
CSE 421

Introduction to Algorithms

Lecture 24: More NP-completeness
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��-hardness & ��-completeness

Notion of hardness we can prove that is useful unless � � ��:

Defn: Problem � is ��-hard iff every problem � ∈ �� satisfies � �� �.

This means that � is at least as hard as every problem in ��.

Defn: Problem � is ��-complete iff

• � ∈ �� and

• � is ��-hard.

This means that � is a hardest problem in ��.

��

��-hard

��-complete

�
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Extent and Impact of NP-Completeness

Extent of NP-completeness.  [Papadimitriou 1995] 
• 6,000 citations per year (title, abstract, keywords).

• more than "compiler", "operating system", "database"

• Broad applicability and classification power.

• "Captures vast domains of computational, scientific, 
mathematical endeavors, and seems to roughly delimit what 
mathematicians and scientists had been aspiring to compute 
feasibly."

NP-completeness can guide scientific inquiry.
• 1926:  Ising introduces simple model for phase transitions.

• 1944:  Onsager solves 2D case in tour de force.

• 19xx:  Feynman and other top minds seek 3D solution.

• 2000:  Istrail proves 3D problem NP-complete.

3



Cook-Levin Theorem and implications

Theorem [Cook 1971, Levin 1973]: 3SAT is ��-complete

Proof: See CSE 431.

Corollary: If 3SAT �� B then B is ��-hard.

By the same kind of reasoning we have 

Theorem: If A �� B for some ��-hard A then B is ��-hard.
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��-complete problems so far

So far:  

3SAT → → → → Independent-Set → Clique

↓↓↓↓

Vertex-Cover → 01-Programming → Integer-Programming
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Steps to Proving Problem � is ��-complete

• Show � is in ��
• State what the hint/certificate is.

• Argue that it is polynomial-time to check and you won’t get fooled.

• Show � is ��-hard:  

• State: “Reduction is from ��-hard Problem �”

• Show what the reduction function � is.

• Argue that � is polynomial time.

• Argue correctness in two directions:

•  a YES for � implies �() is a YES for �

• Do this by showing how to convert a certificate for  being YES for � to a certificate 

for �() being a YES for �.

• �() a YES for � implies  is a YES for �

• … by converting certificates for �() to certificates for 
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Reduction from a Special Case to a General Case

Set-Cover: 

Given a set � (universe) of � elements, a collection ��, … , �� of subsets of �,  
and an integer �

Is there a sub-collection (the cover) of � � sets whose union is equal to �?

Theorem: Set-Cover is ��-complete

Proof:  

1. Set-Cover is in ��:

a) Certificate is a set � ⊆ {�, … , �} defining a supposed cover. 

b) Verifier outputs YES if � � � and ⋃ �� � ��∈� ;  otherwise, answers NO.     

This computation is clearly polynomial-time
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Set-Cover is ��-complete

Proof (continued):  

2.   Set-Cover is ��-hard

Claim: Vertex-Cover ≤� Set-Cover

a) Reduction function � takes and input a graph � = (�,  ) and integer � and produces a 

universe �, sets ��, … , �� ⊆ � and integer �! as follows:

• � =  (good idea since the objects being covered in Vertex-Cover are edges.)

• Write � = {"�, … , "�}.                                                                                                             

For each � = �, … , � define �� to be the set of edges in  that "� touches.

• �! = �.

b) Clearly function � is polynomial time to compute.

c) Correctness (⇒):  Suppose that graph � has a vertex cover $ of size ≤ �.                         

Define the set � = {� ∣ "� ∈ $}. Then � = $ ≤ �. 

Also since $ is a vertex cover, ⋃ �� = & ∈  some "� ∈ $ touches & =  = ��∈� .

Therefore � has set cover � from ��, … , �� of size ≤ �.
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Set-Cover is ��-complete

Proof (continued):  

2.   Set-Cover is ��-hard

Claim: Vertex-Cover ≤� Set-Cover

a) Reduction function � takes and input a graph � = (�,  ) and integer � and produces a 

universe �, sets ��, … , �� ⊆ � and integer �! as follows:

• � =  (good idea since the objects being covered in Vertex-Cover are edges.)

