
CSE 421

Introduction to Algorithms

Lecture 24: More NP-completeness

1

��-hardness & ��-completeness

Notion of hardness we can prove that is useful unless � � ��:

Defn: Problem � is ��-hard iff every problem � ∈ �� satisfies � �� �.

This means that � is at least as hard as every problem in ��.

Defn: Problem � is ��-complete iff

• � ∈ �� and

• � is ��-hard.

This means that � is a hardest problem in ��.

��

��-hard

��-complete

�

2

3

Extent and Impact of NP-Completeness

Extent of NP-completeness. [Papadimitriou 1995]
• 6,000 citations per year (title, abstract, keywords).

• more than "compiler", "operating system", "database"

• Broad applicability and classification power.

• "Captures vast domains of computational, scientific,
mathematical endeavors, and seems to roughly delimit what
mathematicians and scientists had been aspiring to compute
feasibly."

NP-completeness can guide scientific inquiry.
• 1926: Ising introduces simple model for phase transitions.

• 1944: Onsager solves 2D case in tour de force.

• 19xx: Feynman and other top minds seek 3D solution.

• 2000: Istrail proves 3D problem NP-complete.

3

Cook-Levin Theorem and implications

Theorem [Cook 1971, Levin 1973]: 3SAT is ��-complete

Proof: See CSE 431.

Corollary: If 3SAT �� B then B is ��-hard.

By the same kind of reasoning we have

Theorem: If A �� B for some ��-hard A then B is ��-hard.

4

��-complete problems so far

So far:

3SAT → → → → Independent-Set → Clique

↓↓↓↓

Vertex-Cover → 01-Programming → Integer-Programming

5

Steps to Proving Problem � is ��-complete

• Show � is in ��
• State what the hint/certificate is.

• Argue that it is polynomial-time to check and you won’t get fooled.

• Show � is ��-hard:

• State: “Reduction is from ��-hard Problem �”

• Show what the reduction function � is.

• Argue that � is polynomial time.

• Argue correctness in two directions:

• a YES for � implies �() is a YES for �

• Do this by showing how to convert a certificate for being YES for � to a certificate

for �() being a YES for �.

• �() a YES for � implies is a YES for �

• … by converting certificates for �() to certificates for

6

Reduction from a Special Case to a General Case

Set-Cover:

Given a set � (universe) of � elements, a collection ��, … , �� of subsets of �,
and an integer �

Is there a sub-collection (the cover) of � � sets whose union is equal to �?

Theorem: Set-Cover is ��-complete

Proof:

1. Set-Cover is in ��:

a) Certificate is a set � ⊆ {�, … , �} defining a supposed cover.

b) Verifier outputs YES if � � � and ⋃ �� � ��∈� ; otherwise, answers NO.

This computation is clearly polynomial-time

7

Set-Cover is ��-complete

Proof (continued):

2. Set-Cover is ��-hard

Claim: Vertex-Cover ≤� Set-Cover

a) Reduction function � takes and input a graph � = (�,) and integer � and produces a

universe �, sets ��, … , �� ⊆ � and integer �! as follows:

• � = (good idea since the objects being covered in Vertex-Cover are edges.)

• Write � = {"�, … , "�}.

For each � = �, … , � define �� to be the set of edges in that "� touches.

• �! = �.

b) Clearly function � is polynomial time to compute.

c) Correctness (⇒): Suppose that graph � has a vertex cover $ of size ≤ �.

Define the set � = {� ∣ "� ∈ $}. Then � = $ ≤ �.

Also since $ is a vertex cover, ⋃ �� = & ∈ some "� ∈ $ touches & = = ��∈� .

Therefore � has set cover � from ��, … , �� of size ≤ �.

8

Set-Cover is ��-complete

Proof (continued):

2. Set-Cover is ��-hard

Claim: Vertex-Cover ≤� Set-Cover

a) Reduction function � takes and input a graph � = (�,) and integer � and produces a

universe �, sets ��, … , �� ⊆ � and integer �! as follows:

• � = (good idea since the objects being covered in Vertex-Cover are edges.)

