CSE 421
Introduction to Algorithms

Lecture 25: Finishing NP Completeness
Dealing with NP-completeness:
Approximation Algorithms

See. @ch)rw\ ML) IR Q- ﬁm\ SI N
S(J/\Q{/(VL(I(
Lir’““\/ fory Wt‘\/"\'LL‘/ ‘"C o VOT ™ we <xbe Pu

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

3SAT<pSubset-Sum

Given a 3-CNF formula F with m clauses and n variables

e T—

=
* We will create an input for Subset-Sum with Zw numbers thatare m +n
digits long.
o

* We will ensure that no matter how we sum them there won’t be any carries so
each digit in the target W will force a separate constraint.

* Instead of calling them wy, ..., W5, 2., We will use mnemonic names:
* Two numbers for each variable x;
e t;and f; (corresponding to x; being true or x; being false)
* Two extra numbers for each clause (;
° a; and b]- (two identical filler numbers to handle number of false literals
in clause C})

* We define them by giving their decimal representation...

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

3SAT<pSubset-Sum

We include two n + m digit numbers for each Boolean variable x;
T

1 2 3 1 n 1l 2 3 j m
t;= 0 0 0 1 01 0 00 .. 1 Clauses €4 and C,,, contain x;
Fi= 00 0 1 0010 1 0 Clauses C; and C; contain —x;

Boolean part in the first n positions:
* Digitiof both t; and f; are 1; the rest are 0

Clause part in the next m positions:
* Digitjoft;is1ifclause C; contains literal x;; the rest are 0
* Digitj of f; is 1 if clause C; contains literal —x;; the rest are 0

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

3SAT<pSubset-Sum

We also include two extra identical n + m digit numbers for each clause C;

123 i .n12.j.m
ai=0000 .000 .1.0
bj= 0000 ..000 ..1 .0

/’

These are:
e All0inthe Boolean columns
* Digitj of both a; and bj are 1 in the clause columns; the rest are 0

KQD %ch{ﬂqv ﬁ(//t Mm}
N C (ounce CJ‘

WCJY‘” N S@M@W Y agrk

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

i [Cz = (—|x1Vx2Vx5)
Vi
12 3 4 .. n1 (2)/?3\4 . m Cs = (ox3 Vg v) 22— Y,
t;= 1 0 0 0 olrldffo]o].. 1 e
- | C4_ = (—|x1 Vax3V xg) (O(&
Boolean variable part: =1000 010]1 y 1{.. 0
First n digit positions &, = 0 1 0 0 olo[1Jolo].. o Cm = (X1 V 2XgV X22)
ensure that exactly f=01 00 oltlololol.. o Clause part:
oneof t; or f;is 00 1 0 olilololo 0) .
included in any subset ~ I3 = : 1’s in each digit position j
summing to W 3= 00 1 0 ololol1l1l]l.. o correspond to the 3 literals that
S would make clause C; true.
aa=010 00 0i1.0 00 ..0 Every column in the clause part
b= 0 0 0 O 0/1.0 0 0 .. 0 of the block of t’s and f’s has
a= 00 0 0 0l0 1 0 0 .. 0o exactly31’s.
b,= 0 0 0 0 0Oi01.0 0 .. 0

The a’s and b’s add exactly 2
...... more pOSSIb|e 1’5 per Column

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

3SATSPSU bset-Sum Ci = (x1V XV X3)

i Cy, = (x4 VXxyVXxsg)
1234 .n12 3|[4f/.m Cs = (mx3 Vg V)
t{y= 1 0 0 O 010 0j0}).. 1
C4_ = (—|x1 VvV X3 VvV xg)
Boolean variable part: f1= 1 0 0 0 0 010|1}..0
First n digit positions &, = 0 1 0 0 00 1o0]o]. o Cm = (X1 V 2XgV X22)
ensure that exactl _
one of t; or f; is Y fo= 0100 010 010)..0 Key idea of clause columns:
) N t3= 0 0 1 0 0 1 0 0J0}.. 0 Columnjcansum to the target
included in any subset | £3
summing to W. fz3= 00 1 0 0O 00 1|1}..0 column sum o
...... & at least one of the £; or f;
4= 00 0 0 01000 . 0 rows |.ncludefj in the sulc_)set
containsa 1 in column j
b= 0 0 0 0 010 0 0 .. 0
a,= 0 0 0 O O 010 0 .. 0
b,= 0 0 0 0 O 0100 .. 0

The a’s and b’s add exactly 2
...... more pOSSIb|e 1’5 per Column

w= 1111 .. 133 3 3 ..3

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

3SAT<pSubset-Sum

i J
1 2 3 4 n 1l 2 3 4 .. m

=1000 01000 . 1 If some subset sums to W must
one of t; or f; 0100 00100 . o0 eachi
depending on the 010 0 0100 0 o et variable x; to true if t; used and
satisfying assignment. 00 1 0 0100 0 0 false if f; used.
Their sum will have ' Must have three 1’s in each clause
exactly one 1 in each 0010 ..0001T1.. 0 (digitcolumnj since things sum to
of the first n digitsand - | - - v (4
at least one 1 in every 000 0 0100 0 . o Atmosttwoofthesecancome
clause digit position. 000 O 01000 . 0 from a;, b; to one of these 1’s must
Also include 0, 1, or 2 come from the choices of the truth

>0 Include s, &, or 0 0 0O O 010 0 .. 0 . .

of each assignment = every clause Cj is
aj, b]- pair to add to 0000 00100..0 satisfied so F is satisfiable.

=111 1 .13 3 3 3 .. 3 |

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Some other NP-complete examples you should know

Hamiltonian-Cycle: Given a directed graph G = (V, E). Is there a cyclein G
that visits each vertex in V exactly once?

Hamiltonian-Path: Given a directed graph G = (V, E). Is there a path p in
G of length n — 1 that visits each vertex in V exactly once?

Same problems are also NP-complete for undirected graphs

2 g A

Note: If we asked about visiting each edge exactly once instead of each—
vertex, the corresponding problems are called Euler Tour, Eulerian-Path and
are polynomial-time solvable.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP):

Given: a set of n cities v, ..., V,, and distance function d that gives distance
d(v;, v;j) between each pair of cities

Find the shortest tour that visits all n cities.

DecisionTSP:

Given: a set of n cities v4, ..., V,, and distance function d that gives distance
d(v;, v;) between each pair of cities and a distance D/

Is there a tour of total length at most D that visits all n cities?

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

NP-complete problems we’ve discussed

3SAT — Independent-Set — Clique
)
Vertex-Cover — 01-Programming — Integer-Programming

)

Set-Cover

—> 3Color

L——> Subset-Sum

> Hamiltonian-Cycle — DecisionTSP

L———> Hamiltonian-Path

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Some intermediate problems

Problems reducible to NP problems not known to be polytime:

Basis for the security of current cryptography:
* Factoring: Given an integer N in binary, find its prime factorization. £Z—

* Discrete logarithm: Given prime p in binary, andﬂ/and x modulo p.
Find y such that x = g”(mod p) if it exists.

: 8(nl73) ..
Best algorithms known are wme.

Other famous ones:

* Graph Isomorphism: Given graphs G and H, can they be relabelled to be the same?

0(log

Best algorithm now n “n) (recently improved from Z@("l/g)) time.

* Nash equilibrium: Given a multiplayer game, find randomized strategies for each
player so that no player could do better by deviating.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

What to do if the problem you want to solve is NP-hard

15t thing to try:

* You might have phrased your problem too generally
* e.g., In practice, the graphs that actually arise are far from arbitrary

 Maybe they have some special characteristic that allows you to solve the
problem in your special case

* For example the Independent-Set problem is easy on “interval graphs”

» Exactly the case for the Interval Scheduling problem! \f
» Search the literature to see if special cases already solved 679 l//’!*?’ & et

vy VE gragh ‘3~\

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

What to do if the problem you want to solve is NP-hard
2"d thing to try if your problem is a minimization or maximization problem

* Try to find a polynomial-time worst-case approximation algorithm

e For a minimization problem
* Find a solution with value < K times the optimum

* For a maximization problem
* Find a solution with value = 1 /K times the optimum

Want K to be as close to 1 as possible.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greedy Approximation for Vertex-Cover J@/@

On input G = (V,E)

W« Q@ This is a better approxinfat
than the greedy algorith

!/
E'<E repeatedly chooses the higf

while E' # @ vertex remaining.
select anye = (u,v) € E’ (_‘Q {-(‘ Q’\A
///
W< WuU{uv} Q& (%3 ﬂ“’é
E' < E"\ {edges e € E' that touch u or v}

Claim: At most a factor 2 larger than the optimal vertex-cover size.

Proof: Edges selected dﬁshare any vertices so any vertex-cover must choose
at least one of u or v each time.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Set-Cover

Find smallest
collection of sets
containing every point

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Set-Cover

Find smallest
collection of sets

containing every point Set cover size 4

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Set-Cover Greedy Set Cover: Repeatedly choose the set

that covers the most # of new elements

Find smallest i

collection of sets
containing every point

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Set-Cover Greedy Set Cover: Repeatedly choose the set

that covers the most # of new elements

Find smallest i

collection of sets
containing every point

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Set-Cover Greedy Set Cover: Repeatedly choose the set

that covers the most # of new elements

Find smallest
collection of sets
containing every point

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Set-Cover Greedy Set Cover: Repeatedly choose the set

that covers the most # of new elements

Find smallest
collection of sets
containing every point

Theorem: Greedy finds best cover up to a factor of In n.

PAUL G. ALLEN SCHOOL 20

OF COMPUTER SCIENCE & ENGINEERING

Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered

()
()
000 (¥
0000 —
OO0 ||O

1 O000
OO 00 * ’
_ VAN J

_ J

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered

()
()
0000 —
OO0 o) —
00 |@
| 0000)
10000 ‘
0000 _
_ VRN W,

_ J

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered

()
(
0000 —
OO0 o) —
00 |@
| 0000)
10000 ‘
0000 _
_ J J

_ J

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered

()
(
0000 —
OO0 o) —
00 |@
| 0000)
10000 ‘
0000 _
_ J J

_ J

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered

()
(
OO00O ()
OO00O —
OO0 ||O
4 | | J
10000 \
OCOO00O ‘ ’
\ J J

_ J

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered

(")
)

0000

Greedy solution:
5 sets

-

OO0 OO
OO OO OO0 | O
“ “ .‘ . Greedy solution:

OCOO00O
\

N J ~ log,n sets
_ J

PAUL G. ALLEN SCHOOL

0 J

Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered

Optimal:
2 sets

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greedy Approximation to Set-Cover

Theorem: If there is a set cover of size k then the greedy set cover has

— <

size < kInn. _n
Proof: Suppose that there is a set cover of sueic_., s (Z\ f/k/)

At each step all elements remaining are covered by these k sets.

So always a set available covering = 1é%action of remaining elts.

. 1 .
So # of uncovered elts after i sets < (1 — ;) X (# uncovered after i — 1 sets).
e E—— ——
-———

t
TotaIaftertsetsSn(l—l <n-eth=1fort=klnn. =
// e - ———
Q@, lbl 1—-x<e*forx>0 f
& el

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