• Write � = {"�, … , "�}.                                                                                                             

For each � = �, … , � define �� to be the set of edges in  that "� touches.

• �! = �.

b) c) …

d) Correctness (⇐):  Suppose that � has a set cover � from ��, … , �� of size ≤ �.                         

Define the set $ = {"� ∣ � ∈ �}. Then $ = � ≤ �. 

Also since � is a set cover, � =  = ⋃ �� = ⋃ & ∈   "� touches &�∈��∈� . But this is 

the same as  = ⋃ & ∈   " touches &"∈$ , so graph � has vertex cover $ of size ≤ �.
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Recall: Graph Colorability

Defn: A undirected graph � = (�,  ) is �-colorable iff

we can assign one of � colors to each vertex of � s.t.

for every edge (0, ") has different colored endpoints, 1 0 ≠ 1("). 

“edges are not monochromatic”

Theorem: 3Color is ��-complete

Proof:

1. 3Color is in ��:

• We already showed this; the certificate was the coloring.

2. 3Color is ��-hard:

Claim: 3SAT≤�3Color 

We need to find a function � that maps a 3CNF formula 3 to a graph � s.t.3 is satisfiable ⇔ � is 3-colorable.
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3SAT ≤� 3Color

Base Triangle

O

TF

Start with a base triangle with vertices T, F, and O.    

We can assume that T, F, and O are the three colors used.

• Intuition: T and F will stand for true and false; O will stand for other.

To represent the properties of the 3CNF formula 3 we will need both a 

Boolean variable part and a clause part.
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3SAT ≤� 3Color

Base Triangle

O

TF

...

�

5

�

¬�

¬5

¬�
Boolean variable part: 

• For each Boolean variable add a 

triangle with two nodes labelled 

by literals as shown.

• Since both nodes are joined to 

node O and to each other, they 

must have opposite colors T and 

F in any 3-coloring.

• So, any 3-coloring corresponds to 

a unique truth assignment.
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3SAT ≤� 3Color

O

TF

...

�

5

�

¬�

¬5

¬�

Clause Part

Clause part: 

For each clause of 3 add a 

gadget consisting of  a 

triangle and 3 “outer” nodes.

• Join each outer node to a 

corresponding literal node

• Join each outer node to T
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3SAT ≤� 3Color

O

TF

...

�

5

�

¬�

¬5

¬�

Clause Part

Clearly only 

polynomial-time 

to produce.
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3SAT ≤� 3Color

O

TF

...

�

5

�

¬�

¬5

¬�

Clause Part

Key property: 

In any 3-coloring:

outer nodes either F or O

inner triangle must use O
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3SAT ≤� 3Color

O

TF

...

�

5

�

¬�

¬5

¬�

Therefore � is 3-colorable

Suppose 3 is satisfiable.

T

T

T

F

F

F

F

F

O

O

O

O

Color outer vertices 

with F for 1st true 

literal and the rest O.

Color variable part 

using satisfying 

assignment.

Color inner vertices 

with O opposite F.

F

F

O

O

T

T

16



3SAT ≤� 3Color

O

TF

...

�

5

�

¬�

¬5

¬�

Each clause has a literal that is T satisfying 3

Suppose � is 3-colorable.

F

F

Coloring must have 

outer F opposite each 

inner O.

Literal joined to 

each outer F must 

be colored T.

3-coloring must use O

on each inner triangle

F

F

O

O

T

T

T

T
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More ��-completeness

Subset-Sum: (Decision version of Knapsack)                                   

Given: � integers 7�, … , 7� and integer $
Is there a subset of the � input integers that adds up to exactly $?

8(�$) solution from dynamic programming but if $ and each 7� can be � bits long 

then this is exponential time.

Theorem: Subset-Sum is ��-complete

Proof:

1. Subset-Sum is in ��:
a) Certificate is � bits representing a subset � of {�, … , �}.

b) Check that ∑ 7� = $�∈� .

