CSE 421 Introduction to Algorithms

Lecture 25: Finishing NP Completeness Dealing with NP-completeness: Approximation Algorithms

See Edution merrage re-final even Scheduling Emril/Port Privately if you CANNOT we extra time

3SAT≤_P**Subset-Sum**

Given a 3-CNF formula *F* with *m* clauses and *n* variables

- We will create an input for Subset-Sum with 2m + 2n numbers that are m + n digits long.
- We will ensure that no matter how we sum them there won't be any carries so each digit in the target W will force a separate constraint.
- Instead of calling them w_1, \ldots, w_{2n+2m} we will use mnemonic names:
 - Two numbers for each variable x_i
 - *t_i* and *f_i* (corresponding to *x_i* being true or *x_i* being false)
 - Two extra numbers for each clause C_i
 - *a_j* and *b_j* (two identical filler numbers to handle number of false literals in clause *C_j*)
- We define them by giving their decimal representation...

We include two n + m digit numbers for each Boolean variable x_i

	1	2	3	i	 n	1	2	3	j	 m	
<i>t</i> _{<i>i</i>} =	0	0	0	1	 0	1	0	0	0	 1	Clauses C_1 and C_m contain x_i
$\overline{f_i} =$	0	0	0	1	 0	0	1	0	1	 0	Clauses C_2 and C_j contain $\neg x_i$

Boolean part in the first *n* positions:

• Digit *i* of both *t_i* and *f_i* are **1**; the rest are **0**

Clause part in the next *m* positions:

- Digit **j** of **t**_i is **1** if clause **C**_j contains literal **x**_i; the rest are **0**
- Digit **j** of f_i is **1** if clause C_j contains literal $\neg x_i$; the rest are **0**

3SAT≤_P**Subset-Sum**

We also include two extra identical n + m digit numbers for each clause C_j

	1	2	3	i	 n	1	2		j	 m
<i>a_j</i> =	0	0	0	0	 0	0	0		1	 0
b _i =	0	0	0	0	 0	0	0		1	 0
								<		

These are:

- All **0** in the Boolean columns
- Digit **j** of both **a**_j and **b**_j are **1** in the clause columns; the rest are **0**

3SAT≤ _P S		$C_{(}$	Cun										
		1	2	3	i 4		n	1	2	3			m
	~			-			n			d	Ŧ		
	$t_1 =$	1	0	0	0		0		0	0	0		1
Boolean variable part:	f ₁ =	1	0	0	0		0	0	1	0 ⁄	1		0
First n digit positions	$t_2 =$	0	1	0	0		0	0	1	0	0		0
ensure that exactly	$f_2 =$	0	1	0	0		0	1	0	0	0		0
one of t_i or f_i is	$t_{3} =$	0	0	1	0		0	1	0	0	0		0
included in any subset summing to <i>W</i> .	f ₃ =	0	0	1	0		0	0	0	1	1		0
		•••	•••	•••	•••	•••	•••						
	<i>a</i> ₁ =	0	0	0	0		0	1	0	0	0		0
	b ₁ =	0	0	0	0		0	1	0	0	0		0
	<i>a</i> ₂ =	0	0	0	0		0	0	1	0	0		0
	b ₂ =	0	0	0	0		0	0	1	0	0		0
	•••						•••						
	<i>W</i> =	1	1	1	1		1	3	3	3	3		3

$C_{1} = (x_{1} \lor \neg x_{2} \lor x_{3})$ $C_{2} = (\neg x_{1} \lor x_{2} \lor x_{5})$ $C_{3} = (\neg x_{3} \lor x_{4} \lor x_{7})$ $C_{4} = (\neg x_{1} \lor \neg x_{3} \lor x_{9})$ \vdots $C_{m} = (x_{1} \lor \neg x_{8} \lor x_{22})$

Clause part:

1's in each digit position jcorrespond to the 3 literals that would make clause C_j true.

Every column in the clause part of the block of t's and f's has exactly 3 1's.

