
CSE 421

Introduction to Algorithms

Lecture 25: Finishing NP Completeness

Dealing with NP-completeness:

Approximation Algorithms
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3SAT≤�Subset-Sum

Given a 3-CNF formula � with � clauses and � variables

• We will create an input for Subset-Sum with �� + �� numbers that are � + �
digits long.

• We will ensure that no matter how we sum them there won’t be any carries so 
each digit in the target 	 will force a separate constraint.

• Instead of calling them 
�, … , 
����� we will use mnemonic names:

• Two numbers for each variable ��

• �� and ��  
(corresponding to �� being true or �� being false)

• Two extra numbers for each clause ��

• �� and �� (two identical filler numbers to handle number of false literals

in clause ��)

• We define them by giving their decimal representation...
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3SAT≤�Subset-Sum
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We include two � + � digit numbers for each Boolean variable ��

Boolean part in the first � positions:  

• Digit � of both �� and �� are �; the rest are �

Clause part in the next � positions:  

• Digit � of �� is � if clause �� contains literal ��; the rest are �

• Digit � of �� is � if clause �� contains literal ¬��; the rest are �

Clauses �� and �� contain ��

Clauses �� and �� contain ¬��

1 2 3 � … � 1 2 3 � … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �



3SAT≤�Subset-Sum
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We also include two extra identical � + � digit numbers for each clause ��

1 2 3 � … � 1 2 … � … �

�� = � � � � … � � � … � … �

�� = � � � � … � � � … � … �

These are:

• All � in the Boolean columns

• Digit � of both �� and �� are � in the clause columns; the rest are �



3SAT≤�Subset-Sum
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�� = (�� ∨ ¬�� ∨ ��)

Boolean variable part:

First � digit positions 

ensure that exactly 

one of �� or �� is 

included in any subset 

summing to 	.

Clause part:

�’s in each digit position �
correspond to the 3 literals that 

would make clause �� true. 

� � �� = (¬�� ∨ �� ∨ �!)

�� = (¬�� ∨ �" ∨ �#)

�" = (¬�� ∨ ¬�� ∨ �$)

�� = (�� ∨ ¬�% ∨ ���)
…

1 2 3 4 … � 1 2 3 4 … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

… … … … … … … … … … … … …

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

… … … … … … … … … … … … …

	 = � � � � … � � � � � … �

Every column in the clause part 

of the block of �’s and �’s has

exactly 3 �’s. 

The �’s and �’s add exactly 2 

more possible �’s per column
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�� = (�� ∨ ¬�� ∨ ��)

Boolean variable part:

First � digit positions 

ensure that exactly 

one of �� or �� is 

included in any subset 

summing to 	.

Key idea of clause columns:

Column � can sum to the target 

column sum of �
⇔ at least one of the �� or ��

rows included in the subset 

contains a � in column �

� � �� = (¬�� ∨ �� ∨ �!)

�� = (¬�� ∨ �" ∨ �#)

�" = (¬�� ∨ ¬�� ∨ �$)

�� = (�� ∨ ¬�% ∨ ���)
…

1 2 3 4 … � 1 2 3 4 … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

… … … … … … … … … … … … …

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

… … … … … … … … … … … … …

	 = � � � � … � � � � � … �

The �’s and �’s add exactly 2 

more possible �’s per column
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If � satisfiable choose

one of �� or ��

depending on the 

satisfying assignment.

Their sum will have 

exactly one � in each 

of the first � digits and 

at least one � in every 

clause digit position.

Also include 0, 1, or 2 

of each

��, �� pair to add to 	.

If some subset sums to 	 must 

have exactly one of �� or �� for 

each �.

Set variable �� to true if �� used and 

false if �� used.

Must have three �’s in each clause 

digit column � since things sum to 

	.

At most two of these can come 

from ��, �� to one of these �’s must 

come from the choices of the truth 

assignment ⇒ every clause �� is 

satisfied so � is satisfiable.

� �
1 2 3 4 … � 1 2 3 4 … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

… … … … … … … … … … … … …

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

�� = � � � � … � � � � � … �

… … … … … … … … … … … … …

	 = � � � � … � � � � � … �



Some other )*-complete examples you should know

Hamiltonian-Cycle: Given a directed graph + = ,, - .  Is there a cycle in +
that visits each vertex in , exactly once?  

Hamiltonian-Path: Given a directed graph + = ,, - .  Is there a path . in 

+ of length � − � that visits each vertex in , exactly once? 

