CSE 421
Introduction to Algorithms

Lecture 25: Finishing NP Completeness
Dealing with NP-completeness:
Approximation Algorithms

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

3SAT<pSubset-Sum

Given a 3-CNF formula F with m clauses and n variables

* We will create an input for Subset-Sum with 2m + 2n numbers thatare m + n
digits long.

* We will ensure that no matter how we sum them there won’t be any carries so
each digit in the target W will force a separate constraint.

* Instead of calling them wy, ..., W5, 2., We will use mnemonic names:
* Two numbers for each variable x;
e t;and f; (corresponding to x; being true or x; being false)
* Two extra numbers for each clause (;
° a; and b]- (two identical filler numbers to handle number of false literals
in clause C})

* We define them by giving their decimal representation...

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

3SAT<pSubset-Sum

We include two n + m digit numbers for each Boolean variable x;

1 2 3 1 n 1l 2 3 j m
t;= 0 0 0 1 010 0 0 .. 1 Clauses €4 and C,,, contain x;
fi= 0 0 0 1 0 01 0 1 0 Clauses C; and C; contain —x;

Boolean part in the first n positions:
* Digitiof both t; and f; are 1; the rest are 0

Clause part in the next m positions:
* Digitjoft;is1ifclause C; contains literal x;; the rest are 0

* Digitj of f; is 1 if clause C; contains literal —x;; the rest are 0

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

3SAT<pSubset-Sum

We also include two extra identical n + m digit numbers for each clause C;

1 2 3 i . n1 2 ... j
a= 0000 .. 000 ..1 .. 0

b,= 00 0 0 .. 000 .. 1 ..0

These are:
e All0inthe Boolean columns
* Digitj of both a; and bj are 1 in the clause columns; the rest are 0

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

3SAT<pSubset-Sum C1 = (1, V-1, V x3)
i ; Cy, = (x4 VXxyVXxsg)
12 3 4 ..n|1|2|3]4].. m Ca = (os V 2y V 207)
t{y= 1 0 0 O 011310j101}0}.. 1
C4_ = (—|x1 VvV X3 VvV xg)
Boolean variable part: f1= 1 0 0 0 0101110 |1}.. ©
First n digit positions &, = 0 1 0 0 olo|1]o]o].. o Cm = (X1 V 2XgV X22)
ensure that exactly f2= 010 0 oli1lololol. o Clause part:
oneof t; or f;is) .
included in anv subset ts3= 0 0 1 0 0(110j010}.. 0 1’s in each digit position j
summing to MX f3= 00 10 ololol1l1l]l.. o correspond to the 3 literals that
S would make clause C; true.
a=00 0 0 01000 ..0 Every column in the clause part
b= 00 0 O 01000 ..0 of the block of t’s and f’s has
az= 00 0 0 00100 . o0 exactly3Ts.
b,= 0 0 0 0 O 0100 .. 0

The a’s and b’s add exactly 2
...... more pOSSIb|e 1’5 per Column

w= 1111 .. 133 3 3 ..3

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

3SATSPSU bset-Sum Ci = (x1V XV X3)

i Cy, = (x4 VXxyVXxsg)
1234 .n12 3|[4f/.m Cs = (mx3 Vg V)
t{y= 1 0 0 O 010 0j0}).. 1
C4_ = (—|x1 VvV X3 VvV xg)
Boolean variable part: f1= 1 0 0 0 0 010|1}..0
First n digit positions &, = 0 1 0 0 00 1o0]o]. o Cm = (X1 V 2XgV X22)
ensure that exactl _
one of t; or f; is Y fo= 0100 010 010)..0 Key idea of clause columns:
) N t3= 0 0 1 0 0 1 0 0J0}.. 0 Columnjcansum to the target
included in any subset | £3
summing to W. fz3= 00 1 0 0O 00 1|1}..0 column sum o
...... & at least one of the £; or f;
4= 00 0 0 01000 . 0 rows |.ncludefj in the sulc_)set
containsa 1 in column j
b= 0 0 0 0 010 0 0 .. 0
a,= 0 0 0 O O 010 0 .. 0
b,= 0 0 0 0 O 0100 .. 0

The a’s and b’s add exactly 2
...... more pOSSIb|e 1’5 per Column

w= 1111 .. 133 3 3 ..3

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

3SAT<pSubset-Sum

i J
1 2 3 4 nl1l 2 3 4 .. m
tb=10 0 0 01000 . 1 If some subset sums to W must
one of t; or f; t,= 01 0 0 00100 . 0 e€achi
depending on the f,= 01 0 0 0100 0 0 Set variable x; to true if £; used and
2= : .
satisfying assignment. ; 00 1 0 0100 0 0 false if f; used.
Their sum will have 3 ' Must have three 1’s in each clause
exactlyone 1ineach J3= 0 0 1.0 0001 1 ..0 (digitcolumn j since things sum to
of the first n digits and - . . W.
atleastonelinevery a;,= 0 0 0 0 0100 0 . o Atmosttwoofthesecancome
ioi iti from a;, b; to one of these 1’s must
,CAllaus'e dllg<ljt p(;)Sitlon.z p1=00 00 01000 .0 come f]rorr]1 the choices of the truth
so include or
T a,= 0 0 0 O O 01 0 0 .. 0 . .
of each assignment = every clause Cj is
aj, b]- pair to add to W. b= 0 0 0 0 00100..0 satisfied so F is satisfiable.
w= 1111 .133 33 . 3]

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Some other NP-complete examples you should know

Hamiltonian-Cycle: Given a directed graph G = (V, E). Is there a cyclein G
that visits each vertex in V exactly once?

Hamiltonian-Path: Given a directed graph G = (V, E). Is there a path p in
G of length n — 1 that visits each vertex in VV exactly once?

Same problems are also NP-complete for undirected graphs

Note: If we asked about visiting each edge exactly once instead of each
vertex, the corresponding problems are called Euler Tour, Eulerian-Path and
are polynomial-time solvable.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP):

Given: a set of n cities v, ..., V,, and distance function d that gives distance
d(v;, v;j) between each pair of cities

Find the shortest tour that visits all n cities.

DecisionTSP:

Given: a set of n cities v4, ..., V,, and distance function d that gives distance
d(v;, v;) between each pair of cities and a distance D

Is there a tour of total length at most D that visits all n cities?

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Hamiltonian-Cycle <p DecisionTSP

Define the reduction given G = (V, E):
* Vertices V = {v4, ..., v,,} become cities

1 if (v, v;) €EE

* Define d(vi» ”i) - {2 if not

* Distance D = |V/|.

Claim: There is a Hamiltonian cycle in G & there is a tour of length |V|

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

NP-complete problems we’ve discussed

3SAT — Independent-Set — Clique
)
Vertex-Cover — 01-Programming — Integer-Programming

)

Set-Cover

—> 3Color

L——> Subset-Sum

[Hamiltonian-Cycle — DecisionTSP

L———> Hamiltonian-Path

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Some intermediate problems

Problems reducible to NP problems not known to be polytime:

Basis for the security of current cryptography:
* Factoring: Given an integer N in binary, find its prime factorization.

* Discrete logarithm: Given prime p in binary, and g and x modulo p.
Find y such that x = g”(mod p) if it exists.

. &(nl/3) ..
Best algorithms known are 20("%) time.

Other famous ones:

* Graph Isomorphism: Given graphs G and H, can they be relabelled to be the same?

0(log

Best algorithm now n “n) (recently improved from Z@("l/g)) time.

* Nash equilibrium: Given a multiplayer game, find randomized strategies for each
player so that no player could do better by deviating.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

What to do if the problem you want to solve is NP-hard

15t thing to try:

* You might have phrased your problem too generally
* e.g., In practice, the graphs that actually arise are far from arbitrary

 Maybe they have some special characteristic that allows you to solve the
problem in your special case

* For example the Independent-Set problem is easy on “interval graphs”
» Exactly the case for the Interval Scheduling problem!
» Search the literature to see if special cases already solved

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

What to do if the problem you want to solve is NP-hard
2"d thing to try if your problem is a minimization or maximization problem

* Try to find a polynomial-time worst-case approximation algorithm

e For a minimization problem
* Find a solution with value < K times the optimum

* For a maximization problem
* Find a solution with value = 1 /K times the optimum

Want K to be as close to 1 as possible.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greedy Approximation for Vertex-Cover

On input G = (V,E)

W« @ This is a better approximation factor
E E than the greedy algorithm that
« repeatedly chooses the highest degree

while E' # @ vertex remaining.
select anye = (u,v) € E’
W« WuU{u,v}
E' < E"\ {edges e € E' that touch u or v}

Claim: At most a factor 2 larger than the optimal vertex-cover size.

