CSE 421 Introduction to Algorithms

Lecture 25: Finishing NP Completeness Dealing with NP-completeness: Approximation Algorithms

Given a 3-CNF formula \mathbf{F} with \mathbf{m} clauses and \mathbf{n} variables

- We will create an input for **Subset-Sum** with 2m + 2n numbers that are m + n digits long.
- We will ensure that no matter how we sum them there won't be any carries so each digit in the target *W* will force a separate constraint.
- Instead of calling them w_1, \ldots, w_{2n+2m} we will use mnemonic names:
 - Two numbers for each variable x_i
 - *t_i* and *f_i* (corresponding to *x_i* being true or *x_i* being false)
 - Two extra numbers for each clause C_i
 - *a_j* and *b_j* (two identical filler numbers to handle number of false literals in clause *C_j*)
- We define them by giving their decimal representation...

We include two n + m digit numbers for each Boolean variable x_i

	1	2	3	i	 n	1	2	3	j	 m	
<i>t</i> _{<i>i</i>} =	0	0	0	1	 0	1	0	0	0	 1	Clauses C_1 and C_m contain x_i
f _i =	0	0	0	1	 0	0	1	0	1	 0	Clauses C_2 and C_j contain $\neg x_i$

Boolean part in the first *n* positions:

• Digit *i* of both *t_i* and *f_i* are **1**; the rest are **0**

Clause part in the next *m* positions:

- Digit **j** of **t**_i is **1** if clause **C**_j contains literal **x**_i; the rest are **0**
- Digit **j** of f_i is **1** if clause C_j contains literal $\neg x_i$; the rest are **0**

We also include two extra identical n + m digit numbers for each clause C_j

	1	2	3	i	 n	1	2	 j	 m
<i>a_j</i> =	0	0	0	0	 0	0	0	 1	 0
b _j =	0	0	0	0	 0	0	0	 1	 0

These are:

- All **0** in the Boolean columns
- Digit *j* of both *a_j* and *b_j* are **1** in the clause columns; the rest are **0**

L												
					i					J		
		1	2	3	4		n	1	2	3	4	 m
	$t_1 =$	1	0	0	0		0	1	0	0	0	 1
art:	<i>f</i> ₁ =	1	0	0	0		0	0	1	0	1	 0
าร	<i>t</i> ₂ =	0	1	0	0		0	0	1	0	0	 0
	f ₂ =	0	1	0	0		0	1	0	0	0	 0
set	<i>t</i> ₃ =	0	0	1	0		0	1	0	0	0	 0
301	f ₃ =	0	0	1	0		0	0	0	1	1	 1 0 0 0
			•••	•••	••••	•••	•••					
	<i>a</i> ₁ =	0	0	0	0		0	1	0	0	0	 0
	b ₁ =	0	0	0	0		0	1	0	0	0	 0
	<i>a</i> ₂ =	0	0	0	0		0	0	1	0	0	 0
	b ₂ =	0	0	0	0		0	0	1	0	0	 0
			•••	••••			•••	•••		•••		
	W =	1	1	1	1		1	3	3	3	3	 3

Boolean variable part

First n digit positions ensure that exactly one of t_i or f_i is included in any subset summing to W.

W PAUL G. ALLEN SCHOOL of computer science & engineering

$$C_1 = (x_1 \lor \neg x_2 \lor x_3)$$

$$C_2 = (\neg x_1 \lor x_2 \lor x_5)$$

$$C_3 = (\neg x_3 \lor x_4 \lor x_7)$$

$$C_4 = (\neg x_1 \lor \neg x_3 \lor x_9)$$
...
$$C_m = (x_1 \lor \neg x_8 \lor x_{22})$$

Clause part:

1's in each digit position jcorrespond to the 3 literals that would make clause C_j true.

Every column in the clause part of the block of *t*'s and *f*'s has exactly 3 1's.