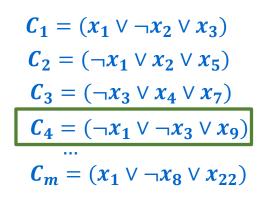
The *a*'s and *b*'s add exactly 2 more possible **1**'s per column

		i								j						
		1	2	3	4		n	1	2	3	4		m			
	<i>t</i> ₁ =	1	0	0	0		0	1	0	0	0		1			
variable part:	<i>f</i> ₁ =	1	0	0	0		0	0	1	0	1		0			
it positions	$t_2 =$	0	1	0	0		0	0	1	0	0		0			
at exactly	f ₂ =	0	1	0	0		0	1	0	0	0		0			
or <mark>f_i</mark> is	$t_3 =$	0	0	1	0		0	1	0	0	0		0			
n any subset to <mark>W</mark> .	<i>f</i> ₃ =	0	0	1	0		0	0	0	1	1		0			
	•••	•••	•••	•••	•••		•••	•••	•••	••••	••••		•••			
	<i>a</i> ₁ =	0	0	0	0		0	1	0	0	0	•	0			
	b ₁ =	0	0	0	0		0	1	0	0	0		0			
	<i>a</i> ₂ =	0	0	0	0		0	0	1	0	0		0			
	b ₂ =	0	0	0	0		0	0	1	0	0		0			
				••••	••••		••••	••••	••••	••••	••••					
	W =	1	1	1	1		1	3	3	3	3		3			

3SAT≤_PSubset-Sum

Boolean v

First *n* digi ensure tha one of *t_i* o included in summing t



Key idea of clause columns: Column *j* can sum to the target column sum of 3 \Leftrightarrow at least one of the t_i or f_i rows included in the subset contains a **1** in column **j**

The *a*'s and *b*'s add exactly 2 more possible 1's per column

3SAT≤_P**Subset-Sum**

If **F** satisfiable choose one of **t**_i or **f**_i depending on the satisfying assignment. Their sum will have exactly one **1** in each of the first **n** digits and at least one **1** in every clause digit position. Also include 0, 1, or 2 of each

 a_j, b_j pair to add to **W**

	Jubset-Julli													
					i					j				
	\frown	1	2	3	4		n	1	2	3	4		m	
	$t_1 =$	1	0	0	0		0	1	0	0	0		1	
e	<i>f</i> ₁ =	1	0	0	0		0	0	1	0	1		0	
	$t_2 =$	0	1	0	0		0	0	1	0	0		0	
	f ₂ =	0	1	0	0		0	1	0	0	0		0	
t.	$t_3 =$	0	0	1	0		0	1	0	0	0		0	
ו	<i>f</i> ₃ =	0	0	1	0		0	0	0	1	1		0	
nd		•••	•••	•••	•••		•••		••••	•••	•••	••••	•••	
ry	<i>a</i> ₁ =	0	0	0	0		0	1	0	0	0		0	
	b ₁ =	0	0	0	0		0	1	0	0	0		0	
2	$a_2 \models$	0	0	0	0		0	0	1	0	0		0	
W.	$b_2 =$	0	0	0	0		0	0	1	0	0		0	
	<i></i>		•••		•••		••••		•••	•••	•••		•••	
	<i>W</i> =	1	1	1	1		1	3	3	3	3		3	

If some subset sums to W must

have exactly one of t_i or f_i for each i.

Set variable x_i to true if t_i used and false if f_i used.

Must have three 1's in each clause digit column j since things sum to W.

At most two of these can come from a_j , b_j to one of these 1's must come from the choices of the truth assignment \Rightarrow every clause C_j is satisfied so F is satisfiable.

W PAUL G. ALLEN SCHOOL of computer science & engineering

Some other NP-complete examples you should know

Hamiltonian-Cycle: Given a directed graph G = (V, E). Is there a cycle in G that visits each vertex in V exactly once?

Hamiltonian-Path: Given a directed graph G = (V, E). Is there a path p in G of length n - 1 that visits each vertex in V exactly once?

Same problems are also NP-complete for undirected graphs

Note: If we asked about visiting each *edge* exactly once instead of each vertex, the corresponding problems are called **Euler Tour**, **Eulerian-Path** and are polynomial-time solvable.

Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP):

Given: a set of n cities $v_1, ..., v_n$ and distance function d that gives distance $d(v_i, v_j)$ between each pair of cities Find the shortest tour that visits all n cities.

DecisionTSP:

Given: a set of *n* cities $v_1, ..., v_n$ and distance function *d* that gives distance $d(v_i, v_j)$ between each pair of cities *and* a distance *D*

Is there a tour of total length at most **D** that visits all **n** cities?

