
CSE 421

Introduction to Algorithms

Lecture 26:  Linear Programming 

Algorithms
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Standard Form LP

Maximize ���
subject to

�� ≤ �
� ≥ �
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Algorithms for Linear Programs
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Simplex Algorithm

• Simple

• Often fast in practice

• Not polynomial time (on pathological counterexamples)

Ellipsoid Algorithm

• More complicated

• First polynomial time algorithm, but not always fast

Interior Point Methods

• Even more complicated based on differential equation ideas

• Polynomial time, fast in practice; simplex better for small input size



The Simplex Algorithm

Simplex Algorithm:

• Start with a vertex of the polytope

• In each step move to a neighboring 

vertex that is lower (larger ���).

Creates a path running along the edges and 

vertices on the outside of the polytope

• Since the polytope is convex, this will 

never get stuck before reaching the 

lowest point.
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Polytope given by �� ≤ �

Every vertex is defined by 

some 	 rows, �
� = �
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Simplex:  How to find the start vertex

We can’t just choose any subset of 	 equations since their solution 

might not be in the polytope �...

Maximize ���
subject to

�� ≤ �
� ≥ �

Find point s.t.

�� ≤ �
� ≥ �

Minimize �� + ⋯ + ��

subject to

�� − � ≤ �
�, � ≥ �

Given Solve P Solve Q

Polytope � is not empty iff minimum for � has � = � and � ∈ �

⇔⇔⇔⇔

Q is just another LP, but we set it up so we know a start vertex:

� = � and � = max (�, −�) so we can use Simplex on Q to find the start 

vertex for the given LP and then run Simplex again!

⇒⇒⇒⇒



The Simplex Algorithm

Simplex Algorithm:

• Start with a vertex of the polytope

• In each step move to a neighboring 

vertex that is lower (larger ���).

Creates a path running along the edges and 

vertices on the outside of the polytope

• Since the polytope is convex, this will 

never get stuck before reaching the 

lowest point.



Polytope given by �� ≤ �

Every vertex is defined by 

some 	 rows, �
� = �


Neighboring vertices differ 

in just one equation
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Simplex: Moving to a better vertex

Maximize ���
subject to

�� ≤ �
� ≥ �

1. At current vertex have 	 tight 

equations �
! = �


2. Can find � equation to 

replace and a point "
• satisfying the other 	 − �
• with ��(" − !) > �.

3. Move to new vertex of form 

!
 = ! + $" ∈ � for $ > �
• Increase $ until some new 

constraint becomes tight.
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The Simplex Algorithm:  The downside

Simplex Algorithm:

• Start with a vertex of the polytope

• In each step move to a neighboring 

vertex that is lower (larger ���).

Creates a path running along the edges and 

vertices on the outside of the polytope

• Since the polytope is convex, this will 

never get stuck before reaching the 

lowest point.

Problem: Many paths to choose from; # of vertices on path can be exponential! 
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Interior Point Algorithms

Interior Point Idea:

• Start with a point in the polytope, either a 

vertex or in the interior

• Follow approximations to a curving 

“central path” that

• tunnels through the polytope 

• avoids the boundary using loss functions

and eventually gets to the optimum

Can be implemented efficiently using data structure tricks.  Also leads to 

best randomized algorithms for network flow.   Too complicated for us.
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Ellipsoid Method

Ellipsoid:

• A squished ball

�� + %� ≤ �
�
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Rati

Ellipsoid Method

Ellipsoid:

• A squished ball

�� + %� ≤ �

(��)�+(%/�)�≤ �

�
Ratio of area of ellipsoid 

to the sphere
�

�
⋅

�

�
= �
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Ellipsoid Method

Ellipsoid:

• A squished ball

�� + %� ≤ �
�

(��)�+(%/�)�≤ �

Ratio of area of ellipsoid 

to the sphere
�

�
⋅

�

�
= �

Can shift the center

� � − � � + (% − �)/� � ≤ �

(�, �)
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Ellipsoid Method

Ellipsoid:

• A squished ball

�� + %� ≤ �
�

�(�

�
%

�

+ ((�

�
% /�)�≤ �

Rotates the ellipsoid by 

angle −). 

(�, �)

Let ( =
(�

(�
=

*�� *��

*�� *��
be a 

matrix that rotates space (here the 

plane) by some angle ).
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The desired solution is bounded

Theorem: If the LP solution is finite then its magnitude is at 

most �+,-% input length .

Proof: If the optimum is finite then the solution occurs at a vertex which 

is the solution of some �
� = �
, equivalently � = �
 .��
.   The 

matrix inverse has coordinates with at most # of input bits.

Theorem: If the LP optimum is finite then the volume of the polytope        

is at least �. +,-% input length .

Proof: General idea:  The smallest angle is at least �. +,-% input length .
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Ellipsoid Method

Maximize ���
subject to

�� ≤ �
� ≥ �

Is there an � s.t.