2. Subset-Sum is ��-hard

Claim: 3SAT≤�Subset-Sum 
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3SAT≤�Subset-Sum

Given a 3-CNF formula 3 with � clauses and � variables

• We will create an input for Subset-Sum with 5� + 5� numbers that are � + �
digits long.

• We will ensure that no matter how we sum them there won’t be any carries so 
each digit in the target $ will force a separate constraint.

• Instead of calling them 7�, … , 75�;5� we will use mnemonic names:

• Two numbers for each variable �
• <� and ��  (corresponding to � being true or � being false)

• Two extra numbers for each clause =>
• ?> and @> (two identical filler numbers to handle number of false literals

in clause =>)
• We define them by giving their decimal representation...
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3SAT≤�Subset-Sum

20

We include two � + � digit numbers for each Boolean variable �

Boolean part in the first � positions:  

• Digit � of both <� and �� are �; the rest are A

Clause part in the next � positions:  

• Digit > of <� is � if clause => contains literal �; the rest are A
• Digit > of �� is � if clause => contains literal ¬�; the rest are A

Clauses =� and =� contain �
Clauses =5 and => contain ¬�

1 2 3 � … � 1 2 3 > … �
<� = A A A � … A � A A A … �
�� = A A A � … A A � A � … A



3SAT≤�Subset-Sum
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We also include two extra identical � + � digit numbers for each clause =>

1 2 3 � … � 1 2 … > … �
?> = A A A A … A A A … � … A
@> = A A A A … A A A … � … A

These are:

• All A in the Boolean columns

• Digit > of both ?> and @> are � in the clause columns; the rest are A



3SAT≤�Subset-Sum
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=� = (� ∨ ¬5 ∨ F)

Boolean variable part:

First � digit positions 

ensure that exactly 

one of <� or �� is 

included in any subset 

summing to $.

Clause part:�’s in each digit position >
correspond to the 3 literals that 

would make clause => true. 

� > =5 = (¬� ∨ 5 ∨ G)
=F = (¬F ∨ H ∨ I)
=H = (¬� ∨ ¬F ∨ J)
=� = (� ∨ ¬K ∨ 55)…

1 2 3 4 … � 1 2 3 4 … �
<� = � A A A … A � A A A … �
�� = � A A A … A A � A � … A
<5 = A � A A … A A � A A … A
�5 = A � A A … A � A A A … A
<F = A A � A … A � A A A … A
�F = A A � A … A A A � � … A
… … … … … … … … … … … … …

?� = A A A A … A � A A A … A
@� = A A A A … A � A A A … A
?5 = A A A A … A A � A A … A
@5 = A A A A … A A � A A … A

… … … … … … … … … … … … …

$ = � � � � … � F F F F … F

Every column in the clause part 

of the block of <’s and �’s has

exactly 3 �’s. 

The ?’s and @’s add exactly 2 

more possible �’s per column



3SAT≤�Subset-Sum
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=� = (� ∨ ¬5 ∨ F)

Boolean variable part:

First � digit positions 

ensure that exactly 

one of <� or �� is 

included in any subset 

summing to $.

Key idea of clause columns:

Column > can sum to the target 

column sum of F⇔ at least one of the <� or ��
rows included in the subset 

contains a � in column >

� > =5 = (¬� ∨ 5 ∨ G)
=F = (¬F ∨ H ∨ I)
=H = (¬� ∨ ¬F ∨ J)
=� = (� ∨ ¬K ∨ 55)…

1 2 3 4 … � 1 2 3 4 … �
<� = � A A A … A � A A A … �
�� = � A A A … A A � A � … A
<5 = A � A A … A A � A A … A
�5 = A � A A … A � A A A … A
<F = A A � A … A � A A A … A
�F = A A � A … A A A � � … A
… … … … … … … … … … … … …

?� = A A A A … A � A A A … A
@� = A A A A … A � A A A … A
?5 = A A A A … A A � A A … A
@5 = A A A A … A A � A A … A

… … … … … … … … … … … … …

$ = � � � � … � F F F F … F
The ?’s and @’s add exactly 2 

more possible �’s per column



3SAT≤�Subset-Sum
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If 3 satisfiable choose

one of <� or ��
depending on the 

satisfying assignment.