• Write � = {"�, … , "�}.

For each � = �, … , � define �� to be the set of edges in that "� touches.

• �! = �.

b) c) …

d) Correctness (⇐): Suppose that � has a set cover � from ��, … , �� of size ≤ �.

Define the set $ = {"� ∣ � ∈ �}. Then $ = � ≤ �.

Also since � is a set cover, � = = ⋃ �� = ⋃ & ∈ "� touches &�∈��∈� . But this is

the same as = ⋃ & ∈ " touches &"∈$, so graph � has vertex cover $ of size ≤ �.

9

Recall: Graph Colorability

Defn: A undirected graph � = (�,) is �-colorable iff

we can assign one of � colors to each vertex of � s.t.

for every edge (0, ") has different colored endpoints, 1 0 ≠ 1(").

“edges are not monochromatic”

Theorem: 3Color is ��-complete

Proof:

1. 3Color is in ��:

• We already showed this; the certificate was the coloring.

2. 3Color is ��-hard:

Claim: 3SAT≤�3Color

We need to find a function � that maps a 3CNF formula 3 to a graph � s.t.3 is satisfiable ⇔ � is 3-colorable.

10

3SAT ≤� 3Color

Base Triangle

O

TF

Start with a base triangle with vertices T, F, and O.

We can assume that T, F, and O are the three colors used.

• Intuition: T and F will stand for true and false; O will stand for other.

To represent the properties of the 3CNF formula 3 we will need both a

Boolean variable part and a clause part.

11

3SAT ≤� 3Color

Base Triangle

O

TF

...

�

5

�

¬�

¬5

¬�
Boolean variable part:

• For each Boolean variable add a

triangle with two nodes labelled

by literals as shown.

• Since both nodes are joined to

node O and to each other, they

must have opposite colors T and

F in any 3-coloring.

• So, any 3-coloring corresponds to

a unique truth assignment.

12

3SAT ≤� 3Color

O

TF

...

�

5

�

¬�

¬5

¬�

Clause Part

Clause part:

For each clause of 3 add a

gadget consisting of a

triangle and 3 “outer” nodes.

• Join each outer node to a

corresponding literal node

• Join each outer node to T

13

3SAT ≤� 3Color

O

TF

...

�

5

�

¬�

¬5

¬�

Clause Part

Clearly only

polynomial-time

to produce.

14

3SAT ≤� 3Color

O

TF

...

�

5

�

¬�

¬5

¬�

Clause Part

Key property:

In any 3-coloring:

outer nodes either F or O

inner triangle must use O

15

3SAT ≤� 3Color

O

TF

...

�

5

�

¬�

¬5

¬�

Therefore � is 3-colorable

Suppose 3 is satisfiable.

T

T

T

F

F

F

F

F

O

O

O

O

Color outer vertices

with F for 1st true

literal and the rest O.

Color variable part

using satisfying

assignment.

Color inner vertices

with O opposite F.

F

F

O

O

T

T

16

3SAT ≤� 3Color

O

TF

...

�

5

�

¬�

¬5

¬�

Each clause has a literal that is T satisfying 3

Suppose � is 3-colorable.

F

F

Coloring must have

outer F opposite each

inner O.

Literal joined to

each outer F must

be colored T.

3-coloring must use O

on each inner triangle

F

F

O

O

T

T

T

T

17

More ��-completeness

Subset-Sum: (Decision version of Knapsack)

Given: � integers 7�, … , 7� and integer $
Is there a subset of the � input integers that adds up to exactly $?

8(�$) solution from dynamic programming but if $ and each 7� can be � bits long

then this is exponential time.

Theorem: Subset-Sum is ��-complete

Proof:

1. Subset-Sum is in ��:
a) Certificate is � bits representing a subset � of {�, … , �}.

b) Check that ∑ 7� = $�∈� .

