CSE 421 Introduction to Algorithms

Lecture 24: More NP-completeness

W PAUL G. ALLEN SCHOOL of computer science & engineering

NP-hardness & NP-completeness

Notion of hardness we **can** prove that is useful unless $\mathbf{P} = \mathbf{NP}$:

Defn: Problem **B** is **NP**-hard iff every problem $A \in NP$ satisfies $A \leq_P B$.

Extent and Impact of NP-Completeness

Extent of NP-completeness. [Papadimitriou 1995]

- 6,000 citations per year (title, abstract, keywords).
 - more than "compiler", "operating system", "database"
- Broad applicability and classification power.
- "Captures vast domains of computational, scientific, mathematical endeavors, and seems to roughly delimit what mathematicians and scientists had been aspiring to compute feasibly."

NP-completeness can guide scientific inquiry.

- 1926: Ising introduces simple model for phase transitions.
- 1944: Onsager solves 2D case in tour de force.
- 19xx: Feynman and other top minds seek 3D solution.
- 2000: Istrail proves 3D problem NP-complete.

Cook-Levin Theorem and implications

Theorem [Cook 1971, Levin 1973]: **3SAT** is **NP**-complete **Proof:** See CSE 431.

Corollary: If $3SAT \leq_P B$ then B is NP-hard.

By the same kind of reasoning we have

Theorem: If $A \leq_P B$ for some **NP**-hard **A** then **B** is **NP**-hard.

NP-complete problems so far

So far:

```
3SAT → Independent-Set → Clique

↓

Vertex-Cover → 01-Programming → Integer-Programming
```

Steps to Proving Problem *B* **is NP-complete**

- Show *B* is in **NP**
 - State what the hint/certificate is.
 - Argue that it is polynomial-time to check and you won't get fooled.
- Show *B* is **NP**-hard:
 - State: "Reduction is from NP-hard Problem A"
 - Show what the reduction function *f* is.
 - Argue that *f* is polynomial time.
 - Argue correctness in two directions:
 - x a YES for A implies f(x) is a YES for B
 - Do this by showing how to convert a certificate for x being YES for A to a certificate for f(x) being a YES for B.
 - f(x) a YES for **B** implies x is a YES for **A**
 - ... by converting certificates for f(x) to certificates for x

Reduction from a Special Case to a General Case

Set-Cover:

Given a set U (universe) of m elements, a collection S_1, \ldots, S_n of subsets of U, and an integer k

Is there a sub-collection (the cover) of $\leq k$ sets whose union is equal to U?

Theorem: Set-Cover is NP-complete

Proof:

- 1. Set-Cover is in NP:
 - a) Certificate is a set $T \subseteq \{1, ..., n\}$ defining a supposed cover.
 - b) Verifier outputs **YES** if $|T| \le k$ and $\bigcup_{i \in T} S_i = U$; otherwise, answers **NO**. This computation is clearly polynomial-time

Set-Cover is NP-complete

Proof (continued):

2. Set-Cover is NP-hard

Claim: Vertex-Cover ≤_P Set-Cover

- a) Reduction function f takes and input a graph G = (V, E) and integer k and produces a universe U, sets $S_1, \ldots, S_n \subseteq U$ and integer k' as follows:
 - U = E (good idea since the objects being covered in Vertex-Cover are edges.)
 - Write V = {v₁, ..., v_n}.
 For each i = 1, ..., n define S_i to be the set of edges in E that v_i touches.
 - k' = k.
- b) Clearly function **f** is polynomial time to compute.
- c) Correctness (\Rightarrow): Suppose that graph G has a vertex cover W of size $\leq k$. Define the set $T = \{i \mid v_i \in W\}$. Then $|T| = |W| \leq k$. Also since W is a vertex cover, $\bigcup_{i \in T} S_i = \{e \in E \mid \text{some } v_i \in W \text{ touches } e\} = E = U$. Therefore U has set cover T from S_1, \dots, S_n of size $\leq k$.

