CSE 421Introduction to Algorithms

Lecture 23: P, NP, NP-completeness

I EN SCHOOL

Polynomial time

Defn: Let P (polynomial-time) be the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.

This is the class of decision problems whose solutions we have called "efficient".

Last time: Polynomial Time Reduction

Defn: We write $A \leq_{P} B$ iff there is an algorithm for A using a 'black box' (subroutine or method) that solves \boldsymbol{B} that

- uses only a polynomial number of steps, and
- $\bullet\,$ makes only a polynomial number of calls to a method for $\bm{B}.$

Theorem: If $A \leq_{P} B$ then a poly time algorithm for $B \Rightarrow$ poly time algorithm for A

Proof: Not only is the number of calls polynomial but the size of the inputs on which the calls are made is polynomial!

Corollary: If you can prove there is no fast algorithm for A , then that proves there is <mark>no</mark> fast algorithm for B .

 $\bm{\mathsf{Int}}$ uition for " $\bm{A}\leq_{\bm{P}} \bm{B}$ ": " \bm{B} is at least as hard * * as A'' $\;$ *up to polynomial-time slop.

Polynomial Time Reduction

Defn: We write $A \leq_{P} B$ iff there is an algorithm for A using a 'black box' (subroutine or method) that solves \boldsymbol{B} that

- uses only a polynomial number of steps, and
- $\bullet\,$ makes only a polynomial number of calls to a method for $\bm{B}.$

Theorem: If $A \leq_{P} B$ then $B \in \mathbf{P} \Rightarrow A \in \mathbf{P}$

Proof: Not only is the number of calls polynomial but the size of the inputs on which the calls are made is polynomial!

Corollary: If $A \leq_{P} B$ then $A \notin \mathbf{P} \Rightarrow B \notin \mathbf{P}$.

Theorem: If $A\leq_{P} B$ and $B\leq_{P} C$ then $A\leq_{P} C$

Proof: Compose the reductions: Plug in "the algorithm for \bm{B} that uses \bm{C} " in place of $\bm{B}.$

A Special Kind of Polynomial-Time Reduction

We will often use a restricted form of $A\leq_P B$ often called a Karp or many-one reduction...

 $\mathsf{Defn}\colon A \leq^{\mathbf{L}}_{P}$ solving \boldsymbol{B} that on input \boldsymbol{x} that 1 $\frac{1}{p}$ **B** iff there is an algorithm for **A** given a black box

- Runs for polynomial time computing $y = f(x)$
- Makes $\bf 1$ call to the black box for $\bf B$ on input $\bf y$
- Returns the answer that the black box gave

We say that the function \boldsymbol{f} is the reduction.

Reminder: The terminology for reductions…

We read " $A \leq_P B$ " as " A is polynomial-time **reducible** to B " or

"A can be **reduced** to B in polynomial time"

- It means "we can solve \boldsymbol{A} using at most a polynomial amount of work on top of solving \bm{B} ."
- But word reducible seems to go in the opposite direction of the \leq sign.

Reminder: Reduction steps

4 steps for reducing (decision problem) \boldsymbol{A} to problem \boldsymbol{B}

- 1. Describe the reduction itself
	- i.e., the function f that converts the input x for A to the one for problem $B.$
- 2. Make sure the running time to compute f is polynomial
	- In lecture, we'll sometimes skip writing out this step.
- 3. Argue that if the correct answer to the instance x for A is YES, then the instance $f(x)$ we produced is a **YES** instance for B .
- 4. Argue that if the instance $f(x)$ we produced is a **YES** instance for B then the correct answer to the instance \boldsymbol{x} for \boldsymbol{A} is $\boldsymbol{\mathsf{YES}}$.

Last time: Some reductions

Theorem: Independent-Set \leq_P **Clique**

 T heorem: Clique \leq_P **Independent-Set**

Given:

• (G, k) as input to **Clique** where $G = (V, E)$

Use function f that transforms $({\bm G},{\bm k})$ to $({\bm G}',{\bm k})$ where

• $G' = (V, E')$ has the same vertices as G but E' consists of **precisely** those edges on V that are not edges of C *that are not edges of* $*G*$ *.*

From the definitions, \boldsymbol{U} is an clique in \boldsymbol{G}

 $\Leftrightarrow \pmb{U}$ is an independent set in \pmb{G}'

Easy to check both directions given this...

Another Reduction

Vertex-Cover:

Given a graph $G = (V, E)$ and an integer k Is there a $W \subseteq V$ with $|W| \leq k$ such that every edge of G has an analyzing that covers endpoint in W ? (W is a vertex cover, a set of vertices that covers E .)
Is there a set of at most k vertices that touches all edges of C ? i.e., Is there a set of at most \bm{k} vertices that touches all edges of \bm{G} ?

