CSE 421
Introduction to Algorithms

Lecture 23: P, NP, NP-completeness

Polynomial time

Defn: Let P (polynomial-time) be the set of all decision problems
solvable by algorithms whose worst-case running time is
bounded by some polynomial in the input size.

This is the class of decision problems whose solutions we have called
“efficient”.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Last time: Polynomial Time Reduction

Defn: We write A <p B iff there is an algorithm for A using a ‘black box’ (subroutine
or method) that solves B that

* uses only a polynomial number of steps, and
* makes only a polynomial number of calls to a method for B.

Theorem: If A <p B then a poly time algorithm for B = poly time algorithm for A

Proof: Not only is the number of calls polynomial but the size of the inputs on which
the calls are made is polynomial!

Corollary: If you can prove there is no fast algorithm for 4, then that proves there is
no fast algorithm for B.

Intuition for “A <p B”: “B is at least as hard” as A” “up to polynomial-time slop.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Polynomial Time Reduction

Defn: We write A <p B iff there is an algorithm for A using a ‘black box’ (subroutine
or method) that solves B that

* uses only a polynomial number of steps, and
* makes only a polynomial number of calls to a method for B.

Theorem:If A <p BthenBeP=>A€P

Proof: Not only is the number of calls polynomial but the size of the inputs on which
the calls are made is polynomial!

Corollary: If A <p BthenA € P = B ¢ P.

Theorem:If A <p Band B <p Cthen A <p C

Proof: Compose the reductions: Plug in “the algorithm for B that uses C” in place of B.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

A Special Kind of Polynomial-Time Reduction

We will often use a restricted form of A <p B often called a Karp or
many-one reduction...

Defn: A S,lg B iff there is an algorithm for A4 given a black box
solving B that on input x that

* Runs for polynomial time computing y = f(x)

* Makes 1 call to the black box for B on input y

* Returns the answer that the black box gave
We say that the function f is the reduction.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Reminder: The terminology for reductions...

We read “A <p B” as “A is polynomial-time reducible to B” or

“A can be reduced to B in polynomial time”

* It means “we can solve A using at most a polynomial amount of
work on top of solving B.”

* But word reducible seems to go in the opposite direction of the < sign.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Reminder: Reduction steps

4 steps for reducing (decision problem) A to problem B

1. Describe the reduction itself
* i.e., the function f that converts the input x for 4 to the one for problem B.

2. Make sure the running time to compute f is polynomial
* In lecture, we’ll sometimes skip writing out this step.

3. Argue that if the correct answer to the instance x for A is YES,
then the instance f(x) we produced is a YES instance for B.

4. Argue that if the instance f(x) we produced is a YES instance for B
then the correct answer to the instance x for A is YES.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Last time: Some reductions

Theorem: Independent-Set <, Clique

Theorem: Clique <p Independent-Set
Given:
* (G, k) as input to Clique where G = (V,E)

Use function f that transforms (G, k) to (G', k) where
* ¢' = (V,E") has the same vertices as G but E’ consists of precisely those edges on
V that are not edges of G.

From the definitions, U is an clique in G
& Uis an independent set in G’

Easy to check both directions given this...

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Another Reduction

Vertex-Cover:
Given a graph G = (V,E) and an integer k

Istherea W S V with |W| < k such that every edge of G has an
endpoint in W? (W is a vertex cover, a set of vertices that covers E.)

i.e., Is there a set of at most k vertices that touches all edges of G?
Claim: Independent-Set <p Vertex-Cover

Lemma:Inagraph G = (V,E)and U C V
U is an independent set © V — U is a vertex cover

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Reduction Idea

Lemma:Inagraph G = (V,E)andU C V

U is an independent set & V — U is a vertex cover

Proof: T f
(=) Let U be an independent set in G —
Then for every edge e € E,
U contains at most one endpoint of e
So, at least one endpoint of e mustbeinV — U ./
So, V — U is a vertex cover
(<) Let W =V — U be a vertex cover of G ’ V-U

Then U does not contain both endpoints of any edge
(else W would miss that edge)

So U is an independent set O

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Reduction for Independent-Set <p Vertex-Cover
* Map (G, k) to (G,n — k)
e Previous lemma proves correctness

* Clearly polynomial time

e Just as for Clique, we also can show

* Vertex-Cover <p Independent-Set
* Map (G, k) to (G,n — k)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Reca": Vertex-Cover as LP Natural Variables for LP:

Given: Undirected graph G = (V,E) x, foreachv eV

Q: Is there a set of at most k vertices

touching all edges of G? Does this have a solution?

Yv Xy < k
Doesn’t work: To define a set we need 0 <x,<1foreachnodev eV
x,=0o0rx,=1 x, + x, = 1 for each edge {u,v} € E
It would work if we only allowed 0-1 solutions!
1/2 1/2
LP minimum = 3
1/2 1/2 1/2 Vertex Cover minimum = 4

1/2

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Integer-Programming, 01-Programming

Integer-Programming (ILP): Exactly like Linear Programming but with the
extra constraint that the solutions must be integers. Decision version:

Given: (integer) matrix A4 and (integer) vector b

Is there an integer solutionto Ax < band x = 0?

01-Programming:
Given: (integer) matrix 4 and (integer) vector b

Is there an solution to Ax < b with x € {0,1}?

Then we have Vertex-Cover <p 01-Programming <p Integer-Programming

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Beyond P?

Independent-Set, Clique, Vertex-Cover, 01-Programming,
Integer-Programming and 3Color are examples of natural and
practically important problems for which we don’t know any
polynomial-time algorithms.

There are many others such as...
DecisionTSP:
Given a weighted graph G and an integer k,

Is there a tour that visits all vertices in G having total
weight at most k?

and...

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Satisfiability

* Boolean variables x4, ..., x,,
* taking valuesin {0, 1}. O=false, 1=true
e Literals
e x;or =x; fori =1,..,n. (—x; alsowritten as x;.)
* Clause
* alogical OR of one or more literals
* e.g. (x1 V —1X3 V X V x12)
* CNF formula
* alogical AND of a bunch of clauses

e k-CNF formula
 All clauses have exactly k variables

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Satisfiability

CNF formula example:
(x1 V —1X3 V X4) N (—IX4_ V X3) N (Xz V —1X1 V X3)

Defn: If there is some assignment of O’s and 1’s to the variables that makes
it true then we say the formula is satisfiable
* (x1Vax3Vxy) A(—xgVx3)A(xyV-axgVxg)issatisfiable:x;y =x3 =1
* x1 A (—x1VXy) A (=X, VXx3) A —x3 is not satisfiable.

3SAT: Given a CNF formula F with exactly 3 variables per clause,
is F satisfiable?

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Common property of these problems

* There is a special piece of information, a short certificate or proof,
that allows you to efficiently verify (in polynomial-time) that the
YES answer is correct. This certificate might be very hard to find.

* 3Color: the coloring.

* Independent-Set, Clique: the set U of vertices

* Vertex-Cover: the set W of vertices

* 01-Programming, Integer-Programming: the solution x

* Decision-TSP: the tour

* 3SAT: a truth assignment that makes the CNF formula F true.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

The complexity class NP

NP consists of all decision problems where

* You can verify the YES answers efficiently (in polynomial time) given a
short (polynomial-size) certificate

and

* No fake certificate can fool your polynomial time verifier into saying
YES for a NO instance

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

More precise definition of NP

A decision problem A is in NP iff there is
* a polynomial time procedure VerifyA(.,.) and
e a polynomial p

S.t.
« for every input x that is a YES for A there is a string t with || < p(|x|)
with VerifyA(x, t) = YES
and

» for every input x that is a NO for A there does not exist a string t with
It| < p(|x|) with VerifyA(x, t) = YES