Set-Cover is NP-complete

Proof (continued):

2. Set-Cover is NP-hard

Claim: Vertex-Cover \leq_P Set-Cover

- a) Reduction function f takes and input a graph G = (V, E) and integer k and produces a universe U, sets $S_1, \ldots, S_n \subseteq U$ and integer k' as follows:
 - U = E (good idea since the objects being covered in Vertex-Cover are edges.)
 - Write V = {v₁, ..., v_n}.
 For each i = 1, ..., n define S_i to be the set of edges in E that v_i touches.
 - k' = k.
- b) c)...
- d) Correctness (\Leftarrow): Suppose that U has a set cover T from S_1, \dots, S_n of size $\leq k$. Define the set $W = \{v_i \mid i \in T\}$. Then $|W| = |T| \leq k$. Also since T is a set cover, $U = E = \bigcup_{i \in T} S_i = \bigcup_{i \in T} \{e \in E \mid v_i \text{ touches } e\}$. But this is the same as $E = \bigcup_{v \in W} \{e \in E \mid v \text{ touches } e\}$, so graph G has vertex cover W of size $\leq k$.

Recall: Graph Colorability

Defn: A undirected graph G = (V, E) is *k*-colorable iff we can assign one of *k* colors to each vertex of *V* s.t. for every edge (u, v) has different colored endpoints, $\chi(u) \neq \chi(v)$. "edges are not monochromatic"

Theorem: 3Color is NP-complete

Proof:

- 1. 3Color is in NP:
 - We already showed this; the certificate was the coloring.
- 2. 3Color is NP-hard:

Claim: 3SAT≤_P3Color

We need to find a function f that maps a 3CNF formula F to a graph G s.t. F is satisfiable $\Leftrightarrow G$ is 3-colorable.

Start with a base triangle with vertices **T**, **F**, and **O**.

We can assume that **T**, **F**, and **O** are the three colors used.

• Intuition: **T** and **F** will stand for *true* and *false*; **O** will stand for *other*.

To represent the properties of the 3CNF formula \mathbf{F} we will need both a Boolean variable part and a clause part.

W PAUL G. ALLEN SCHOOL of computer science & engineering

$3SAT \leq_P 3Color$

Base Triangle

Boolean variable part:

- For each Boolean variable add a triangle with two nodes labelled by literals as shown.
- Since both nodes are joined to node O and to each other, they must have opposite colors T and F in any 3-coloring.
- So, any 3-coloring corresponds to a unique truth assignment.

W PAUL G. ALLEN SCHOOL of computer science & engineering

More NP-completeness

Subset-Sum: (Decision version of **Knapsack**)

Given: n integers w_1, \ldots, w_n and integer WIs there a subset of the n input integers that adds up to exactly W?

O(nW) solution from dynamic programming but if W and each w_i can be n bits long then this is exponential time.

Theorem: Subset-Sum is NP-complete

Proof:

- 1. Subset-Sum is in NP:
 - a) Certificate is **n** bits representing a subset **S** of {1, ..., **n**}.
 - b) Check that $\sum_{i \in S} w_i = W$.
- 2. Subset-Sum is NP-hard

Claim: 3SAT \leq_P **Subset-Sum**

Given a 3-CNF formula \mathbf{F} with \mathbf{m} clauses and \mathbf{n} variables

- We will create an input for **Subset-Sum** with 2m + 2n numbers that are m + n digits long.
- We will ensure that no matter how we sum them there won't be any carries so each digit in the target *W* will force a separate constraint.
- Instead of calling them w_1, \ldots, w_{2n+2m} we will use mnemonic names:
 - Two numbers for each variable x_i
 - *t_i* and *f_i* (corresponding to *x_i* being true or *x_i* being false)
 - Two extra numbers for each clause C_i
 - *a_j* and *b_j* (two identical filler numbers to handle number of false literals in clause *C_j*)
- We define them by giving their decimal representation...