Same problems are also )*-complete for undirected graphs

Note: If we asked about visiting each edge exactly once instead of each 

vertex, the corresponding problems are called Euler Tour, Eulerian-Path and 

are polynomial-time solvable.
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Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP): 

Given: a set of � cities 0�, … , 0� and distance function 1 that gives distance 

1(0�, 0�) between each pair of cities

Find the shortest tour that visits all � cities.

DecisionTSP:

Given: a set of � cities 0�, … , 0� and distance function 1 that gives distance 

1(0�, 0�) between each pair of cities and a distance 2

Is there a tour of total length at most 2 that visits all � cities?
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)*-complete problems we’ve discussed

3SAT → → → → Independent-Set → Clique

↓↓↓↓

Vertex-Cover → 01-Programming → Integer-Programming

↓↓↓↓

Set-Cover

3Color 

Subset-Sum

Hamiltonian-Cycle → DecisionTSP

Hamiltonian-Path
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Some intermediate problems

Problems reducible to )* problems not known to be polytime:

Basis for the security of current cryptography:

• Factoring: Given an integer 5 in binary, find its prime factorization.

• Discrete logarithm: Given prime . in binary, and 6 and � modulo ..  

Find 7 such that � ≡ 67(mod .) if it exists.

Best algorithms known are �<= ��/�
time.

Other famous ones:

• Graph Isomorphism:  Given graphs + and ?, can they be relabelled to be the same?    

Best algorithm now �@ ABC�� (recently improved from �<= ��/�
) time.

• Nash equilibrium: Given a multiplayer game, find randomized strategies for each 

player so that no player could do better by deviating.
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What to do if the  problem you want to solve is NP-hard

1st thing to try:

• You might have phrased your problem too generally

• e.g., In practice, the graphs that actually arise are far from arbitrary

• Maybe they have some special characteristic that allows you to solve the 

problem in your special case

• For example the Independent-Set problem is easy on “interval graphs”

• Exactly the case for the Interval Scheduling problem!

• Search the literature to see if special cases already solved
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What to do if the  problem you want to solve is NP-hard

2nd thing to try if your problem is a minimization or maximization problem

• Try to find a polynomial-time worst-case approximation algorithm

• For a minimization problem 

• Find a solution with value ≤ D times the optimum

• For a maximization problem

• Find a solution with value ≥ �/D times the optimum

Want D to be as close to � as possible.
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Greedy Approximation for Vertex-Cover

On input + = (,, -)

	 ← ∅

-H ← -

while -H ≠ ∅

select any J = K, 0 ∈ -′

	 ← 	 ∪ {K, 0}

-H ← -′ ∖ {edges J ∈ -′ that touch K or 0} 

Claim: At most a factor � larger than the optimal vertex-cover size. 

Proof: Edges selected don’t share any vertices so any vertex-cover must choose 

at least one of K or 0 each time. 

This is a better approximation factor 

than the greedy algorithm that

repeatedly chooses the highest degree 

vertex remaining.
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Set-Cover

Find smallest 

collection of sets 

containing every point
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Set-Cover

Set cover size 4

Find smallest 

collection of sets 

containing every point
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Set-Cover Greedy Set Cover:  Repeatedly choose the set 

that covers the most # of new elements

Find smallest 

collection of sets 

containing every point
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Set-Cover Greedy Set Cover:  Repeatedly choose the set 

that covers the most # of new elements

Find smallest 

collection of sets 

containing every point
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Set-Cover Greedy Set Cover:  Repeatedly choose the set 

that covers the most # of new elements

Find smallest 

collection of sets 

containing every point
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Find smallest 

collection of sets 

containing every point

Set-Cover Greedy Set Cover:  Repeatedly choose the set 

that covers the most # of new elements

Theorem:Greedy finds best cover up to a factor of ln �.
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Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered
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Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered
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Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered
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Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered
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Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered
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Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered

Greedy solution:

! sets

Greedy solution:

∼ log�� sets



Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered

Optimal:

� sets
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Greedy Approximation to Set-Cover

Theorem: If there is a set cover of size ^ then the greedy set cover has 

size ≤ ^ ln �.

Proof: Suppose that there is a set cover of size ^. 

At each step all elements remaining are covered by these ^ sets.

So always a set available covering ≥ �/^ fraction of remaining elts.

So # of uncovered elts after � sets ≤ � −
�

^
× (# uncovered after � − � sets).

Total after � sets ≤ � � −
�

^

�
< � ⋅ Jb�/^ = � for � = ^ ln �.
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� − � < Jb� for � > �


