CSE 421Introduction to Algorithms

Lecture 25: Finishing NP CompletenessDealing with NP-completeness:Approximation Algorithms

Given a 3-CNF formula F with m clauses and n variables

- We will create an input for **Subset-Sum** with $2m + 2n$ numbers that are $m + n$
digits long digits long.
- We will ensure that no matter how we sum them there won't be any carries so each digit in the target will force a separate constraint.
- Instead of calling them $w_1, ..., w_{2n+2m}$ we will use mnemonic names:
	- Two numbers for each variable x_i
		- t_i and f_i (corresponding to x_i being true or x_i being false)
	- $\bullet\,$ Two extra numbers for each clause $\bm{\mathcal{C}_{j}}$
		- a_j and b_j (two identical filler numbers to handle number of false literals in clause C_i)
- We define them by giving their decimal representation...

We include two $\bm{n}+\bm{m}$ digit numbers for each Boolean variable x_i

Boolean part in the first *n* positions:

• Digit i of both t_i and ${f}_i$ are 1 ; the rest are ${\bf 0}$

Clause part in the next *m* positions:
• Digit *i* of *t*, is 1 if clause *C*, contain

- Digit j of t_i is 1 if clause c_j contains literal x_i ; the rest are 0
- Digit j of ${f}_i$ is 1 if clause ${C}_j$ contains literal $\neg {x}_i$; the rest are ${\bf 0}$

We also include two extra identical $\bm{n}+\bm{m}$ digit numbers for each clause $\bm{\mathcal{C}}_j$

These are:

- \bullet • All $\overline{0}$ in the Boolean columns
- Digit j of both a_j and b_j are 1 in the clause columns; the rest are 0

Boolean variable pa

First \boldsymbol{n} digit positions ensure that exactly one of $\boldsymbol{t_i}$ or $\boldsymbol{f_i}$ is included in any subs summing to $\boldsymbol{W}.$

Clause part:

 $\mathbf{1}'$ s in each digit position \boldsymbol{j} correspond to the 3 literals that would make clause $\boldsymbol{\mathcal{C}}_j$ true.

Every column in the clause part of the block of \boldsymbol{t} 's and \boldsymbol{f} 's has exactly 3 1 's.

The \boldsymbol{a} 's and \boldsymbol{b} 's add exactly 2 more possible $\mathbf{1}'$ s per column

$C_1=(x_1 \vee \neg x_2 \vee x_3)$ $C_2 = (\neg x_1 \lor x_2 \lor x_5)$ $C_3 = (\neg x_3 \lor x_4 \lor x_7)$ С $_4 = (\neg x_1 \lor \neg x_3 \lor x_9)$ <u>9)</u> $\boldsymbol{\mathcal{C}_{m}}$ $_m = (x_1 \vee \neg x_8 \vee x_{22})$ …

Key idea of clause columns:Column *j* can sum to the target column sum of $\bm{3}$ ⇔ at least one of the t_i or f_i
rows included in the subset rows included in the subset contains a $\bm{1}$ in column \bm{j}

The \boldsymbol{a} 's and \boldsymbol{b} 's add exactly 2 more possible $\mathbf{1}'$ s per column

3SAT≤-**Subset-Sum**

If \bm{F} satisfiable choose one of $\boldsymbol{t_{i}}$ or \boldsymbol{f}_{i} depending on the satisfying assignment.Their sum will have exactly one $\mathbf 1$ in each of the first \boldsymbol{n} digits and at least one $\mathbf 1$ in every clause digit position.Also include 0, 1, or 2 of each $\bm{a_j}$, $\bm{b_j}$ pair to add to $\bm{W}.$

 $W = 1 1 1 1 ... 1 3 3 3 3 ... 3$

If some subset sums to W must
have exactly one of **t**, or **f**, for

have exactly one of $\boldsymbol{t_{i}}$ or \boldsymbol{f}_{i} for each \bm{i} .

Set variable x_i to true if t_i used and false if $\boldsymbol{f_{i}}$ used.

Must have three $1'$ s in each clause digit column \bm{j} since things sum to W_{\cdot}

At most two of these can come from a_j , b_j to one of these 1 's must come from the choices of the truth assignment \Rightarrow every clause C_j is actions. satisfied so \boldsymbol{F} is satisfiable.

JL G. ALLEN SCHOOL

Some other NP-complete examples you should know

Hamiltonian-Cycle: Given a directed graph $G = (V, E)$. Is there a cycle in G that visits each vertex in \boldsymbol{V} exactly once?