We include two n + m digit numbers for each Boolean variable x_i

		1	2	3	i	 n	1	2	3	j	 m	
t _i	=	0	0	0	1	 0	1	0	0	0	 1	Clauses C_1 and C_m contain x_i
f _i	=	0	0	0	1	 0	0	1	0	1	 0	Clauses C_2 and C_j contain $\neg x_i$

Boolean part in the first *n* positions:

• Digit *i* of both *t_i* and *f_i* are **1**; the rest are **0**

Clause part in the next *m* positions:

- Digit **j** of **t**_i is **1** if clause **C**_j contains literal **x**_i; the rest are **0**
- Digit **j** of f_i is **1** if clause C_j contains literal $\neg x_i$; the rest are **0**

We also include two extra identical n + m digit numbers for each clause C_j

	1	2	3	i	 n	1	2	 j	 m
<i>a_j</i> =	0	0	0	0	 0	0	0	 1	 0
$b_i =$	0	0	0	0	 0	0	0	 1	 0

These are:

- All **0** in the Boolean columns
- Digit j of both a_j and b_j are 1 in the clause columns; the rest are 0

					i						i		
		1	2	3	4		n	1	2	3	4		m
	<i>t</i> ₁ =	1	0	0	0		0	1	0	0	0		1
art:	<i>f</i> ₁ =	1	0	0	0		0	0	1	0	1		0
IS	<i>t</i> ₂ =	0	1	0	0		0	0	1	0	0		0
	f ₂ =	0	1	0	0		0	1	0	0	0		0
ot	$t_3 =$	0	0	1	0		0	1	0	0	0		0
el	<i>f</i> ₃ =	0	0	1	0		0	0	0	1	1		0
			•••		•••	•••	•••						
	<i>a</i> ₁ =	0	0	0	0		0	1	0	0	0		0
	b ₁ =	0	0	0	0		0	1	0	0	0		0
	<i>a</i> ₂ =	0	0	0	0		0	0	1	0	0		0
	b ₂ =	0	0	0	0		0	0	1	0	0		0
	•••	•••	•••	•••	•••		•••	•••	•••	•••	•••	•••	
	W =	1	1	1	1		1	3	3	3	3		3

Boolean variable part

First n digit positions ensure that exactly one of t_i or f_i is included in any subset summing to W.

W PAUL G. ALLEN SCHOOL of computer science & engineering

$$C_1 = (x_1 \lor \neg x_2 \lor x_3)$$

$$C_2 = (\neg x_1 \lor x_2 \lor x_5)$$

$$C_3 = (\neg x_3 \lor x_4 \lor x_7)$$

$$C_4 = (\neg x_1 \lor \neg x_3 \lor x_9)$$
...
$$C_m = (x_1 \lor \neg x_8 \lor x_{22})$$

Clause part:

1's in each digit position *j* correspond to the 3 literals that would make clause *C_j* true.

Every column in the clause part of the block of *t*'s and *f*'s has exactly 3 1's.

The *a*'s and *b*'s add exactly 2 more possible **1**'s per column

					i				J			
		1	2	3	4	 n	1	2	3	4		m
	<i>t</i> ₁ =	1	0	0	0	 0	1	0	0	0		1
ariable part:	<i>f</i> ₁ =	1	0	0	0	 0	0	1	0	1		0
it positions	$t_2 =$	0	1	0	0	 0	0	1	0	0		0
it exactly	f ₂ =	0	1	0	0	 0	1	0	0	0		0
or f_i is	$t_3 =$	0	0	1	0	 0	1	0	0	0		0
to W .	<i>f</i> ₃ =	0	0	1	0	 0	0	0	1	1		0
	•••	•••	•••	•••	•••	 		•••				•••
	<i>a</i> ₁ =	0	0	0	0	 0	1	0	0	0		0
	b ₁ =	0	0	0	0	 0	1	0	0	0		0
	<i>a</i> ₂ =	0	0	0	0	 0	0	1	0	0		0
	b ₂ =	0	0	0	0	 0	0	1	0	0		0
	•••	••••	•••	•••	••••	 ••••		••••		••••	•••	•••
	W =	1	1	1	1	 1	3	3	3	3		3

Boolean va

First *n* digi ensure tha one of *t_i* o included in summing t

Key idea of clause columns: Column *j* can sum to the target column sum of 3 \Leftrightarrow at least one of the t_i or f_i rows included in the subset contains a **1** in column **j**

The *a*'s and *b*'s add exactly 2 more possible 1's per column

If F satisfiable choose one of t_i or f_i depending on the satisfying assignment. Their sum will have exactly one **1** in each of the first n digits and at least one **1** in every clause digit position. Also include 0, 1, or 2 of each a_j , b_j pair to add to W.

					i				j			
		1	2	3	4	 n	1	2	3	4		m
	$t_1 =$	1	0	0	0	 0	1	0	0	0		1
	<i>f</i> ₁ =	1	0	0	0	 0	0	1	0	1		0
	<i>t</i> ₂ =	0	1	0	0	 0	0	1	0	0		0
	f ₂ =	0	1	0	0	 0	1	0	0	0		0
1	$t_3 =$	0	0	1	0	 0	1	0	0	0		0
	<i>f</i> ₃ =	0	0	1	0	 0	0	0	1	1		0
d			•••	•••	•••	 	•••	•••	•••	•••	•••	•••
/	<i>a</i> ₁ =	0	0	0	0	 0	1	0	0	0		0
	b ₁ =	0	0	0	0	 0	1	0	0	0		0
	<i>a</i> ₂ =	0	0	0	0	 0	0	1	0	0		0
7.	b ₂ =	0	0	0	0	 0	0	1	0	0		0
			••••	•••		 ••••	•••	••••	•••	•••	••••	•••
	W =	1	1	1	1	 1	3	3	3	3		3

If some subset sums to W must

have exactly one of t_i or f_i for each i.

Set variable x_i to true if t_i used and false if f_i used.

Must have three 1's in each clause digit column j since things sum to W.

At most two of these can come from a_j , b_j to one of these 1's must come from the choices of the truth assignment \Rightarrow every clause C_j is satisfied so F is satisfiable.

W PAUL G. ALLEN SCHOOL of computer science & engineering

24

Some other NP-complete examples you should know

Hamiltonian-Cycle: Given a directed graph G = (V, E). Is there a cycle in G that visits each vertex in V exactly once?

Hamiltonian-Path: Given a directed graph G = (V, E). Is there a path p in G of length n - 1 that visits each vertex in V exactly once?

Same problems are also NP-complete for undirected graphs

Note: If we asked about visiting each *edge* exactly once instead of each vertex, the corresponding problems are called **Eulerian-Cycle**, **Eulerian-Path** and are polynomial-time solvable.

Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP):

Given: a set of n cities $v_1, ..., v_n$ and distance function d that gives distance $d(v_i, v_j)$ between each pair of cities Find the shortest tour that visits all n cities.

DecisionTSP:

Given: a set of *n* cities $v_1, ..., v_n$ and distance function *d* that gives distance $d(v_i, v_j)$ between each pair of cities *and* a distance *D* Is there a tour of total length at most *D* that visits all *n* cities?

Is there a tour of total length at most **D** that visits all **n** cities?

Hamiltonian-Cycle \leq_P DecisionTSP

Define the reduction given G = (V, E):

- Vertices $V = \{v_1, \dots, v_n\}$ become cities
- Define $d(v_i, v_j) = \begin{cases} 1 & \text{if } (v_i, v_j) \in E \\ 2 & \text{if not} \end{cases}$
- Distance D = |V|.

Claim: There is a Hamiltonian cycle in $G \Leftrightarrow$ there is a tour of length |V|

NP-complete problems we've covered

```
\textbf{3SAT} \rightarrow \textbf{Independent-Set} \rightarrow \textbf{Clique}
```

```
↓
Vertex-Cover → 01-Programming → Integer-Programming
↓
Set-Cover
→ 3Color
→ Subset-Sum
→ Hamiltonian-Cycle → DecisionTSP
→ Hamiltonian-Path
```

More Hard Computational Problems

- Aerospace engineering: optimal mesh partitioning for finite elements.
- Biology: protein folding.
- Chemical engineering: heat exchanger network synthesis.
- Civil engineering: equilibrium of urban traffic flow.
- Economics: computation of arbitrage in financial markets with friction.
- Electrical engineering: VLSI layout.
- Environmental engineering: optimal placement of contaminant sensors.
- Financial engineering: find minimum risk portfolio of given return.
- Game theory: find Nash equilibrium that maximizes social welfare.
- Genomics: phylogeny reconstruction.
- Mechanical engineering: structure of turbulence in sheared flows.
- Medicine: reconstructing 3-D shape from biplane angiocardiogram.
- Operations research: optimal resource allocation.
- Physics: partition function of 3-D Ising model in statistical mechanics.
- Politics: Shapley-Shubik voting power.
- Pop culture: Minesweeper consistency.
- Statistics: optimal experimental design.