Claim: **Independent-Set** ≤ **Vertex-Cover**

Lemma: In a graph $G = (V, E)$ and $U \subseteq V$

 \boldsymbol{U} is an independent set \Leftrightarrow $\boldsymbol{V}-\boldsymbol{U}$ is a vertex cover

Reduction Idea

Lemma: In a graph $G = (V, E)$ and $U \subseteq V$

 \boldsymbol{U} is an independent set \Leftrightarrow $\boldsymbol{V}-\boldsymbol{U}$ is a vertex cover

Proof:

(⇒) Let \boldsymbol{U} be an independent set in \boldsymbol{G}

Then for every edge $e \in E$,

 U contains at most one endpoint of e

So, at least one endpoint of e must be in $V-U$

So, $\boldsymbol{V}-\boldsymbol{U}$ is a vertex cover

(∈) Let $W = V - U$ be a vertex cover of G

Then \boldsymbol{U} does not contain both endpoints of any edge \boldsymbol{U} (else *W* would miss that edge)
So *II* is an independent set

So \boldsymbol{U} is an independent set

Reduction for Independent-Set \leq_P **Vertex-Cover**

- Map (\bm{G}, \bm{k}) to $(\bm{G}, \bm{n} \bm{k})$
	- Previous lemma proves correctness
- Clearly polynomial time
- Just as for Clique, we also can show
	- Vertex-Cover \leq_P Independent \cdot **Independent-Set**
		- Map (\bm{G}, \bm{k}) to $(\bm{G}, \bm{n} \bm{k})$

Recall: Vertex-Cover as LP

Given: Undirected graph $G = (V, E)$

Q: Is there a set of at most *k* vertices touching all edges of \boldsymbol{G} ?

Doesn't work: To define a set we need $x_v = 0$ or $x_v = 1$

It would work if we only allowed 0-1 solutions!

Natural Variables for LP:

 $x_{\mathcal{\nu}}$ for each $\nu \in V$

Does this have a solution?

 $\sum_{v} x_v \leq k$ $\mathbf{0} \leq x_v \leq \mathbf{1}$ for each node $v \in V$ $\pmb{\chi}_{\boldsymbol{u}}$ $u + x_v \ge 1$ for each edge $\{u, v\} \in E$

LP minimum $= 3$

Vertex Cover minimum $= 4$

Integer-Programming, 01-Programming

Integer-Programming (ILP): Exactly like Linear Programming but with the extra constraint that the solutions must be integers. Decision version:

 $\bm{\mathsf{Given:}}$ (integer) matrix \bm{A} and (integer) vector \bm{b}

Is there an integer solution to $Ax\leq \bm{b}$ and $x\geq \bm{0}$?

01-Programming:

 $\bm{\mathsf{Given:}}$ (integer) matrix \bm{A} and (integer) vector \bm{b} Is there an solution to $Ax\leq b$ with $x\in\{0,1\}$?

Then we have **Vertex-Cover** \leq_P 01-Programming \leq_P Integer-Programming

Beyond ?

Independent-Set, **Clique**, **Vertex-Cover**, **01-Programming**, **Integer-Programming** and **3Color** are examples of natural and practically important problems for which we don't know any polynomial-time algorithms.

There are many others such as...

DecisionTSP:

 G iven a weighted graph G and an integer \bm{k} , Is there a tour that visits all vertices in G having total weight at most k ?

and...

Satisfiability

- Boolean variables $x_1, ..., x_n$
	- taking values in $\{0, 1\}$. O=false, 1=true
- Literals
	- x_i or $\neg x_i$ for $i = 1, ..., n$. ($\neg x_i$ also written as $\overline{x_i}$.)
- Clause
	- a logical OR of one or more literals
	- e.g. $(x_1 \vee \neg x_3 \vee x_7 \vee x_{12})$
- CNF formula
	- a logical AND of a bunch of clauses
- *k*-CNF formula
	- All clauses have exactly \bm{k} variables

Satisfiability

CNF formula example:

$$
(x_1 \vee \neg x_3 \vee x_4) \wedge (\neg x_4 \vee x_3) \wedge (x_2 \vee \neg x_1 \vee x_3)
$$

Defn: If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable

- $(x_1 \vee \neg x_3 \vee x_4) \wedge (\neg x_4 \vee x_3) \wedge (x_2 \vee \neg x_1 \vee x_3)$ is satisfiable: $x_1 = x_3 = 1$
- $x_1 \wedge (\neg x_1 \vee x_2) \wedge (\neg x_2 \vee x_3) \wedge \neg x_3$ is not satisfiable.

3SAT: Given a CNF formula F with exactly 3 variables per clause, is \boldsymbol{F} satisfiable?