Proof: Edges selected don’t share any vertices so any vertex-cover must choose
at least one of u or v each time.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Set-Cover

Find smallest
collection of sets
containing every point

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Set-Cover

Find smallest
collection of sets

containing every point Set cover size 4

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Set-Cover Greedy Set Cover: Repeatedly choose the set

that covers the most # of new elements

Find smallest i

collection of sets
containing every point

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Set-Cover Greedy Set Cover: Repeatedly choose the set

that covers the most # of new elements

Find smallest i

collection of sets
containing every point

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Set-Cover Greedy Set Cover: Repeatedly choose the set

that covers the most # of new elements

Find smallest
collection of sets
containing every point

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Set-Cover Greedy Set Cover: Repeatedly choose the set

that covers the most # of new elements

Find smallest
collection of sets
containing every point

Theorem: Greedy finds best cover up to a factor of In n.

PAUL G. ALLEN SCHOOL 21

OF COMPUTER SCIENCE & ENGINEERING

Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered

()
()
000 (¥
0000 —
OO0 ||O

1 O000
OO 00 * ’
_ VAN J

_ J

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered

()
()
0000 —
OO0 o) —
00 |@
| 0000)
10000 ‘
0000 _
_ VRN W,

_ J

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered

()
(
0000 —
OO0 o) —
00 |@
| 0000)
10000 ‘
0000 _
_ J J

_ J

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered

()
(
0000 —
OO0 o) —
00 |@
| 0000)
10000 ‘
0000 _
_ J J

_ J

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered

()
(
OO00O ()
OO00O —
OO0 ||O
4 | | J
10000 \
OCOO00O ‘ ’
\ J J

_ J

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered

(")
)

0000

Greedy solution:
5 sets

-

OO0 OO
OO OO OO0 | O
“ “ .‘ . Greedy solution:

OCOO00O
\

N J ~ log,n sets
_ J

PAUL G. ALLEN SCHOOL

0 J

Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered

Optimal:
2 sets

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greedy Approximation to Set-Cover

Theorem: If there is a set cover of size k then the greedy set cover has
size < k Inn.

Proof: Suppose that there is a set cover of size k.
At each step all elements remaining are covered by these k sets.

So always a set available covering = 1 /k fraction of remaining elts.

: 1 :
So # of uncovered elts after i sets < (1 — ;) X (# uncovered after i — 1 sets).

t
TotaIaftertsetsSn(l—%) <n-eth=1fort=klnn. =

1—-x<e*forx>0

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP):

Given: a set of n cities v, ..., V,, and distance function d that gives distance
d(v;, v;j) between each pair of cities

Find the shortest tour that visits all n cities.

MetricTSP:

The distance function d satisfies the triangle inequality:
dlu,w) <d(u,v)+d(v,w)

Proper tour: visit each city exactly once.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Minimum Spanning Tree Approximation: Factor of 2

o o
\‘ I
| .\o
® \.I L
— ¢
o
\0

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

TSP: Minimum Spanning Tree Factor 2 Approximation

Euler Tour of doubled MST:

®
/ \ Euler tour covers each edge twice
)
®

L4

o, .
X7 |
v A ‘\‘ Any tour contains a spanning tree
® so MST(G) < TOURypr(G)
= L
Il
o— So TOUR ;57 (G) = 2 MST(G) < 2 TOUR ypr(G)
\Q

This visits each node more than once, so not a proper tour.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Why did this work?

* We found an Euler tour on a graph that used the edges of the
original graph (possibly repeated).

* The weight of the tour was the total weight of the new graph.