The *a*'s and *b*'s add exactly 2 more possible **1**'s per column

		i								j					
		1	2	3	4		n	1	2	3	4		m		
	$t_1 =$	1	0	0	0		0	1	0	0	0		1		
variable part:	<i>f</i> ₁ =	1	0	0	0		0	0	1	0	1		0		
it positions	$t_2 =$	0	1	0	0		0	0	1	0	0		0		
at exactly	<i>f</i> ₂ =	0	1	0	0		0	1	0	0	0		0		
or <mark>f_i</mark> is	$t_3 =$	0	0	1	0		0	1	0	0	0		0		
n any subset to W .	<i>f</i> ₃ =	0	0	1	0		0	0	0	1	1		0		
		••••	•••	•••	•••		•••	•••	•••		••••		•••		
	<i>a</i> ₁ =	0	0	0	0		0	1	0	0	0		0		
	b ₁ =	0	0	0	0		0	1	0	0	0		0		
	<i>a</i> ₂ =	0	0	0	0		0	0	1	0	0		0		
	b ₂ =	0	0	0	0		0	0	1	0	0		0		
		••••		•••	••••		•••		••••	••••	•••				
	W =	1	1	1	1		1	3	3	3	3		3		

Boolean va

First *n* digi ensure tha one of *t_i* o included in summing t

Key idea of clause columns: Column *j* can sum to the target column sum of 3 \Leftrightarrow at least one of the t_i or f_i rows included in the subset contains a **1** in column **j**

The *a*'s and *b*'s add exactly 2 more possible 1's per column

If F satisfiable choose one of t_i or f_i depending on the satisfying assignment. Their sum will have exactly one 1 in each of the first n digits and at least one 1 in every clause digit position. Also include 0, 1, or 2 of each a_j , b_j pair to add to W.

-		-				-							
					i		j						
		1	2	3	4		n	1	2	3	4		m
	<i>t</i> ₁ =	1	0	0	0		0	1	0	0	0		1
ć	<i>f</i> ₁ =	1	0	0	0		0	0	1	0	1		0
	<i>t</i> ₂ =	0	1	0	0		0	0	1	0	0		0
	<i>f</i> ₂ =	0	1	0	0		0	1	0	0	0		0
•	$t_3 =$	0	0	1	0		0	1	0	0	0		0
	<i>f</i> ₃ =	0	0	1	0		0	0	0	1	1		0
d					••••	•••	•••	•••	•••	•••	•••		
У	<i>a</i> ₁ =	0	0	0	0		0	1	0	0	0		0
	b ₁ =	0	0	0	0		0	1	0	0	0		0
	<i>a</i> ₂ =	0	0	0	0		0	0	1	0	0		0
V.	b ₂ =	0	0	0	0		0	0	1	0	0		0
		•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••

 $W = 1 \ 1 \ 1 \ 1 \ \dots \ 1 \ 3 \ 3 \ 3 \ 3 \ \dots \ 3$

If some subset sums to W must

have exactly one of t_i or f_i for each i.

Set variable x_i to true if t_i used and false if f_i used.

Must have three 1's in each clause digit column j since things sum to W.

At most two of these can come from a_j , b_j to one of these 1's must come from the choices of the truth assignment \Rightarrow every clause C_j is satisfied so F is satisfiable.

W PAUL G. ALLEN SCHOOL of computer science & engineering

7

Some other NP-complete examples you should know

Hamiltonian-Cycle: Given a directed graph G = (V, E). Is there a cycle in G that visits each vertex in V exactly once?

Hamiltonian-Path: Given a directed graph G = (V, E). Is there a path p in G of length n - 1 that visits each vertex in V exactly once?

Same problems are also NP-complete for undirected graphs

Note: If we asked about visiting each *edge* exactly once instead of each vertex, the corresponding problems are called **Euler Tour**, **Eulerian-Path** and are polynomial-time solvable.

Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP):

Given: a set of n cities $v_1, ..., v_n$ and distance function d that gives distance $d(v_i, v_j)$ between each pair of cities Find the shortest tour that visits all n cities.

DecisionTSP:

Given: a set of *n* cities $v_1, ..., v_n$ and distance function *d* that gives distance $d(v_i, v_j)$ between each pair of cities *and* a distance *D* Is there a tour of total length at most *D* that visits all *n* cities?

Is there a tour of total length at most **D** that visits all **n** cities?

Hamiltonian-Cycle \leq_P DecisionTSP

Define the reduction given G = (V, E):

- Vertices $V = \{v_1, \dots, v_n\}$ become cities
- Define $d(v_i, v_j) = \begin{cases} 1 & \text{if } (v_i, v_j) \in E \\ 2 & \text{if not} \end{cases}$
- Distance D = |V|.