Common property of these problems

- There is a special piece of information, a short certificate or proof, that allows you to **efficiently verify** (in polynomial-time) that the **YES** answer is correct. This certificate might be very hard to find.
	- **3Color**: the coloring.
	- Independent-Set, Clique: the set U of vertices
	- Vertex-Cover: the set *W* of vertices
• 01-Programming Intoger-Program
	- **01-Programming**, **Integer-Programming**: the solution
	- **Decision-TSP**: the tour
	- \bullet **3SAT**: a truth assignment that makes the CNF formula \boldsymbol{F} true.

The complexity class NP

 $\bf NP$ consists of all decision problems where

• You can **verify** the **YES** answers efficiently (in polynomial time) given a short (polynomial-size) *certificate*

and

• **No fake certificate** can fool your polynomial time verifier into saying **YES** for a **NO** instance

More precise definition of NP

A decision problem **A** is in **NP** iff there is

- a polynomial time procedure **VerifyA**(.,.) and
- a polynomial \boldsymbol{p}

s.t.

• for every input x that is a YES for A there is a string t with $|t| \le p(|x|)$ $\textsf{with } \textsf{VerifyA}(\boldsymbol{x}, \, \boldsymbol{t}) = \textsf{YES}$

and

- for every input x that is a **NO** for **A** there does not exist a string t with $\left| \frac{f}{f} \right| \leq \alpha (\left| \frac{f}{f} \right|)$ with $\left| \frac{f}{f} \right| \leq \alpha$ $|t| \le p(|x|)$ with **VerifyA** (x, t) = **YES**
- A string *t* on which **VerifyA**(*x*, *t*) = YES is called a *certificate* for *x* or a *proof* that $\boldsymbol{\mathit{x}}$ is a $\boldsymbol{\mathsf{YES}}$ input

Verifying the certificate is efficient

3Color: the coloring

• Check that each vertex has one of only 3 colors and check that the endpoints of every edge have different colors

Independent-Set, Clique: the set \boldsymbol{U} **of vertices**

- Check that $|U| \geq k$ and either no (IS) or all (Clique) edges on present on U **Vertex-Cover**: the set W of vertices
Chock that $|W| < k$ and W to
	- Check that $|W| \leq k$ and W touches every edge.
Programming Integer Programming: the solution
- **01-Programming**, **Integer-Programming**: the solution
	- Check type of x ; plug in x and see that it satisfies all the inequalities.

Decision-TSP: the tour

- Check that tour touches each vertex and has total weight $\leq k$.
- **3-SAT**: a truth assignment α that makes the CNF formula \bm{F} true.
	- Evaluate \boldsymbol{F} on the truth assignment $\boldsymbol{\alpha}$.

Keys to showing that a problem is in NP

- 1. Must be decision probem (**YES** /**NO**)
- 2. For every given **YES** input, is there a certificate (i.e., a hint) that would help?
	- OK if some inputs don't need a certificate
- 3. For any given **NO** input, is there a fake certificate that would trick you?
- 4. You need a polynomial-time algorithm to be able to tell the difference.

Another NP problem

Sudoku:

- Is there a solution where this square has value 4?
- Certificate = full filled in table
	- Easy to check

Fact: All NP problems could be solved efficiently by solving any of the problems on the previous slide efficiently or even by doing it for a general $n^2 \times n^2$ version of Sudoku!

Solving NP problems without hints

There is an obvious algorithm for all ${\bf NP}$ problems:

Brute force:

Try all possible certificates and check each one using the verifier to see if it works.

Even though the certificates are short, this is exponential time

- 2^n truth assignments for \boldsymbol{n} variables
- • \boldsymbol{n} \bm{k} $\binom{n}{k}$ possible k -element subsets of n vertices
- $\bm{n}!$ possible TSP tours of \bm{n} vertices
- etc.

What We Know

- Every problem in $\bf NP$ is in exponential time
- Every problem in ${\bf P}$ is in ${\bf NP}$
	- You don't need a certificate for problems in P so just ignore any hint you are given
- Nobody knows if all problems in NP can be solved in polynomial time; i.e., does $P = NP?$
	- one of the most important open questions in all of science.
	- huge practical implications
- Most CS researchers believe that $\mathbf{P} \neq \mathbf{NP}$
	- \$1M prize either way
	- but we don't have good ideas for how to prove this ...

5**-hardness &** 5**-completeness**

Notion of hardness we **can** prove that is useful unless $P = NP$:

Defn: Problem B is NP -hard iff every problem $A \in NP$ satisfies $A \leq_{P} B$.

This means that \bm{B} is at least as hard as every problem in $\textbf{NP}.$

Defn: Problem *B* is **NP**-complete iff

- $B \in \mathbf{NP}$ and
- \boldsymbol{B} is NP-hard.

This means that \boldsymbol{B} is a hardest problem in $\boldsymbol{\mathrm{NP}}.$

Not at all obvious that any NP-complete problems exist!