* Suppose now
* All edges possible
* Weights satisfy the triangle inequality (MetricTSP)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Euler Tour of doubled MST:

®
/ \ Euler tour covers each edge twice
. @ _
® V.._‘.':/ ® SO TOURMST(G) =2 MST(G)
.\.‘o |
V1la ‘\ Any tour contains a spanning tree
°__ S soMST(G) < TOURypr(G)
/:,..; ® L
Joos
./ SOoTOURysr(G) =2 MST(G) < 2TOURp7(G)
AN
®

Instead: take shortcut to next unvisited vertex on the Euler tour
By triangle inequality this can only be shorter.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

MetricTSP: Minimum Spanning Tree Factor 2 Approximation

[:
/ \ Euler tour covers each edge twice
o

~— Any tour contains a spanning tree
1 so MST(G) < TOURypr(G)

So TOUR ¢ (G) = 2 MST(G) < 2 TOUR ypr(G)

Instead: take shortcut to next unvisited vertex on the Euler tour
By triangle inequality this can only be shorter.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Final: ® _
/ \ Euler tour covers each edge twice
®
/ ®

®
\‘ I
‘\‘ Any tour contains a spanning tree
® L SO MST(G) < TOUROPT(G)
/ A
./ SOTOURysr(G) =2 MST(G) < 2TOURp7(G)
N
®

Instead: take shortcut to next unvisited vertex on the Euler tour
By triangle inequality this can only be shorter.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Christofides Algorithm: A factor 3/2 approximation

Any subgraph of the weighted complete graph that has an Euler Tour will work also!
Fact: To have an Euler Tour it suffices to have all degrees even.

Christofides Algorithm:
e Computean MSTT
* Find the set O of odd-degree vertices in T

* Add a minimum-weight perfect matching® M on the vertices in O to T to make every vertex
have even degree

* There are an even number of odd-degree vertices!
e Usean Euler Tour Ein T U M and then shortcut as before

Theorem: Cost(E) < 1.5 TOURypr

*Requires finding optimal matchings in general graphs, not just bipartite ones

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Christofides Approximation

/Q
N

| .\‘ Any tour contains a spanning tree
®
Ne We just need to show that the matching M

has cost(M) < TOURypr/2

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Christofides Approximation

Any tour costs at least the cost of two matchings M; and M, on O

Tour

2 cost(M) < cost(M,) + cost(M,) < TOURypr

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Christofides Approximation Final Tour

RN
%

)
X
L
| e
e
]
o
Ne Total cost(E) < 3TOURypr/2

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Max-3SAT Approximation

Max-3SAT: Given a 3CNF formula F find a truth assignment that satisfies
the maximum possible # of clauses of F.

Observation: A single clause on 3 variables only rules out 1/8 of the possible truth
assignments since each literal has to be false to be ruled out.

= a random truth assignment will satisfy the clause with probability 7/8.

So in expectation, if F has m clauses, a random assignment satisfies 7m /8 of them.

A greedy algorithm can achieve this: Choose most frequent literal appearing in
clauses that are not yet satisfied and set it to true.

If P = NP no better approximation is possible

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Knapsack Problem

Each item has a value v; and a weight w;.

Maximize).;csv; with),;cow; < W.

Theorem: For any € > 0 there is an algorithm that produces a solution
within (1 + &) factor of optimal for the Knapsack problem with running

time 0(n?/&?)
“Polynomial-Time Approximation Scheme” or PTAS

Algorithm: Maintain the high order bits in the dynamic programming
solution.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Hardness of Approximation

Polynomial-time approximation algorithms for NP-hard optimization problems
can sometimes be ruled out unless P = NP.

Easy example:

Coloring: Given a graph G = (V, E) find the smallest k such that G has a
k-coloring.
Because 3-coloring is NP-hard, no approximation ratio better than 4 /3 is possible unless P = NP

because you would have to be able to figure out if a 3-colorable graph can be colored in < 4
colors. i.e. if it can be 3-colored.

* We now know a huge amount about the hardness of approximating
NP optimization problems if P = NP.

* Approximation factors are very different even for closely related problems like
Vertex-Cover and Independent-Set.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Approximation Algorithms/Hardness of Approximation

Research has classified many problems based on what kinds of polytime
approximations are possible if P = NP

* Best: (1 + &) factor for any € > 0. (PTAS)
e packing and some scheduling problems, TSP in plane
* Some fixed constant factor > 1. e.g. 2,3/2,8/7,100
* Vertex Cover, Max-3SAT, MetricTSP, other scheduling problems
* Exact best factors or very close upper/lower bounds known for many problems.
* O(logn) factor
* Set Cover, Graph Partitioning problems
« Worst: Q(n'~%) factor for every £ > 0.

* Cligue, Independent-Set, Coloring

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