Claim: There is a Hamiltonian cycle in $G \Leftrightarrow$ there is a tour of length |V|

NP-complete problems we've discussed

```
\textbf{3SAT} \rightarrow \textbf{Independent-Set} \rightarrow \textbf{Clique}
```

```
↓
Vertex-Cover → 01-Programming → Integer-Programming
↓
Set-Cover
→ 3Color
→ Subset-Sum
→ Hamiltonian-Cycle → DecisionTSP
→ Hamiltonian-Path
```

Some intermediate problems

Problems reducible to **NP** problems not known to be polytime:

Basis for the security of current cryptography:

- Factoring: Given an integer N in binary, find its prime factorization.
- Discrete logarithm: Given prime p in binary, and g and x modulo p. Find y such that $x \equiv g^{y} \pmod{p}$ if it exists.

Best algorithms known are $2^{\widetilde{\Theta}(n^{1/3})}$ time.

Other famous ones:

- Graph Isomorphism: Given graphs G and H, can they be relabelled to be the same? Best algorithm now $n^{\Theta(\log^2 n)}$ (recently improved from $2^{\widetilde{\Theta}(n^{1/3})}$) time.
- Nash equilibrium: Given a multiplayer game, find randomized strategies for each player so that no player could do better by deviating.

What to do if the problem you want to solve is NP-hard

1st thing to try:

- You might have phrased your problem too generally
 - e.g., In practice, the graphs that actually arise are far from arbitrary
 - Maybe they have some special characteristic that allows you to solve the problem in your special case
 - For example the Independent-Set problem is easy on "interval graphs"
 - Exactly the case for the Interval Scheduling problem!
 - Search the literature to see if special cases already solved

What to do if the problem you want to solve is NP-hard

2nd thing to try if your problem is a minimization or maximization problem

- Try to find a polynomial-time worst-case approximation algorithm
 - For a minimization problem
 - Find a solution with value $\leq K$ times the optimum
 - For a maximization problem
 - Find a solution with value $\geq 1/K$ times the optimum

Want *K* to be as close to **1** as possible.

Greedy Approximation for Vertex-Cover

```
On input G = (V, E)

W \leftarrow \emptyset

E' \leftarrow E

while E' \neq \emptyset

select any e = (u, v) \in E'

W \leftarrow W \cup \{u, v\}

E' \leftarrow E' \setminus \{edges \ e \in E' \text{ that touch } u \text{ or } v\}
```

This is a better approximation factor than the greedy algorithm that repeatedly chooses the highest degree vertex remaining.

Claim: At most a factor **2** larger than the optimal vertex-cover size.

Proof: Edges selected don't share any vertices so any vertex-cover must choose at least one of u or v each time.

containing every point

Find smallest collection of sets outaining every point

Greedy Set Cover: Repeatedly choose the set that covers the most # of new elements

PAUL G. ALLEN SCHOOL

Greedy Set Cover: Repeatedly choose the set that covers the most # of new elements

Find smallest collection of sets containing every point

Greedy Set Cover: Repeatedly choose the set that covers the most # of new elements

W PAUL G. ALLEN SCHOOL of computer science & engineering

Greedy Set Cover: Repeatedly choose the set that covers the most # of new elements

Theorem: Greedy finds best cover up to a factor of $\ln n$.

PAUL G. ALLEN SCHOOL of computer science & engineering

PAUL G. ALLEN SCHOOL of computer science & engineering

Greedy Approximation to Set-Cover

Theorem: If there is a set cover of size k then the greedy set cover has size $\leq k \ln n$.

Proof: Suppose that there is a set cover of size *k*.

At each step all elements remaining are covered by these k sets.

So always a set available covering $\geq 1/k$ fraction of remaining elts.

So # of uncovered elts after *i* sets $\leq \left(1 - \frac{1}{k}\right) \times (\# \text{ uncovered after } i - 1 \text{ sets}).$

Total after t sets $\leq n \left(1 - \frac{1}{k}\right)^t < n \cdot e^{-t/k} = 1$ for $t = k \ln n$.

$$1 - x < e^{-x}$$
 for $x > 0$

Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP):

Given: a set of n cities $v_1, ..., v_n$ and distance function d that gives distance $d(v_i, v_j)$ between each pair of cities Find the shortest tour that visits all n cities.

MetricTSP:

The distance function **d** satisfies the triangle inequality:

 $d(u,w) \leq d(u,v) + d(v,w)$

Proper tour: visit each city exactly once.

Minimum Spanning Tree Approximation: Factor of 2

TSP: Minimum Spanning Tree Factor 2 Approximation

Euler tour covers each edge twice so $TOUR_{MST}(G) = 2 MST(G)$

Any tour contains a spanning tree so $MST(G) \leq TOUR_{OPT}(G)$

So $TOUR_{MST}(G) = 2 MST(G) \le 2 TOUR_{OPT}(G)$

This visits each node more than once, so not a proper tour.