2. Subset-Sum is ��-hard

Claim: 3SAT≤�Subset-Sum

18

3SAT≤�Subset-Sum

Given a 3-CNF formula 3 with � clauses and � variables

• We will create an input for Subset-Sum with 5� + 5� numbers that are � + �
digits long.

• We will ensure that no matter how we sum them there won’t be any carries so
each digit in the target $ will force a separate constraint.

• Instead of calling them 7�, … , 75�;5� we will use mnemonic names:

• Two numbers for each variable �
• <� and �� (corresponding to � being true or � being false)

• Two extra numbers for each clause =>
• ?> and @> (two identical filler numbers to handle number of false literals

in clause =>)
• We define them by giving their decimal representation...

19

3SAT≤�Subset-Sum

20

We include two � + � digit numbers for each Boolean variable �

Boolean part in the first � positions:

• Digit � of both <� and �� are �; the rest are A

Clause part in the next � positions:

• Digit > of <� is � if clause => contains literal �; the rest are A
• Digit > of �� is � if clause => contains literal ¬�; the rest are A

Clauses =� and =� contain �
Clauses =5 and => contain ¬�

1 2 3 � … � 1 2 3 > … �
<� = A A A � … A � A A A … �
�� = A A A � … A A � A � … A

3SAT≤�Subset-Sum

21

We also include two extra identical � + � digit numbers for each clause =>

1 2 3 � … � 1 2 … > … �
?> = A A A A … A A A … � … A
@> = A A A A … A A A … � … A

These are:

• All A in the Boolean columns

• Digit > of both ?> and @> are � in the clause columns; the rest are A

3SAT≤�Subset-Sum

22

=� = (� ∨ ¬5 ∨ F)

Boolean variable part:

First � digit positions

ensure that exactly

one of <� or �� is

included in any subset

summing to $.

Clause part:�’s in each digit position >
correspond to the 3 literals that

would make clause => true.

� > =5 = (¬� ∨ 5 ∨ G)
=F = (¬F ∨ H ∨ I)
=H = (¬� ∨ ¬F ∨ J)
=� = (� ∨ ¬K ∨ 55)…

1 2 3 4 … � 1 2 3 4 … �
<� = � A A A … A � A A A … �
�� = � A A A … A A � A � … A
<5 = A � A A … A A � A A … A
�5 = A � A A … A � A A A … A
<F = A A � A … A � A A A … A
�F = A A � A … A A A � � … A
… … … … … … … … … … … … …

?� = A A A A … A � A A A … A
@� = A A A A … A � A A A … A
?5 = A A A A … A A � A A … A
@5 = A A A A … A A � A A … A

… … … … … … … … … … … … …

$ = � � � � … � F F F F … F

Every column in the clause part

of the block of <’s and �’s has

exactly 3 �’s.

The ?’s and @’s add exactly 2

more possible �’s per column

3SAT≤�Subset-Sum

23

=� = (� ∨ ¬5 ∨ F)

Boolean variable part:

First � digit positions

ensure that exactly

one of <� or �� is

included in any subset

summing to $.

Key idea of clause columns:

Column > can sum to the target

column sum of F⇔ at least one of the <� or ��
rows included in the subset

contains a � in column >

� > =5 = (¬� ∨ 5 ∨ G)
=F = (¬F ∨ H ∨ I)
=H = (¬� ∨ ¬F ∨ J)
=� = (� ∨ ¬K ∨ 55)…

1 2 3 4 … � 1 2 3 4 … �
<� = � A A A … A � A A A … �
�� = � A A A … A A � A � … A
<5 = A � A A … A A � A A … A
�5 = A � A A … A � A A A … A
<F = A A � A … A � A A A … A
�F = A A � A … A A A � � … A
… … … … … … … … … … … … …

?� = A A A A … A � A A A … A
@� = A A A A … A � A A A … A
?5 = A A A A … A A � A A … A
@5 = A A A A … A A � A A … A

… … … … … … … … … … … … …

$ = � � � � … � F F F F … F
The ?’s and @’s add exactly 2

more possible �’s per column

3SAT≤�Subset-Sum

24

If 3 satisfiable choose

one of <� or ��
depending on the

satisfying assignment.