Hamiltonian-Path: Given a directed graph $G = (V, E)$. Is there a path p in G of length $n - 1$ that visits each vertex in V exactly once?

Same problems are also NP -complete for undirected graphs

Note: If we asked about visiting each *edge* exactly once instead of each vertex, the corresponding problems are called **Euler Tour**, **Eulerian-Path** and are polynomial-time solvable.

Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP):

Given: a set of \boldsymbol{n} cities \boldsymbol{v}_1 , ... , \boldsymbol{v}_n $\bm{d}(\bm{\nu}_{\bm{i}},\bm{\nu}_{\bm{j}})$ between each pair of cities n and distance function \boldsymbol{d} that gives distance Find the shortest tour that visits all \bm{n} cities.

DecisionTSP:

Given: a set of \boldsymbol{n} cities \boldsymbol{v}_1 , ... , \boldsymbol{v}_n $\boldsymbol{d}(\boldsymbol{\nu}_{\boldsymbol{l}},\boldsymbol{\nu}_{\boldsymbol{j}})$ between each pair of cities *and* a distance \boldsymbol{D} n and distance function d that gives distance Is there a tour of total length at most \boldsymbol{D} that visits all \boldsymbol{n} cities?

Hamiltonian-Cycle ≤- **DecisionTSP**

Define the reduction given $G = (V, E)$:

- Vertices $\boldsymbol{V} = \{\boldsymbol{\nu_1},...,\boldsymbol{\nu_n}\}$ become cities
- Define \boldsymbol{d} $d(v_i, v_j) = \begin{cases} 1 & \text{if } (v_i, v_j) \in E \\ 2 & \text{if not} \end{cases}$ 2 if not
- Distance $\boldsymbol{D} = |\boldsymbol{V}|.$

Claim: There is a Hamiltonian cycle in $G \Leftrightarrow$ there is a tour of length $|V|$

)***-complete problems we've discussed**

```
3SAT → Independent-Set → Clique
```

```
↓Vertex-Cover →01-Programming → Integer-Programming
        ↓Set-Cover3Color → Subset-Sum

Hamiltonian-Cycle → DecisionTSPHamiltonian-Path
```


Some intermediate problems

Problems reducible to $\bf NP$ problems not known to be polytime:

Basis for the security of current cryptography:

- **Factoring:** Given an integer N in binary, find its prime factorization.
- Discrete logarithm: Given prime p in binary, and g and x modulo p . Find \boldsymbol{y} such that $\boldsymbol{x} \equiv \boldsymbol{g}^{\boldsymbol{y}}(\text{mod} \ \boldsymbol{p})$ if it exists.

Best algorithms known are $\mathsf{2}^{\widetilde{\Theta}\left(\bm{n^{1/3}}\right)}$ time.

Other famous ones:

- Graph Isomorphism: Given graphs G and H, can they be relabelled to be the same? Best algorithm now $\boldsymbol{n}^{\mathbf{\Theta}(\log^2)}$ $\mathbf{Z}^{(\bm{n})}$ (recently improved from $\mathbf{2}^{\widetilde{\Theta}\left(\bm{n^{1/3}}\right)}$) time.
- **Nash equilibrium:** Given a multiplayer game, find randomized strategies for each player so that no player could do better by deviating.

What to do if the problem you want to solve is NP-hard

 $1st$ thing to try:

- You might have phrased your problem too generally
	- e.g., In practice, the graphs that actually arise are far from arbitrary
		- Maybe they have some special characteristic that allows you to solve the problem in your special case
			- For example the **Independent-Set** problem is easy on "interval graphs"
				- Exactly the case for the Interval Scheduling problem!
	- Search the literature to see if special cases already solved

What to do if the problem you want to solve is NP-hard

2nd thing to try if your problem is a minimization or maximization problem

- Try to find a polynomial-time worst-case approximation algorithm
	- For a minimization problem
		- Find a solution with value $\leq K$ times the optimum
	- For a maximization problem
		- Find a solution with value $\geq 1/K$ times the optimum

Want \boldsymbol{K} to be as close to $\boldsymbol{1}$ as possible.

Greedy Approximation for Vertex-Cover

On input $G = (V, E)$ $W \leftarrow \emptyset$ $E' \leftarrow E$ **while** $E' \neq \emptyset$ $\texttt{select any}\ \boldsymbol{e} = (\boldsymbol{u}, \boldsymbol{\nu}) \in E'$ $W \leftarrow W \cup \{u, v\}$ $E' \leftarrow E' \setminus \{\text{edges } e \in E' \text{ that touch } u \text{ or } v\}$

This is a better approximation factor than the greedy algorithm thatrepeatedly chooses the highest degree vertex remaining.

Claim: At most a factor 2 larger than the optimal vertex-cover size.

Proof: Edges selected don't share any vertices so any vertex-cover must choose at least one of \boldsymbol{u} or \boldsymbol{v} each time.

PAUL G. ALLEN SCHOOL **CE & ENGINEERING** ISCIEN

Set cover size **4**Find smallest collection of sets containing every point

 Greedy Set Cover: Repeatedly choose the set that covers the most # of new elements

 Greedy Set Cover: Repeatedly choose the set that covers the most # of new elements

FN SCHOOL

 Greedy Set Cover: Repeatedly choose the set that covers the most # of new elements

 Greedy Set Cover: Repeatedly choose the set that covers the most # of new elements

Theorem: Greedy finds best cover up to a factor of $\ln n$.

 G Al **FN** SCHOOL CE & ENGINEERING

G. ALLEN SCHOOL PAI UTER SCIENCE & ENGINEERING

Greedy Approximation to Set-Cover

Theorem: If there is a set cover of size **k** then the greedy set cover has size $\leq k \ln n$.

Proof: Suppose that there is a set cover of size *k*.

At each step all elements remaining are covered by these \boldsymbol{k} sets.

So always a set available covering $\geq 1/k$ fraction of remaining elts.

So # of uncovered elts after \bm{i} sets $\leq \big(\bm{1} -$ 1 \boldsymbol{k} \times (# uncovered after $i-1$ sets).

Total after \boldsymbol{t} sets $\leq \boldsymbol{n} \, \big(\, \boldsymbol{1} \, - \,$ 1 \boldsymbol{k} $t < n \cdot e^{-t/k} = 1$ for $t = k \ln n$.

$$
1-x0
$$

Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP):

Given: a set of \boldsymbol{n} cities \boldsymbol{v}_1 , ... , \boldsymbol{v}_n $\bm{d}(\bm{\nu}_{\bm{i}},\bm{\nu}_{\bm{j}})$ between each pair of cities n and distance function \boldsymbol{d} that gives distance Find the shortest tour that visits all \bm{n} cities.

MetricTSP:

The distance function \boldsymbol{d} satisfies the triangle inequality:

 $d(u, w) \leq d(u, v) + d(v, w)$

Proper tour: visit each city exactly once.

Minimum Spanning Tree Approximation: Factor of 2

TSP: Minimum Spanning Tree Factor 2 Approximation

Euler tour covers each edge twice so $\boldsymbol{TOLR}_{\boldsymbol{MST}}(\boldsymbol{G}) = 2 \ \boldsymbol{MST}(\boldsymbol{G})$

Any tour contains a spanning tree so $\mathit{MST}(G) \leq \mathit{TOUR}_{\mathit{OPT}}(G)$

So $\boldsymbol{T}\boldsymbol{O}\boldsymbol{U}\boldsymbol{R}_{\boldsymbol{M}\boldsymbol{S}\boldsymbol{T}}(\boldsymbol{G}) = \boldsymbol{2} \ \boldsymbol{M}\boldsymbol{S}\boldsymbol{T}(\boldsymbol{G}) \leq \boldsymbol{2} \ \boldsymbol{T}\boldsymbol{O}\boldsymbol{U}\boldsymbol{R}_{\boldsymbol{O}\boldsymbol{P}\boldsymbol{T}}(\boldsymbol{G})$

This visits each node more than once, so not a proper tour.

Why did this work?

- We found an Euler tour on a graph that used the edges of the original graph (possibly repeated).
- The weight of the tour was the total weight of the new graph.
- Suppose now
	- All edges possible
	- Weights satisfy the triangle inequality (MetricTSP)

MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Euler Tour of doubled MST:

Euler tour covers each edge twice so $\boldsymbol{TOLR}_{\boldsymbol{MST}}(\boldsymbol{G}) = 2 \ \boldsymbol{MST}(\boldsymbol{G})$

Any tour contains a spanning tree so $\mathit{MST}(G) \leq \mathit{TOUR}_{\mathit{OPT}}(G)$

So $\boldsymbol{T}\boldsymbol{O}\boldsymbol{U}\boldsymbol{R}_{\boldsymbol{M}\boldsymbol{S}\boldsymbol{T}}(\boldsymbol{G}) = \boldsymbol{2} \ \boldsymbol{M}\boldsymbol{S}\boldsymbol{T}(\boldsymbol{G}) \leq \boldsymbol{2} \ \boldsymbol{T}\boldsymbol{O}\boldsymbol{U}\boldsymbol{R}_{\boldsymbol{O}\boldsymbol{P}\boldsymbol{T}}(\boldsymbol{G})$

Instead: take shortcut to next unvisited vertex on the Euler tourBy triangle inequality this can only be shorter.

MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Instead: take shortcut to next unvisited vertex on the Euler tourBy triangle inequality this can only be shorter.

MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Instead: take shortcut to next unvisited vertex on the Euler tourBy triangle inequality this can only be shorter.

Christofides Algorithm: A factor 3/2 approximation

Any subgraph of the weighted complete graph that has an Euler Tour will work also!

Fact: To have an Euler Tour it suffices to have all degrees even.

Christofides Algorithm:

- Compute an MST T
- Find the set \bm{o} of odd-degree vertices in \bm{T}
- Add a minimum-weight perfect matching* M on the vertices in O to T to make every vertex have even degree have even degree
	- There are an even number of odd-degree vertices!
- Use an Euler Tour E in $T \cup M$ and then shortcut as before

Theorem: $\textit{Cost}(E) \leq 1.5 \text{ } \textit{TOUR}_{\textit{OP}}$ \bm{T}

*Requires finding optimal matchings in general graphs, not just bipartite ones

Christofides Approximation

Christofides Approximation

Any tour costs at least the cost of two matchings $\boldsymbol{M_1}$ and $\boldsymbol{M_2}$ on \boldsymbol{O}

 $2\;cost(M) \leq cost(M_1) + cost(M_2) \leq TOUR_{OPT}$

Christofides Approximation Final Tour

Max-3SAT Approximation

Max-3SAT: Given a 3CNF formula **F** find a truth assignment that satisfies the maximum possible # of clauses of $\boldsymbol{F}.$

Observation: A single clause on 3 variables only rules out $1/8$ of the possible truth assignments since each literal has to be false to be ruled out.

 \Rightarrow a random truth assignment will satisfy the clause with probability $7/8.$

So in expectation, if \boldsymbol{F} has \boldsymbol{m} clauses, a random assignment satisfies $\boldsymbol{7m/8}$ of them. A greedy algorithm can achieve this: Choose most frequent literal appearing in clauses that are not yet satisfied and set it to true.

If $P \neq NP$ no better approximation is possible

Knapsack Problem

Each item has a value $\boldsymbol{v_{i}}$ and a weight $\boldsymbol{w_{i}}.$ Maximize $\sum_{\boldsymbol{i}\in\mathcal{S}}v_{\boldsymbol{i}}$ with $\sum_{\boldsymbol{i}\in\mathcal{S}}w$ i $i \leq W$.

Theorem: For any $\varepsilon > 0$ there is an algorithm that produces a solution within $(1 + \varepsilon)$ factor of optimal for the Knapsack problem with running time $O(n^2/\varepsilon^2)$

"Polynomial-Time Approximation Scheme" or PTAS

Algorithm: Maintain the high order bits in the dynamic programming solution.

Hardness of Approximation

Polynomial-time approximation algorithms for NP -hard optimization problems can sometimes be ruled out unless $P = NP$.

Easy example:

Coloring: Given a graph $G = (V, E)$ find the smallest k such that G has a k -coloring.

Because 3 -coloring is NP-hard, no approximation ratio better than $4/3$ is possible unless $P = NP$ because you would have to be able to figure out if a 3-colorable graph can be colored in < 4 colors. i.e. if it can be **3**-colored.

- We now know a huge amount about the hardness of approximating **NP** optimization problems if $P \neq NP$.
- Approximation factors are very different even for closely related problems like **Vertex-Cover** and **Independent-Set**.

Approximation Algorithms/Hardness of Approximation

Research has classified many problems based on what kinds of polytime approximations are possible if $P \neq NP$

- **Best:** $(1 + \varepsilon)$ factor for any $\varepsilon > 0$. (PTAS)
	- packing and some scheduling problems, TSP in plane
- Some fixed constant factor > 1 . e.g. 2 , $3/2$, $8/7$, 100
	- Vertex Cover, Max-3SAT, MetricTSP, other scheduling problems
	- Exact best factors or very close upper/lower bounds known for many problems.
- $\Theta(\log n)$ factor
	- Set Cover, Graph Partitioning problems
- Worst: $\Omega(n^{1-\varepsilon})$ factor for every $\varepsilon > 0$.
	- Clique, Independent-Set, Coloring