NP

P

5**-complete**

5**-hard**

Cook-Levin Theorem

Theorem [Cook 1971, Levin 1973]: **3SAT is NP-complete Proof:** See CSE 431.

Corollary: If 3 SAT $\leq_P B$ then B is NP -hard.

Proof: Let **A** be an arbitrary language in NP. Since **3SAT** is NP -hard we have $A \leq_P 3$ SAT. $\textsf{Then}~\textsf{A}\leq_p\textsf{3SAT}$ and $\textsf{3SAT}\leq_p\textsf{B}$ imply that $\textsf{A}\leq_p\textsf{B}.$ Therefore every language **A** in **NP** has $A \leq_{P} B$ so **B** is **NP**-hard.

Cook & Levin did the hard work.

We only need to give one reduction to show that a problem is NP-hard!

Another NP -complete problem: 3SAT \leq_P Independent-Set

- 1. The reduction:
	- Map CNF formula F to a graph G and integer k
	- Let $m = #$ of clauses of \overline{F}
	- Create a vertex in \boldsymbol{G} for each literal occurrence in \boldsymbol{F}
	- Join two vertices \boldsymbol{u} , \boldsymbol{v} in \boldsymbol{G} by an edge iff
		- \bm{u} and \bm{v} correspond to literals in the same clause of \bm{F} (green edges) or
		- u and v correspond to literals x and $\neg x$ (or vice versa) for some variable \bm{x} (red edges).
	- Set $k = m$
- 2. Clearly polynomial-time computable

Another NP -complete problem: 3SAT \leq_P Independent-Set

 $\bm{F} = (x_1 \vee \neg x_3 \vee x_4) \wedge (x_2 \vee \neg x_4 \vee x_3) \wedge (\neg x_2 \vee \neg x_1 \vee x_3)$

 \overline{G} has both kinds of edges. The color is just to show why the edges were included.

 $k = m$

Correctness (⇒)

Suppose that \boldsymbol{F} is satisfiable (**YES** for **3SAT**)

- Let α be a satisfying assignment; it satisfies at least one literal in each clause.
- Choose the set \boldsymbol{U} in \boldsymbol{G} to correspond to the **first satisfied literal in each clause**.
	- $|U| = m$
	- Since \boldsymbol{U} has $\boldsymbol{1}$ vertex per clause, no green edges inside $\boldsymbol{U}.$
	- A truth assignment never satisfies both x and $\neg x$, so no red edges inside $\boldsymbol{U}.$
	- Therefore \bm{U} is an independent set of size \bm{m}

Therefore (G, m) is a **YES** for **Independent-Set**.

$$
\mathbf{F} = (x_1 \vee \neg x_3 \vee x_4) \wedge (x_2 \vee \neg x_4 \vee x_3) \wedge (\neg x_2 \vee \neg x_1 \vee x_3)
$$

Satisfying assignment α : $\alpha(x_1) = \alpha(x_2) = \alpha(x_3) = \alpha(x_4) = 1$

Set \boldsymbol{U} marked in purple is independent.

Correctness (⇐)

Suppose that \boldsymbol{G} has an independent set of size \boldsymbol{m} (G, m) is a YES for **Independent-Set**)

- Let \bm{U} be the independent set of size $\bm{m};$
- \bm{U} must have one vertex per column (green edges)
- Because of red edges, U doesn't have vertex labels with conflicting literals.
- Set all literals labelling vertices in \boldsymbol{U} to true
- This may not be a total assignment but just extend arbitrarily to a total assignment α .
	- This assignment satisfies \bm{F} since it makes at least one literal per clause true.

Therefore ⁴ is satisfiable and a **YES** for **3SAT**.

Given independent set \boldsymbol{U} of size \boldsymbol{m} Satisfying assignment α : Part defined by \boldsymbol{U} : $\alpha(x_1) = 0, \alpha(x_2) = 1, \alpha(x_3) = 0$ Set $\boldsymbol{\alpha}(\boldsymbol{x_4}) = \boldsymbol{0}$.

Many NP-complete problems

 $\mathsf{Since }$ $\mathsf{SSAT} \leq_P \mathsf{Independent}\text{-}\mathsf{Set},$ $\mathsf{Independent}\text{-}\mathsf{Set}$ is $\mathsf{NP}\text{-}\mathsf{hard}.$

We already showed that **Independent-Set** is in **NP**.

⇒ **Independent-Set** is \mathbf{NP} -complete

Corollary: Clique, **Vertex-Cover**, **01-Programming**, and **Integer-Programming** are also NP -complete.

Proof: We already showed that all are in $\mathbf{NP}.$

We also showed that **Independent-Set** polytime reduces to all of them.

Combining this with 3 SAT \leq_P In<mark>dependent-Set</mark> we get that all are NP -hard.