Their sum will have 

exactly one � in each 

of the first � digits and 

at least one � in every 

clause digit position.

Also include 0, 1, or 2 

of each?>, @> pair to add to $.

If some subset sums to $ must 

have exactly one of <� or �� for 

each �.

Set variable � to true if <� used and 

false if �� used.

Must have three �’s in each clause 

digit column > since things sum to $.

At most two of these can come 

from ?>, @> to one of these �’s must 

come from the choices of the truth 

assignment ⇒ every clause => is 

satisfied so 3 is satisfiable.

� >1 2 3 4 … � 1 2 3 4 … �
<� = � A A A … A � A A A … �
�� = � A A A … A A � A � … A
<5 = A � A A … A A � A A … A
�5 = A � A A … A � A A A … A
<F = A A � A … A � A A A … A
�F = A A � A … A A A � � … A
… … … … … … … … … … … … …

?� = A A A A … A � A A A … A
@� = A A A A … A � A A A … A
?5 = A A A A … A A � A A … A
@5 = A A A A … A A � A A … A

… … … … … … … … … … … … …

$ = � � � � … � F F F F … F



Some other ��-complete examples you should know

Hamiltonian-Cycle: Given a directed graph � = �,  .  Is there a cycle in �
that visits each vertex in � exactly once?  

Hamiltonian-Path: Given a directed graph � = �,  .  Is there a path M in � of length � − � that visits each vertex in � exactly once? 

Same problems are also ��-complete for undirected graphs

Note: If we asked about visiting each edge exactly once instead of each 

vertex, the corresponding problems are called Eulerian-Cycle, Eulerian-Path 

and are polynomial-time solvable.
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Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP): 

Given: a set of � cities "�, … , "� and distance function O that gives distance O("�, ">) between each pair of cities

Find the shortest tour that visits all � cities.

DecisionTSP:

Given: a set of � cities "�, … , "� and distance function O that gives distance O("�, ">) between each pair of cities and a distance P
Is there a tour of total length at most P that visits all � cities?
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Hamiltonian-Cycle ≤� DecisionTSP

Define the reduction given � = (�,  ):

• Vertices � = {"�, … , "�} become cities

• Define O "�, "> = Q� if "�, "> ∈  
5 if not

• Distance P = |�|.
Claim: There is a Hamiltonian cycle in � ⇔ ⇔ ⇔ ⇔ there is a tour of length |�|
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��-complete problems we’ve covered

3SAT → → → → Independent-Set → Clique

↓↓↓↓
Vertex-Cover → 01-Programming → Integer-Programming

↓↓↓↓
Set-Cover

3Color 

Subset-Sum

Hamiltonian-Cycle → DecisionTSP

Hamiltonian-Path
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More Hard Computational Problems

• Aerospace engineering:  optimal mesh partitioning for finite elements.

• Biology:  protein folding.

• Chemical engineering:  heat exchanger network synthesis.

• Civil engineering:  equilibrium of urban traffic flow.

• Economics:  computation of arbitrage in financial markets with friction.

• Electrical engineering:  VLSI layout. 

• Environmental engineering:  optimal placement of contaminant sensors.

• Financial engineering:  find minimum risk portfolio of given return.

• Game theory:  find Nash equilibrium that maximizes social welfare.

• Genomics:  phylogeny reconstruction.

• Mechanical engineering:  structure of turbulence in sheared flows.

• Medicine:  reconstructing 3-D shape from biplane angiocardiogram.

• Operations research:  optimal resource allocation. 

• Physics:  partition function of 3-D Ising model in statistical mechanics.

• Politics:  Shapley-Shubik voting power.

• Pop culture:  Minesweeper consistency.

• Statistics:  optimal experimental design.
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