ≤ −1/8
% ≤ −�1/�9

Add new constraint... Find point ...

29

Conclusion: It is enough to give an
algorithm to find a point in a polytope.

30

Ellipsoid algorithm for finding points in polytopes

Idea: Iteratively find ellipsoids where the density of the polytope

within each ellipsoid is larger and larger, until a point is found

31

32

Theorem: If the polytope is

finite then its points have

magnitude at most

: = �+,-% input length .

Begin with sphere of

radius

: = �+,-% input length .

containing solution

33

Check �

34

Find violated inequality

35

Shift inequality to origin

36

Find ellipsoid containing

half-sphere

37

Find ellipsoid containing

half-sphere

38

Shift to center

39

Stretch to get sphere

40

Check �

41

Find violated inequality

42

Shift inequality to origin

43

Find ellipsoid containing

half-sphere

44

Find ellipsoid containing

half-sphere

45

Shift to center

46

Stretch to get sphere

47

Check �

48

Ellipsoid Method

Is there an � s.t.

��� ≥ /
�� ≤ �

� ≥ � ?

Algorithm to find a point in a non-empty

bounded polytope �:

1. Compute ellipsoid ; as a radius : sphere

containing polytope �
2. If � ∈ �, output original equivalent point

a. Otherwise identify violated constraint for �,

shift to origin to identify half-sphere inside ;
b. Let ;′ be ellipsoid containing half-sphere

c. Shift and rescale ;′ to sphere ;, applying the

same to � and begin step 2.

Key Lemma:

!,-(;
)/!,-(;) ≤ =.�/(�	>�)

Corollary:
!,- �

!,- ;? ≥ =�/(�	>�) !,- �

!,- ;

Thm: After @ rounds
!,- �

!,- ;@
≥ =@/(�	>�) !,- �

!,- ;

Cor: Ellipsoid algorithm

halts after

ABC2(input length) steps
49

Key Lemma part 1

Define ; by ∑ �E
�

E ≤ �

Let ;′ be given by
	>�

	

�
(�� −

�

	>�
)� + � −

�

	�
∑ �E

�
EF� ≤ �.

Claim: ;’ contains the positive half-sphere.

Proof: Note that �, �, … , � ∈ ;’ since
	>�

	

�
(� −

�

	>�
)� = �.

Consider intersection of ; with �� = � : �, ��, … , �	 with ∑ �E
�

EF� ≤ �

LHS for ;’ for these points: ≤
	>�

	

�
(−

�

	>�
)� + � −

�

	� =
�

	� + � −
�

	� = �

so these points are all in ;’.

50

Key Lemma part 2

Define ; by ∑ �E
�

E ≤ �

Let ;′ be given by
	>�

	

�
(�� −

�

	>�
)� + � −

�

	�
∑ �E

�
EF� ≤ �.

Claim: !,-(;
)/!,-(;) ≤ =.�/(�	>�)

Proof: First coordinate scales down by an
	

	>�
factor. Each of the other 	 − �

coordinates scales up by a
	�

	�.�

�/�

factor. Volume scales by
	

	>�

	�

	�.�

(.�)/�

This is � −
�

	>�
� +

�

	�.�

(.�)/�
≤ =.

�

	J� =
�

� 	J� = =
K�

� 	J� using � + � ≤ =�
.

51

