
CSE 421

Introduction to Algorithms

Lecture 25: Finishing NP Completeness

Dealing with NP-completeness:

Approximation Algorithms
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3SAT≤�Subset-Sum

Given a 3-CNF formula � with � clauses and � variables

• We will create an input for Subset-Sum with �� + �� numbers that are � + �
digits long.

• We will ensure that no matter how we sum them there won’t be any carries so 
each digit in the target 	 will force a separate constraint.

• Instead of calling them 
�, … , 
����� we will use mnemonic names:

• Two numbers for each variable ��
• �� and ��  (corresponding to �� being true or �� being false)

• Two extra numbers for each clause ��
• �� and �� (two identical filler numbers to handle number of false literals

in clause ��)
• We define them by giving their decimal representation...
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3SAT≤�Subset-Sum
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We include two � + � digit numbers for each Boolean variable ��

Boolean part in the first � positions:  

• Digit � of both �� and �� are �; the rest are �

Clause part in the next � positions:  

• Digit � of �� is � if clause �� contains literal ��; the rest are �
• Digit � of �� is � if clause �� contains literal ¬��; the rest are �

Clauses �� and �� contain ��
Clauses �� and �� contain ¬��

1 2 3 � … � 1 2 3 � … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �



3SAT≤�Subset-Sum
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We also include two extra identical � + � digit numbers for each clause ��

1 2 3 � … � 1 2 … � … �
�� = � � � � … � � � … � … �
�� = � � � � … � � � … � … �

These are:

• All � in the Boolean columns

• Digit � of both �� and �� are � in the clause columns; the rest are �



3SAT≤�Subset-Sum
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�� = (�� ∨ ¬�� ∨ ��)

Boolean variable part:

First � digit positions 

ensure that exactly 

one of �� or �� is 

included in any subset 

summing to 	.

Clause part:�’s in each digit position �
correspond to the 3 literals that 

would make clause �� true. 

� � �� = (¬�� ∨ �� ∨ �!)
�� = (¬�� ∨ �" ∨ �#)
�" = (¬�� ∨ ¬�� ∨ �$)
�� = (�� ∨ ¬�% ∨ ���)…

1 2 3 4 … � 1 2 3 4 … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
… … … … … … … … … … … … …

�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �

… … … … … … … … … … … … …

	 = � � � � … � � � � � … �

Every column in the clause part 

of the block of �’s and �’s has

exactly 3 �’s. 

The �’s and �’s add exactly 2 

more possible �’s per column
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�� = (�� ∨ ¬�� ∨ ��)

Boolean variable part:

First � digit positions 

ensure that exactly 

one of �� or �� is 

included in any subset 

summing to 	.

Key idea of clause columns:

Column � can sum to the target 

column sum of �⇔ at least one of the �� or ��
rows included in the subset 

contains a � in column �

� � �� = (¬�� ∨ �� ∨ �!)
�� = (¬�� ∨ �" ∨ �#)
�" = (¬�� ∨ ¬�� ∨ �$)
�� = (�� ∨ ¬�% ∨ ���)…

1 2 3 4 … � 1 2 3 4 … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
… … … … … … … … … … … … …

�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �

… … … … … … … … … … … … …

	 = � � � � … � � � � � … �
The �’s and �’s add exactly 2 

more possible �’s per column
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If � satisfiable choose

one of �� or ��
depending on the 

satisfying assignment.

Their sum will have 

exactly one � in each 

of the first � digits and 

at least one � in every 

clause digit position.

Also include 0, 1, or 2 

of each��, �� pair to add to 	.

If some subset sums to 	 must 

have exactly one of �� or �� for 

each �.

Set variable �� to true if �� used and 

false if �� used.

Must have three �’s in each clause 

digit column � since things sum to 	.

At most two of these can come 

from ��, �� to one of these �’s must 

come from the choices of the truth 

assignment ⇒ every clause �� is 

satisfied so � is satisfiable.

� �1 2 3 4 … � 1 2 3 4 … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
… … … … … … … … … … … … …

�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �
�� = � � � � … � � � � � … �

… … … … … … … … … … … … …

	 = � � � � … � � � � � … �



Some other )*-complete examples you should know

Hamiltonian-Cycle: Given a directed graph + = ,, - .  Is there a cycle in +
that visits each vertex in , exactly once?  

Hamiltonian-Path: Given a directed graph + = ,, - .  Is there a path . in + of length � − � that visits each vertex in , exactly once? 

Same problems are also )*-complete for undirected graphs

Note: If we asked about visiting each edge exactly once instead of each 

vertex, the corresponding problems are called Euler Tour, Eulerian-Path and 

are polynomial-time solvable.

8



Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP): 

Given: a set of � cities 0�, … , 0� and distance function 1 that gives distance 1(0�, 0�) between each pair of cities

Find the shortest tour that visits all � cities.