��� ≥ /
�� ≤ �

� ≥ � ?

Reduce solving: To solving:

Theorem: If the LP solution is 

finite then its magnitude is at 

most �+,-% input length .

Corollary: In polytime we can 

compute  1 ∈ �+,-% input length

such that if the LP optimum � is 

finite then −1 ≤ ��� ≤  1.

Claim: If we have a polynomial time algorithm FindPoint to find some 

point � inside any given polytope then we can solve LPs in polynomial 

time using binary search with different values of / as above.                                          

(Only +,-% input length calls.)
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2 = 3

2 = −3

Using binary search
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2 = 3

2 = −3

Check if polytope is empty using FindPoint
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Add new constraint
2 = 3

2 = −3

2 ≤ 0
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2 = 3

2 = −3

2 ≤ 0

Call FindPoint
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2 = −3

2 ≤ 0

2 ≤ −3/2

Add new constraint
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2 = −3

2 ≤ 0

2 ≤ −3/2

FindPoint: Polytope is empty!
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2 ≤ 0

2 ≤ −3/2

2 ≤ −3/4

Add new constraint
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2 ≤ 0

2 ≤ −3/2

2 ≤ −3/4

Add new constraint
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2 ≤ 0

2 ≤ −3/2

2 ≤ −3/4

Find point
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% ≤ −1/�

% ≤ −1/7

% ≤ −1/8

Add new constraint

27



% ≤ −1/�

% ≤ −1/7

% ≤ −1/8

Find point: Polytope is empty!
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% ≤ −1/7

% ≤ −1/8
% ≤ −�1/�9

Add new constraint... Find point ...
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Conclusion: It is enough to give an
algorithm to find a point in a polytope.
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Ellipsoid algorithm for finding points in polytopes

Idea: Iteratively find ellipsoids where the density of the polytope 

within each ellipsoid is larger and larger, until a point is found
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Theorem: If the polytope is 

finite then its points have 

magnitude at most 

: = �+,-% input length .

Begin with sphere of 

radius  

: = �+,-% input length . 

containing solution
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Check �

34



Find violated inequality
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Shift inequality to origin
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Find ellipsoid containing 

half-sphere
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Find ellipsoid containing 

half-sphere
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Shift to center
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Stretch to get sphere
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Check �
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Find violated inequality

42



Shift inequality to origin
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Find ellipsoid containing 

half-sphere
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Find ellipsoid containing 

half-sphere
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Shift to center
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Stretch to get sphere

47



Check �
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Ellipsoid Method

Is there an � s.t.

��� ≥ /
�� ≤ �

� ≥ � ?

Algorithm to find a point in a non-empty 

bounded polytope �:

1. Compute ellipsoid ; as a radius : sphere 

containing polytope �
2. If � ∈ �, output original equivalent point

a. Otherwise identify violated constraint for �, 

shift to origin to identify half-sphere inside ;
b. Let ;′ be ellipsoid containing half-sphere

c. Shift and rescale ;′ to sphere ;, applying the 

same to � and begin step 2.

Key Lemma:

!,-(;
)/!,-(;) ≤ =.�/(�	>�)

Corollary:
!,- �

!,- ;? ≥ =�/(�	>�) !,- �

!,- ;

Thm: After @ rounds
!,- �

!,- ;@
≥ =@/(�	>�) !,- �

!,- ;

Cor: Ellipsoid algorithm 

halts after

ABC2(input length) steps
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Key Lemma part 1

Define ; by ∑ �E
�

E ≤ �

Let ;′ be given by
	>�

	

�
(�� −

�

	>�
)� + � −

�

	�
∑ �E

�
EF� ≤ �.

Claim: ;’ contains the positive half-sphere.

Proof: Note that  �, �, … , � ∈ ;’ since 
	>�

	

�
(� −

�

	>�
)� = �.

Consider intersection of ; with �� = � : �, ��, … , �	 with ∑ �E
�

EF� ≤ �

LHS for ;’ for these points: ≤
	>�

	

�
(−

�

	>�
)� + � −

�

	� =
�

	� + � −
�

	� = �

so these points are all in ;’.
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Key Lemma part 2

Define ; by ∑ �E
�

E ≤ �

Let ;′ be given by
	>�

	

�
(�� −

�

	>�
)� + � −

�

	�
∑ �E

�
EF� ≤ �.

Claim: !,-(;
)/!,-(;) ≤ =.�/(�	>�)

Proof: First coordinate scales down by an 
	

	>�
factor.  Each of the other 	 − �

coordinates scales up by a 
	�

	�.�

�/�

factor.  Volume scales by 
	

	>�

	�

	�.�

(	.�)/�

This is � −
�

	>�
� +

�

	�.�

(	.�)/�
≤ =. 

�

	J�  =
�

� 	J� =  =
K�

� 	J� using � + � ≤  =�
.
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