
CSE 421

Introduction to Algorithms

Lecture 23: P, NP, NP-completeness
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Polynomial time

Defn: Let � (polynomial-time) be the set of all decision problems

solvable by algorithms whose worst-case running time is 

bounded by some polynomial in the input size. 

This is the class of decision problems whose solutions we have called 

“efficient”.

2



Last time: Polynomial Time Reduction 

Defn: We write � ≤� � iff there is an algorithm for � using a ‘black box’ (subroutine 

or method) that solves � that

• uses only a polynomial number of steps, and 

• makes only a polynomial number of calls to a method for �.

Theorem: If � ≤� � then a poly time algorithm for � ⇒ poly time algorithm for �

Proof: Not only is the number of calls polynomial but the size of the inputs on which 

the calls are made is polynomial!

Corollary: If you can prove there is no fast algorithm for �, then that proves there is 

no fast algorithm for �.

Intuition for “� ≤� �”:  “� is at least as hard* as �”   *up to polynomial-time slop.
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Polynomial Time Reduction 

Defn: We write � ≤� � iff there is an algorithm for � using a ‘black box’ (subroutine 

or method) that solves � that

• uses only a polynomial number of steps, and 

• makes only a polynomial number of calls to a method for �.

Theorem: If � ≤� � then � ∈ � ⇒ � ∈ �

Proof: Not only is the number of calls polynomial but the size of the inputs on which 

the calls are made is polynomial!

Corollary: If � ≤� � then � ∉ � ⇒ � ∉ �.

Theorem: If � ≤� � and � ≤� 	 then � ≤� 	

Proof: Compose the reductions: Plug in “the algorithm for � that uses 	” in place of �.
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A Special Kind of Polynomial-Time Reduction

We will often use a restricted form of � ≤� � often called a Karp or 

many-one reduction...

Defn: � ≤�

 � iff there is an algorithm for � given a black box   

solving � that on input � that

• Runs for polynomial time computing � = �(�)

• Makes 
 call to the black box for � on input �

• Returns the answer that the black box gave

We say that  the function � is the reduction.
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Reminder: The terminology for reductions…

We read “� ≤� �” as “� is polynomial-time reducible to �” or

“� can be reduced to � in polynomial time”
• It means “we can solve � using at most a polynomial amount of 

work on top of solving �.”

• But word reducible seems to go in the opposite direction of the ≤ sign.
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Reminder: Reduction steps

4 steps for reducing (decision problem) � to problem �

1. Describe the reduction itself

• i.e., the function � that converts the input � for � to the one for problem �.

2. Make sure the running time to compute � is polynomial 

• In lecture, we’ll sometimes skip writing out this step.

3. Argue that if the correct answer to the instance � for � is YES, 

then the instance �(�) we produced is a YES instance for �.

4. Argue that if the instance �(�) we produced is a YES instance for �
then the correct answer to the instance � for � is YES.

7



Last time: Some reductions

Theorem:  Independent-Set ≤� Clique

Theorem: Clique ≤� Independent-Set

Given:

• (�, �) as input to Clique where � = (�, �)

Use function � that transforms (�, �) to (�′, �) where

• �′ = (�, �′) has the same vertices as � but �′ consists of precisely those edges on 
� that are not edges of �.

From the definitions, � is an clique in �

⇔⇔⇔⇔ � is an independent set in �′

Easy to check both directions given this...

8



Another Reduction

Vertex-Cover:

Given a graph � = (�, �) and an integer �

Is there a � ⊆ � with � ≤ � such that every edge of � has an 
endpoint in �?   (� is a vertex cover, a set of vertices that covers �.)

i.e., Is there a set of at most � vertices that touches all edges of �?

Claim: Independent-Set ≤� Vertex-Cover

Lemma: In a graph � = (�, �) and � ⊆ �

� is an independent set ⇔ � − � is a vertex cover
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Reduction Idea

Lemma: In a graph � = (�, �) and � ⊆ �

� is an independent set ⇔ � − � is a vertex cover

Proof:

(⇒) Let � be an independent set in �

Then for every edge � ∈ �,
� contains at most one endpoint of �

So, at least one endpoint of � must be in � − �

So, � − � is a vertex cover

(⇐) Let � = � − � be a vertex cover of �

Then � does not contain both endpoints of any edge                    
(else � would miss that edge)

So � is an independent set
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Reduction for Independent-Set ≤� Vertex-Cover

• Map (�, �) to (�, � − �)

• Previous lemma proves correctness

• Clearly polynomial time

• Just as for Clique, we also can show

• Vertex-Cover ≤� Independent-Set 

• Map (�, �) to (�, � − �)
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Recall: Vertex-Cover as LP

Given: Undirected graph � = (�, �)

Q: Is there a set of at most � vertices 

touching all edges of �?