DecisionTSP:

Given: a set of � cities 0�, … , 0� and distance function 1 that gives distance 1(0�, 0�) between each pair of cities and a distance 2
Is there a tour of total length at most 2 that visits all � cities?
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Hamiltonian-Cycle ≤� DecisionTSP

Define the reduction given + = (,, -):

• Vertices , = {0�, … , 0�} become cities

• Define 1 0�, 0� = 5� if 0�, 0� ∈ -
� if not

• Distance 2 = |,|.
Claim: There is a Hamiltonian cycle in + ⇔ ⇔ ⇔ ⇔ there is a tour of length |,|
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)*-complete problems we’ve discussed

3SAT → → → → Independent-Set → Clique

↓↓↓↓
Vertex-Cover → 01-Programming → Integer-Programming

↓↓↓↓
Set-Cover

3Color 

Subset-Sum

Hamiltonian-Cycle → DecisionTSP

Hamiltonian-Path
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Some intermediate problems

Problems reducible to )* problems not known to be polytime:

Basis for the security of current cryptography:

• Factoring: Given an integer ? in binary, find its prime factorization.

• Discrete logarithm: Given prime . in binary, and @ and � modulo ..  

Find A such that � ≡ @A(mod .) if it exists.

Best algorithms known are �EF ��/�
time.

Other famous ones:

• Graph Isomorphism:  Given graphs + and H, can they be relabelled to be the same?    

Best algorithm now �I JKL�� (recently improved from �EF ��/�
) time.

• Nash equilibrium: Given a multiplayer game, find randomized strategies for each 

player so that no player could do better by deviating.
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What to do if the  problem you want to solve is NP-hard

1st thing to try:

• You might have phrased your problem too generally

• e.g., In practice, the graphs that actually arise are far from arbitrary

• Maybe they have some special characteristic that allows you to solve the 

problem in your special case

• For example the Independent-Set problem is easy on “interval graphs”

• Exactly the case for the Interval Scheduling problem!

• Search the literature to see if special cases already solved
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What to do if the  problem you want to solve is NP-hard

2nd thing to try if your problem is a minimization or maximization problem

• Try to find a polynomial-time worst-case approximation algorithm

• For a minimization problem 

• Find a solution with value ≤ M times the optimum

• For a maximization problem

• Find a solution with value ≥ �/M times the optimum

Want M to be as close to � as possible.
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Greedy Approximation for Vertex-Cover

On input + = (,, -)
	 ← ∅
-Q ← -
while -Q ≠ ∅

select any S = T, 0 ∈ -′
	 ← 	 ∪ {T, 0}
-Q ← -′ ∖ {edges S ∈ -′ that touch T or 0} 

Claim: At most a factor � larger than the optimal vertex-cover size. 

Proof: Edges selected don’t share any vertices so any vertex-cover must choose 

at least one of T or 0 each time. 

This is a better approximation factor 

than the greedy algorithm that

repeatedly chooses the highest degree 

vertex remaining.
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Set-Cover

Find smallest 

collection of sets 

containing every point
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Set-Cover

Set cover size 4

Find smallest 

collection of sets 

containing every point
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Set-Cover Greedy Set Cover:  Repeatedly choose the set 

that covers the most # of new elements

Find smallest 

collection of sets 

containing every point
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Set-Cover Greedy Set Cover:  Repeatedly choose the set 

that covers the most # of new elements

Find smallest 

collection of sets 

containing every point
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Set-Cover Greedy Set Cover:  Repeatedly choose the set 

that covers the most # of new elements

Find smallest 

collection of sets 

containing every point
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Find smallest 

collection of sets 

containing every point

Set-Cover Greedy Set Cover:  Repeatedly choose the set 

that covers the most # of new elements

Theorem:Greedy finds best cover up to a factor of ln �.
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Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered
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Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered
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Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered
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Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered
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Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered
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Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered

Greedy solution:! sets

Greedy solution:∼ log�� sets



Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered

Optimal:� sets
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Greedy Approximation to Set-Cover

Theorem: If there is a set cover of size b then the greedy set cover has 

size ≤ b ln �.

Proof: Suppose that there is a set cover of size b. 

At each step all elements remaining are covered by these b sets.

So always a set available covering ≥ �/b fraction of remaining elts.

So # of uncovered elts after � sets ≤ � − �
b × (# uncovered after � − � sets).

Total after � sets ≤ � � − �
b

� < � ⋅ Sf�/b = � for � = b ln �.
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Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP): 

Given: a set of � cities 0�, … , 0� and distance function 1 that gives distance 1(0�, 0�) between each pair of cities

Find the shortest tour that visits all � cities.   

MetricTSP:

The distance function 1 satisfies the triangle inequality:

1 T, 
 ≤ 1 T, 0 + 1(0, 
)
Proper tour: visit each city exactly once.
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Minimum Spanning Tree Approximation: Factor of 2
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TSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree 

so hij + ≤ jklmk�j(+)

Euler tour covers each edge twice 

so jklmhij + = � hij(+)

This visits each node more than once, so not a proper tour.

So jklmhij + = � hij + ≤ � jklmk�j(+)

Euler Tour of doubled MST: 
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Why did this work?