NP-complete problems we've discussed

```
\textbf{3SAT} \rightarrow \textbf{Independent-Set} \rightarrow \textbf{Clique}
```

```
↓
Vertex-Cover → 01-Programming → Integer-Programming
↓
Set-Cover
→ 3Color
→ Subset-Sum
→ Hamiltonian-Cycle → DecisionTSP
→ Hamiltonian-Path
```

Some intermediate problems

Problems reducible to NP problems not known to be polytime:

Basis for the security of current cryptography:

- Factoring: Given an integer N in binary, find its prime factorization.
- Discrete logarithm: Given prime \underline{p} in binary, and \underline{g} and \underline{x} modulo \underline{p} . Find \underline{y} such that $\underline{x} \equiv \underline{g}^{y} \pmod{p}$ if it exists.

Best algorithms known are $2^{\Theta(n^{1/3})}$ time.

Other famous ones:

- Graph Isomorphism: Given graphs G and H, can they be relabelled to be the same? Best algorithm now $n^{\Theta(\log^2 n)}$ (recently improved from $2^{\widetilde{\Theta}(n^{1/3})}$) time.
- Nash equilibrium: Given a multiplayer game, find randomized strategies for each player so that no player could do better by deviating.

What to do if the problem you want to solve is NP-hard

1st thing to try:

- You might have phrased your problem too generally
 - e.g., In practice, the graphs that actually arise are far from arbitrary
 - Maybe they have some special characteristic that allows you to solve the problem in your special case
 - For example the Independent-Set problem is easy on "interval graphs"
 - Exactly the case for the Interval Scheduling problem!
 - Search the literature to see if special cases already solved eg Verter Course Cary if graph i Variable.

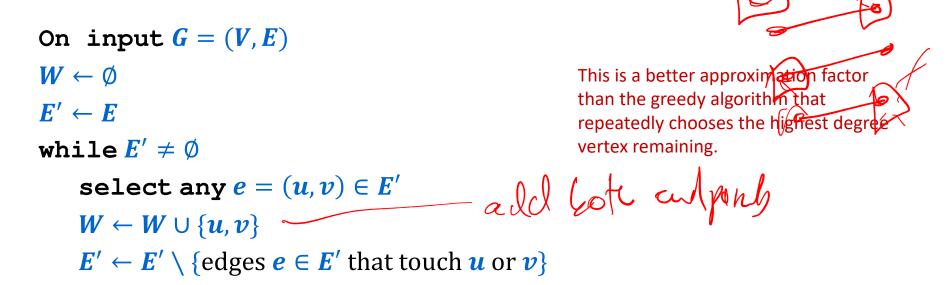
What to do if the problem you want to solve is NP-hard

2nd thing to try if your problem is a minimization or maximization problem

- Try to find a polynomial-time worst-case approximation algorithm
 - For a minimization problem
 - Find a solution with value $\leq K$ times the optimum
 - For a maximization problem
 - Find a solution with value $\geq 1/K$ times the optimum

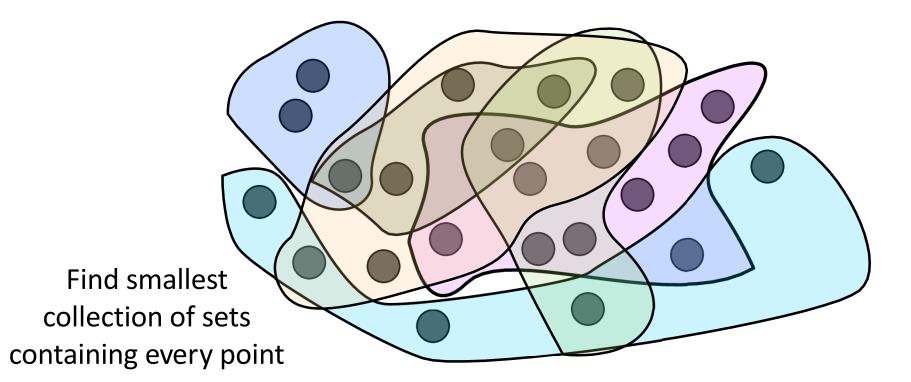
Want *K* to be as close to **1** as possible.

Greedy Approximation for Vertex-Cover



Claim: At most a factor **2** larger than the optimal vertex-cover size.