Doesn’t work: To define a set we need

� = ! or � = 


Does this have a solution?

∑ �   ≤ �

    ! ≤ �  ≤ 
 for each node  ∈ �

�# + � ≥ 
 for each edge #,  ∈ �

Natural Variables for LP: 

� for each  ∈ �
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It would work if we only allowed 0-1 solutions!



Integer-Programming, 01-Programming

Integer-Programming (ILP): Exactly like Linear Programming but with the 

extra constraint that the solutions must be integers.  Decision version:

Given: (integer) matrix � and (integer) vector *

Is there an integer solution to �� ≤ * and � ≥ !?

01-Programming:

Given: (integer) matrix � and (integer) vector *

Is there an solution to �� ≤ * with � ∈ {!, 
}?

Then we have Vertex-Cover ≤� 01-Programming ≤� Integer-Programming
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Beyond �?

Independent-Set, Clique, Vertex-Cover, 01-Programming,

Integer-Programming and 3Color are examples of natural and 

practically important problems for which we don’t know any 

polynomial-time algorithms.

There are many others such as...

DecisionTSP:

Given a weighted graph � and an integer �, 

Is there a tour that visits all vertices in � having total 

weight at most �?

and...
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Satisfiability

• Boolean variables �
, … , ��
• taking values in {!, 
}. !=false, 
=true

• Literals
• �/ or ¬�/ for / = 
, … , �. (¬�/ also written as �/.)

• Clause
• a logical OR of one or more literals

• e.g.  (�
 ∨ ¬�( ∨ �2 ∨ �
')

• CNF formula
• a logical AND of a bunch of clauses

• �-CNF formula
• All clauses have exactly � variables
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Satisfiability

CNF formula example:
�
 ∨ ¬�( ∨ �) ∧ ¬�) ∨ �( ∧ �' ∨ ¬�
 ∨ �(

Defn: If there is some assignment of 0’s and 1’s to the variables that makes 

it true then we say the formula is satisfiable

• �
 ∨ ¬�( ∨ �) ∧ ¬�) ∨ �( ∧ �' ∨ ¬�
 ∨ �( is satisfiable: �
 = �( = 


• �
 ∧ ¬�
 ∨ �' ∧ ¬�' ∨ �( ∧ ¬�( is not satisfiable.

3SAT: Given a CNF formula 4 with exactly ( variables per clause,

is 4 satisfiable?
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Common property of these problems

• There is a special piece of information, a short certificate or proof, 
that allows you to efficiently verify (in polynomial-time) that the 
YES answer is correct.  This certificate might be very hard to find.

• 3Color: the coloring. 

• Independent-Set, Clique: the set � of vertices

• Vertex-Cover: the set � of vertices

• 01-Programming, Integer-Programming: the solution �

• Decision-TSP: the tour

• 3SAT: a truth assignment that makes the CNF formula 4 true.
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The complexity class 5�

5� consists of all decision problems where 

• You can verify the YES answers efficiently (in polynomial time) given a 

short (polynomial-size) certificate

and

• No fake certificate can fool your polynomial time verifier into saying 

YES for a NO instance
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More precise definition of 5�

A decision problem A is in 5� iff there is
• a polynomial time procedure VerifyA(.,.) and

• a polynomial 6

s.t.
• for every input � that is a YES for A there is a string 7 with 7 ≤  6(|�|)

with VerifyA(�, 7) = YES

and

• for every input � that is a NO for A there does not exist a string 7 with 
7 ≤  6(|�|) with VerifyA(�, 7) = YES

• A string 7 on which VerifyA(�, 7) = YES is called a certificate for � or a proof
that � is a YES input
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Verifying the certificate is efficient

3Color: the coloring

• Check that each vertex has one of only 3 colors and check that the 
endpoints of every edge have different colors

Independent-Set, Clique: the set � of vertices

• Check that � ≥ � and either no (IS) or all (Clique) edges on present on �

Vertex-Cover: the set � of vertices

• Check that � ≤ � and � touches every edge.

01-Programming, Integer-Programming: the solution �

• Check type of �; plug in � and see that it satisfies all the inequalities.

Decision-TSP: the tour

• Check that tour touches each vertex and has total weight ≤ �.

• 3-SAT: a truth assignment 9 that makes the CNF formula 4 true.

• Evaluate 4 on the truth assignment 9.
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Keys to showing that a problem is in 5�

1. Must be decision probem (YES/NO)

2. For every given YES input, is there a certificate (i.e., a hint) that would help?

• OK if some inputs don’t need a certificate

3. For any given NO input, is there a fake certificate that would trick you?

4. You need a polynomial-time algorithm to be able to tell the difference.
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Another NP problem

Sudoku:

• Is there a solution where this 

square has value 4?

• Certificate = full filled in table

• Easy to check
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Fact: All 5� problems could be solved efficiently by solving any of the problems on the 

previous slide efficiently or even by doing it for a general �' × �' version of Sudoku!



Solving 5� problems without hints

There is an obvious algorithm for all 5� problems: 

Brute force:

Try all possible certificates and check each one using the verifier to see if it works.

Even though the certificates are short, this is exponential time

• '� truth assignments for � variables

•

�
�

possible �-element subsets of � vertices

• �! possible TSP tours of � vertices

• etc. 
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What We Know

• Every problem in 5� is in exponential time

• Every problem in � is in 5�

• You don’t need a certificate for problems in � so just ignore any hint you are 

given

• Nobody knows if all problems in 5� can be solved in polynomial time; 

i.e., does � = 5�?

• one of the most important open questions in all of science.

• huge practical implications

• Most CS researchers believe that � ≠ 5�

• $1M prize either way

• but we don’t have good ideas for how to prove this ...
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5�-hardness & 5�-completeness

Notion of hardness we can prove that is useful unless � = 5�:

Defn: Problem � is 5�-hard iff every problem � ∈ 5� satisfies � �� �.

This means that � is at least as hard as every problem in 5�.

Defn: Problem � is 5�-complete iff

• � ∈ 5� and

• � is 5�-hard.

This means that � is a hardest problem in 5�.

5�

5�-hard

5�-complete

�

Not at all obvious that any 5�-complete problems exist!
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Cook-Levin Theorem

Theorem [Cook 1971, Levin 1973]: 3SAT is 5�-complete

Proof: See CSE 431.

Corollary: If 3SAT �� B then B is 5�-hard.

Proof:  Let A be an arbitrary language in 5�.   

Since 3SAT is 5�-hard we have A �� 3SAT.

Then A �� 3SAT and 3SAT �� B imply that A �� B.

Therefore every language A in 5� has A �� B

so B is 5�-hard.

Cook & Levin did the 

hard work.

We only need to give 

one reduction to show 

that a problem is     

NP-hard! 
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Another 5�-complete problem: 3SAT �� Independent-Set

1. The reduction:

• Map CNF formula 4 to a graph � and integer � 

• Let = = # of clauses of 4

• Create a vertex in � for each literal occurrence in 4

• Join two vertices #,  in � by an edge iff

• # and  correspond to literals in the same clause of 4 (green edges) or

• # and  correspond to literals � and ¬� (or vice versa) for some 

variable � (red edges).

• Set � = =

2. Clearly polynomial-time computable
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Another 5�-complete problem: 3SAT �� Independent-Set
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4 = �
 ∨ ¬�( ∨ �) ∧ �' ∨ ¬�) ∨ �( ∧ ¬�' ∨ ¬�
 ∨ �(

= = (

�)

¬�(

�


�(

¬�)

�'

�(

¬�


¬�'

� has both kinds of edges.

The color is just to show why the edges were included.

� = =



Correctness (⇒⇒⇒⇒)

Suppose that 4 is satisfiable (YES for 3SAT)

• Let 9 be a satisfying assignment; it satisfies at 

least one literal in each clause.  

• Choose the set � in � to correspond to the first 

satisfied literal in each clause. 

• |�| = =

• Since � has 
 vertex per clause, no green 

edges inside �.

• A truth assignment never satisfies both � and 

¬�, so no red edges inside �.

• Therefore � is an independent set of size =

Therefore ��, =� is a YES for Independent-Set.

Satisfying assignment 9:

9 �
 = 9 �' = 9 �( = 9 �) = 


Set � marked in purple is independent.
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Correctness (⇐⇐⇐⇐)

Suppose that � has an independent set of size =

(��, =� is a YES for Independent-Set)

• Let � be the independent set of size =; 

• � must have one vertex per column (green edges)

• Because of red edges, � doesn’t have vertex 

labels with conflicting literals.

• Set all literals labelling vertices in � to true

• This may not be a total assignment but just extend 

arbitrarily to a total assignment 9.

• This assignment satisfies 4 since it makes at 

least one literal per clause true.

Therefore 4 is satisfiable and a YES for 3SAT.

Given independent set � of size =

Satisfying assignment 9: Part defined by �:

9 �
 = !, 9 �' = 
, 9 �( = !

Set 9 �) = !.
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Many 5�-complete problems

Since 3SAT �� Independent-Set, Independent-Set is 5�-hard.

We already showed that Independent-Set is in 5�. 

⇒ Independent-Set is 5�-complete

Corollary: Clique, Vertex-Cover, 01-Programming, and Integer-Programming

are also 5�-complete.

Proof: We already showed that all are in 5�.

We also showed that Independent-Set polytime reduces to all of them. 

Combining this with 3SAT �� Independent-Set we get that all are 5�-hard.
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