• We found an Euler tour on a graph that used the edges of the 

original graph (possibly repeated).

• The weight of the tour was the total weight of the new graph.

• Suppose now

• All edges possible

• Weights satisfy the triangle inequality (MetricTSP)
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MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree 

so hij + ≤ jklmk�j(+)

Euler tour covers each edge twice 

so jklmhij + = � hij(+)
Euler Tour of doubled MST: 

Instead:  take shortcut to next unvisited vertex on the Euler tour

By triangle inequality this can only be shorter. 

So jklmhij + = � hij + ≤ � jklmk�j(+)
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MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree 

so hij + ≤ jklmk�j(+)

So jklmhij + = � hij + ≤ � jklmk�j(+)

Instead:  take shortcut to next unvisited vertex on the Euler tour

By triangle inequality this can only be shorter. 

Euler tour covers each edge twice 

so jklmhij + = � hij(+)
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MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree 

so hij + ≤ jklmk�j(+)

So jklmhij + = � hij + ≤ � jklmk�j(+)

Final: 

Instead:  take shortcut to next unvisited vertex on the Euler tour

By triangle inequality this can only be shorter. 

Euler tour covers each edge twice 

so jklmhij + = � hij(+)
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Christofides Algorithm: A factor 3/2 approximation

Any subgraph of the weighted complete graph that has an Euler Tour will work also!

Fact:  To have an Euler Tour it suffices to have all degrees even.  

Christofides Algorithm:

• Compute an MST j
• Find the set k of odd-degree vertices in j
• Add a minimum-weight perfect matching* h on the vertices in k to j to make every vertex 

have even degree

• There are an even number of odd-degree vertices!

• Use an Euler Tour - in j ∪ h and then shortcut as before

Theorem:  �no� - ≤ �. ! jklmk�j
*Requires finding optimal matchings in general graphs, not just bipartite ones
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Christofides Approximation

Any tour contains a spanning tree 

so hij ≤ jklmk�j

We just need to show that the matching h
has qno� h ≤ jklmk�j/�
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Christofides Approximation

� qno� h ≤ qno� h� + qno� h� ≤ jklmk�j

Any tour costs at least the cost of two matchings h� and h� on k

Tour
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Christofides Approximation Final Tour

Total qno� - ≤ � jklmk�j/�
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Max-3SAT Approximation

Max-3SAT: Given a 3CNF formula � find a truth assignment that satisfies 

the maximum possible # of clauses of �.

Observation: A single clause on 3 variables only rules out �/% of the possible truth 

assignments since each literal has to be false to be ruled out.

⇒ a random truth assignment will satisfy the clause with probability #/%.

So in expectation, if � has � clauses, a random assignment satisfies #�/% of them.

A greedy algorithm can achieve this:  Choose most frequent literal appearing in 

clauses that are not yet satisfied and set it to true.

If * ≠ )* no better approximation is possible 
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Knapsack Problem

Each item has a value 0� and a weight 
�.  
Maximize ∑ 0��∈i with ∑ 
��∈i ≤ 	.

Theorem: For any s > � there is an algorithm that produces a solution 

within (� + s) factor of optimal for the Knapsack problem with running 

time t(��/s�)
“Polynomial-Time Approximation Scheme”  or PTAS 

Algorithm: Maintain the high order bits in the dynamic programming 

solution. 
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Hardness of Approximation

Polynomial-time approximation algorithms for )*-hard optimization problems 

can sometimes be ruled out unless * = )*.
Easy example:

Coloring: Given a graph + = (,, -) find the smallest b such that + has a b-coloring.

Because �-coloring is )*-hard, no approximation ratio better than "/� is possible unless * = )*
because you would have to be able to figure out if a �-colorable graph can be colored in < "
colors. i.e. if it can be �-colored.

• We now know a huge amount about the hardness of approximating )* optimization problems if * ≠ )*.    

• Approximation factors are very different even for closely related problems like 

Vertex-Cover and Independent-Set.
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Approximation Algorithms/Hardness of Approximation

Research has classified many problems based on what kinds of polytime 

approximations are possible if * ≠ )*
• Best: (� + s) factor for any s > �.  (PTAS)

• packing and some scheduling problems, TSP in plane

• Some fixed constant factor > �. e.g. �, �/�, %/#, ���
• Vertex Cover, Max-3SAT, MetricTSP, other scheduling problems

• Exact best factors or very close upper/lower bounds known for many problems.

• Θ(log �) factor

• Set Cover, Graph Partitioning problems

• Worst: Ω(��fs) factor for every s > �.

• Clique, Independent-Set, Coloring

44



45



46

3

4

4

2

7

2

79

6

6

6

6

5

5

4

5

5

5

5

5

1

1

1

1

1

4

1

3
3

3

3 3

3

3
3

3

3

3
3

3

3

3

3

3

3

4

7 9
3 3

7 3
93 35

1 33

37
5 3 35 1

3
7