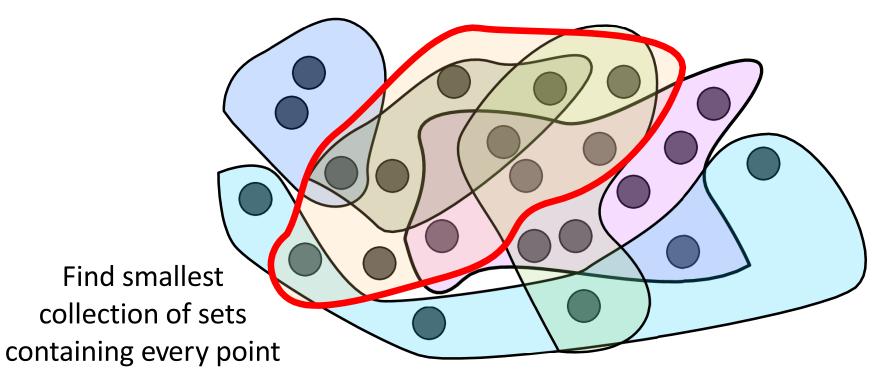
Proof: Edges selected don't share any vertices so any vertex-cover must choose at least one of u or v each time.



W PAUL G. ALLEN SCHOOL of computer science & engineering

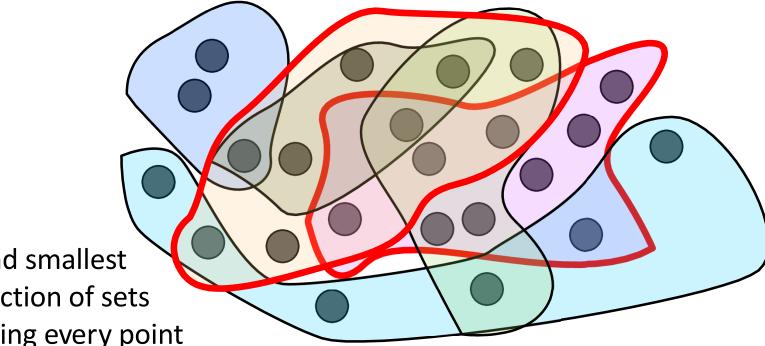
Find smallest collection of sets outaining every point

Greedy Set Cover: Repeatedly choose the set that covers the most # of new elements



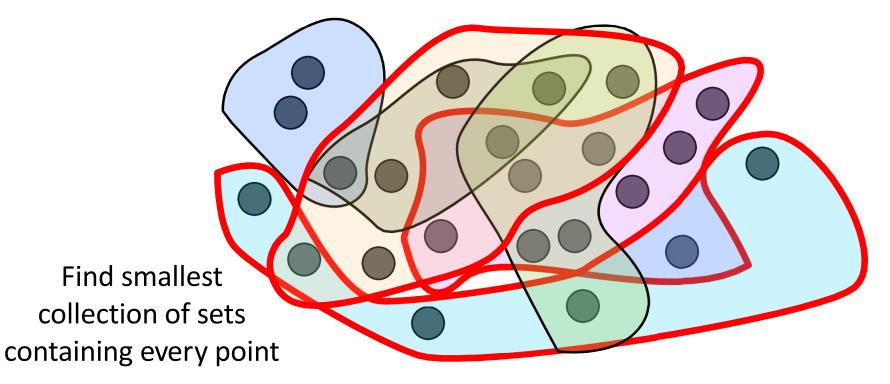
W7 PAUL G. ALLEN SCHOOL

Greedy Set Cover: Repeatedly choose the set that covers the most # of new elements