Why did this work?

- We found an Euler tour on a graph that used the edges of the original graph (possibly repeated).
- The weight of the tour was the total weight of the new graph.
- Suppose now
 - All edges possible
 - Weights satisfy the triangle inequality (MetricTSP)

MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Euler Tour of doubled MST:

Euler tour covers each edge twice so $TOUR_{MST}(G) = 2 MST(G)$

Any tour contains a spanning tree so $MST(G) \leq TOUR_{OPT}(G)$

So $TOUR_{MST}(G) = 2 MST(G) \le 2 TOUR_{OPT}(G)$

Instead: take shortcut to next unvisited vertex on the Euler tour By triangle inequality this can only be shorter.

MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Instead: take shortcut to next unvisited vertex on the Euler tour By triangle inequality this can only be shorter.

MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Instead: take shortcut to next unvisited vertex on the Euler tour By triangle inequality this can only be shorter.

Christofides Algorithm: A factor 3/2 approximation

Any subgraph of the weighted complete graph that has an Euler Tour will work also!

Fact: To have an Euler Tour it suffices to have all degrees even.

Christofides Algorithm:

- Compute an MST T
- Find the set **0** of odd-degree vertices in **T**
- Add a minimum-weight perfect matching* M on the vertices in O to T to make every vertex have even degree
 - There are an even number of odd-degree vertices!
- Use an Euler Tour E in $T \cup M$ and then shortcut as before

Theorem: $Cost(E) \le 1.5 TOUR_{OPT}$

*Requires finding optimal matchings in general graphs, not just bipartite ones

Christofides Approximation

Christofides Approximation

Any tour costs at least the cost of two matchings M_1 and M_2 on O

 $2 cost(M) \le cost(M_1) + cost(M_2) \le TOUR_{OPT}$

Christofides Approximation Final Tour

Max-3SAT Approximation

Max-3SAT: Given a 3CNF formula *F* find a truth assignment that satisfies the maximum possible # of clauses of *F*.

Observation: A single clause on 3 variables only rules out 1/8 of the possible truth assignments since each literal has to be false to be ruled out.

 \Rightarrow a random truth assignment will satisfy the clause with probability 7/8.

So in expectation, if \mathbf{F} has \mathbf{m} clauses, a random assignment satisfies $7\mathbf{m}/8$ of them.

A greedy algorithm can achieve this: Choose most frequent literal appearing in clauses that are not yet satisfied and set it to true.

If $\mathbf{P} \neq \mathbf{NP}$ no better approximation is possible

Knapsack Problem

Each item has a value v_i and a weight w_i . Maximize $\sum_{i \in S} v_i$ with $\sum_{i \in S} w_i \leq W$.

Theorem: For any $\varepsilon > 0$ there is an algorithm that produces a solution within $(1 + \varepsilon)$ factor of optimal for the Knapsack problem with running time $O(n^2/\varepsilon^2)$

"Polynomial-Time Approximation Scheme" or PTAS

Algorithm: Maintain the high order bits in the dynamic programming solution.

Hardness of Approximation

Polynomial-time approximation algorithms for NP-hard optimization problems can sometimes be ruled out unless P = NP.

Easy example:

Coloring: Given a graph G = (V, E) find the smallest k such that G has a k-coloring.

Because 3-coloring is NP-hard, no approximation ratio better than 4/3 is possible unless P = NP because you would have to be able to figure out if a 3-colorable graph can be colored in < 4 colors. i.e. if it can be 3-colored.

- We now know a huge amount about the hardness of approximating NP optimization problems if $P \neq NP$.
- Approximation factors are very different even for closely related problems like Vertex-Cover and Independent-Set.

Approximation Algorithms/Hardness of Approximation

Research has classified many problems based on what kinds of polytime approximations are possible if $P \neq NP$

- **Best:** $(1 + \varepsilon)$ factor for any $\varepsilon > 0$. (PTAS)
 - packing and some scheduling problems, TSP in plane
- Some fixed constant factor > 1. e.g. 2, 3/2, 8/7, 100
 - Vertex Cover, Max-3SAT, MetricTSP, other scheduling problems
 - Exact best factors or very close upper/lower bounds known for many problems.
- $\Theta(\log n)$ factor
 - Set Cover, Graph Partitioning problems
- Worst: $\Omega(n^{1-\varepsilon})$ factor for every $\varepsilon > 0$.
 - Clique, Independent-Set, Coloring