Their sum will have

exactly one � in each

of the first � digits and

at least one � in every

clause digit position.

Also include 0, 1, or 2

of each?>, @> pair to add to $.

If some subset sums to $ must

have exactly one of <� or �� for

each �.

Set variable � to true if <� used and

false if �� used.

Must have three �’s in each clause

digit column > since things sum to $.

At most two of these can come

from ?>, @> to one of these �’s must

come from the choices of the truth

assignment ⇒ every clause => is

satisfied so 3 is satisfiable.

� >1 2 3 4 … � 1 2 3 4 … �
<� = � A A A … A � A A A … �
�� = � A A A … A A � A � … A
<5 = A � A A … A A � A A … A
�5 = A � A A … A � A A A … A
<F = A A � A … A � A A A … A
�F = A A � A … A A A � � … A
… … … … … … … … … … … … …

?� = A A A A … A � A A A … A
@� = A A A A … A � A A A … A
?5 = A A A A … A A � A A … A
@5 = A A A A … A A � A A … A

… … … … … … … … … … … … …

$ = � � � � … � F F F F … F

Some other ��-complete examples you should know

Hamiltonian-Cycle: Given a directed graph � = �, . Is there a cycle in �
that visits each vertex in � exactly once?

Hamiltonian-Path: Given a directed graph � = �, . Is there a path M in � of length � − � that visits each vertex in � exactly once?

Same problems are also ��-complete for undirected graphs

Note: If we asked about visiting each edge exactly once instead of each

vertex, the corresponding problems are called Eulerian-Cycle, Eulerian-Path

and are polynomial-time solvable.

25

Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP):

Given: a set of � cities "�, … , "� and distance function O that gives distance O("�, ">) between each pair of cities

Find the shortest tour that visits all � cities.

DecisionTSP:

Given: a set of � cities "�, … , "� and distance function O that gives distance O("�, ">) between each pair of cities and a distance P
Is there a tour of total length at most P that visits all � cities?

26

Hamiltonian-Cycle ≤� DecisionTSP

Define the reduction given � = (�,):

• Vertices � = {"�, … , "�} become cities

• Define O "�, "> = Q� if "�, "> ∈
5 if not

• Distance P = |�|.
Claim: There is a Hamiltonian cycle in � ⇔ ⇔ ⇔ ⇔ there is a tour of length |�|

27

��-complete problems we’ve covered

3SAT → → → → Independent-Set → Clique

↓↓↓↓
Vertex-Cover → 01-Programming → Integer-Programming

↓↓↓↓
Set-Cover

3Color

Subset-Sum

Hamiltonian-Cycle → DecisionTSP

Hamiltonian-Path

28

More Hard Computational Problems

• Aerospace engineering: optimal mesh partitioning for finite elements.

• Biology: protein folding.

• Chemical engineering: heat exchanger network synthesis.

• Civil engineering: equilibrium of urban traffic flow.

• Economics: computation of arbitrage in financial markets with friction.

• Electrical engineering: VLSI layout.

• Environmental engineering: optimal placement of contaminant sensors.

• Financial engineering: find minimum risk portfolio of given return.

• Game theory: find Nash equilibrium that maximizes social welfare.

• Genomics: phylogeny reconstruction.

• Mechanical engineering: structure of turbulence in sheared flows.

• Medicine: reconstructing 3-D shape from biplane angiocardiogram.

• Operations research: optimal resource allocation.

• Physics: partition function of 3-D Ising model in statistical mechanics.

• Politics: Shapley-Shubik voting power.

• Pop culture: Minesweeper consistency.

• Statistics: optimal experimental design.

29