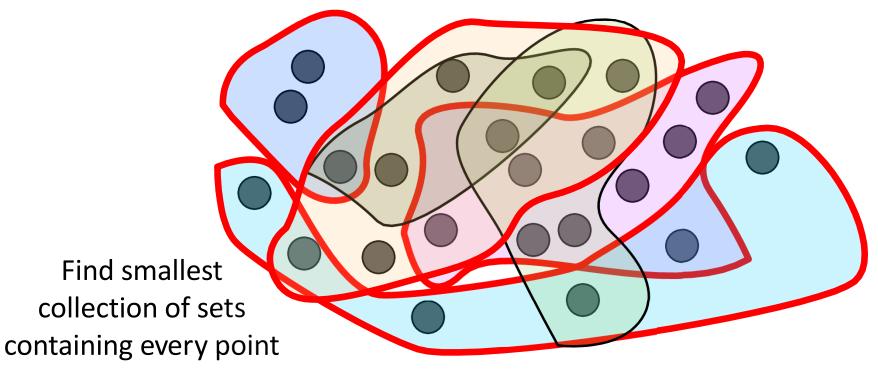


Find smallest collection of sets containing every point

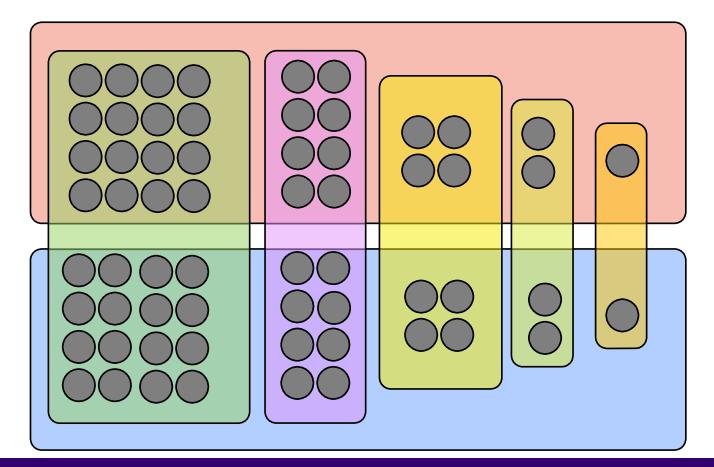
Greedy Set Cover: Repeatedly choose the set that covers the most # of new elements

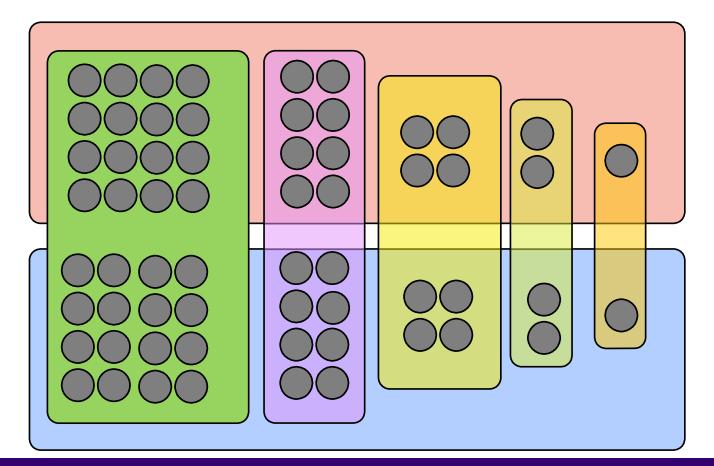


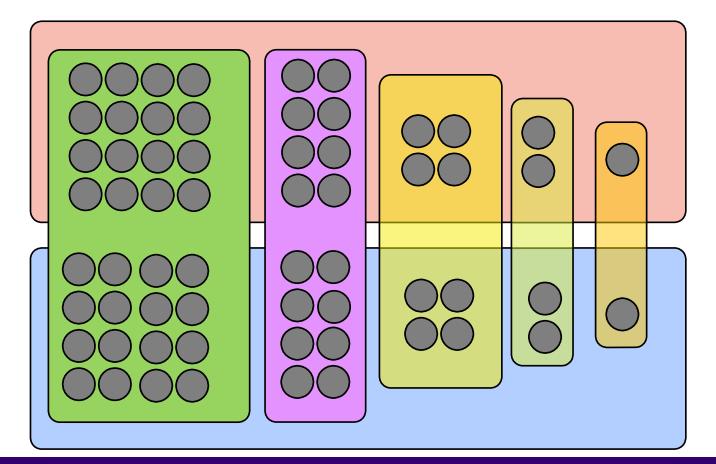
Greedy Set Cover: Repeatedly choose the set that covers the most # of new elements

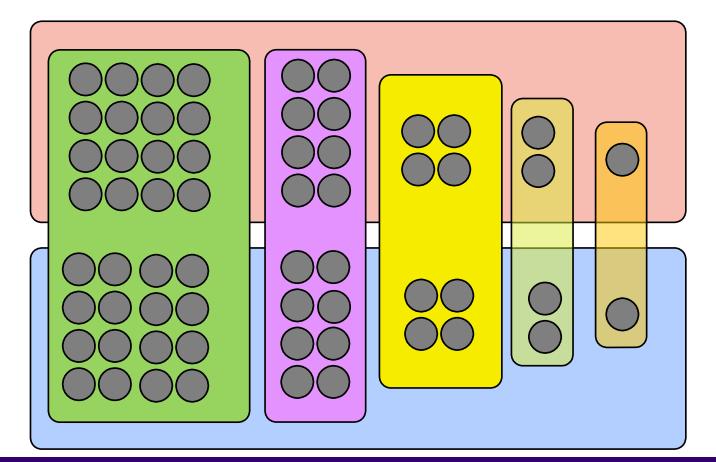


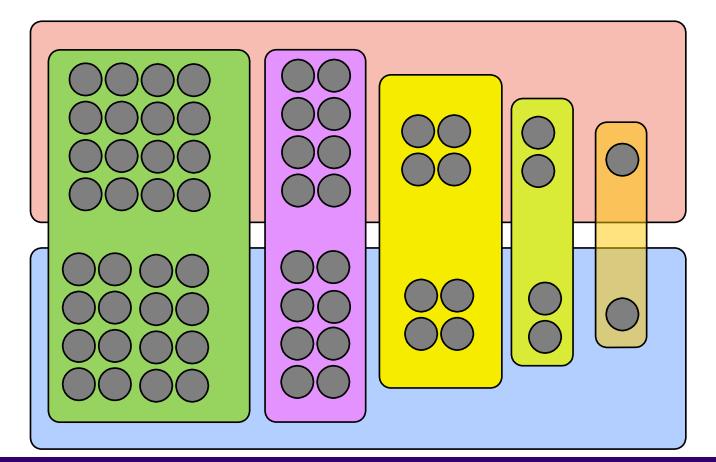
Theorem: Greedy finds best cover up to a factor of $\ln n$.

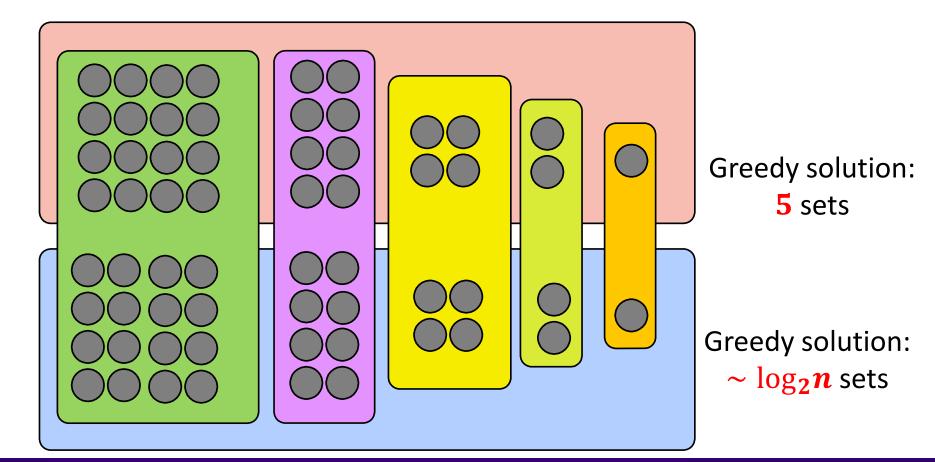




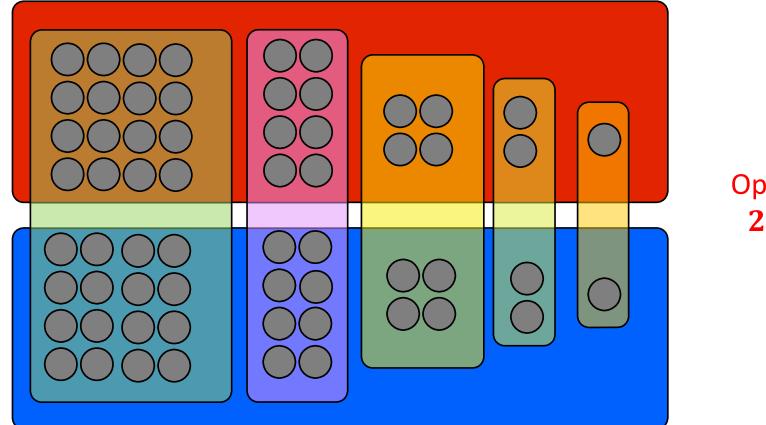








W PAUL G. ALLEN SCHOOL of computer science & engineering



Optimal: 2 sets

Greedy Approximation to Set-Cover