* Astring t on which VerifyA(x, t) = YES is called a certificate for x or a proof
that x is a YES input

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Verifying the certificate is efficient

3Color: the coloring

* Check that each vertex has one of only 3 colors and check that the
endpoints of every edge have different colors

Independent-Set, Clique: the set U of vertices

* Check that |U| = k and either no (IS) or all (Clique) edges on present on U
Vertex-Cover: the set W of vertices

* Check that |[W| < k and W touches every edge.
01-Programming, Integer-Programming: the solution x

e Check type of x; plug in x and see that it satisfies all the inequalities.
Decision-TSP: the tour

* Check that tour touches each vertex and has total weight < k.
e 3-SAT: a truth assignment a that makes the CNF formula F true.

e Evaluate F on the truth assignment «.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Keys to showing that a problem is in NP

4.

Must be decision probem (YES/NO)

For every given YES input, is there a certificate (i.e., a hint) that would help?
* OK if some inputs don’t need a certificate

For any given NO input, is there a fake certificate that would trick you?

You need a polynomial-time algorithm to be able to tell the difference.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Another NP problem

Sudoku:
* |s there a solution where this 9 5
square has value 4? 6 2 |7 5
« Certificate = full filled in table : - 6, 7
* Easy to check 2 3
a4 8
18 |a
7 | 2

Fact: All NP problems could be solved efficiently by solving any of the problems on the
previous slide efficiently or even by doing it for a general n? x n? version of Sudoku!

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Solving NP problems without hints

There is an obvious algorithm for all NP problems:

Brute force:
Try all possible certificates and check each one using the verifier to see if it works.

Even though the certificates are short, this is exponential time
e 2™ truth assignments for n variables

n . .
° (k) possible k-element subsets of n vertices

* n! possible TSP tours of n vertices
* etc.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

What We Know

e Every problem in NP is in exponential time

e Every problem in P isin NP
* You don’t need a certificate for problems in P so just ignore any hint you are
given

* Nobody knows if all problems in NP can be solved in polynomial time;
i.e., does P = NP?
* one of the most important open questions in all of science.
* huge practical implications

 Most CS researchers believe that P = NP
* S1M prize either way
* but we don’t have good ideas for how to prove this ...

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

NP-hardness & NP-completeness

Notion of hardness we can prove that is useful unless P = NP:

Defn: Problem B is NP-hard iff every problem A € NP satisfies A <p B.

This means that B is at least as hard as every problem in NP. NP-hard

Defn: Problem B is NP-complete iff 1
e Be NP and NP-complete
* Bis NP-hard.

This means that B is a hardest problem in NP.

Not at all obvious that any NP-complete problems exist!

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Cook-Levin Theorem

Theorem [Cook 1971, Levin 1973]: 3SAT is NP-complete
Proof: See CSE 431.

Corollary: If 3SAT <p B then B is NP-hard.

Proof: Let A be an arbitrary language in NP. Cook & Levin did the

: : h k.
Since 3SAT is NP-hard we have A <p 3SAT. ard wor
Then A <p 3SAT and 3SAT <, B imply that A <, B. We only need to give
one reduction to show
Therefore every language Ain NP has A <, B that a problem is
so B is NP-hard. NP-hard!

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Another NP-complete problem: 3SAT <, Independent-Set

1. The reduction:
 Map CNF formula F to a graph G and integer k
* Let m = # of clauses of F
* Create a vertex in G for each literal occurrence in F
* Join two vertices u, v in G by an edge iff
* u and v correspond to literals in the same clause of F (green edges) or

* u and v correspond to literals x and —x (or vice versa) for some
variable x (red edges).

e Sethk=m

2. Clearly polynomial-time computable

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Another NP-complete problem: 3SAT <, Independent-Set

F = (x1 V ax3V x4) N\ (Xz VX,V X3) N\ (—IxZ V-axq1V xg)

X —
X1 X2 @ —_2 m = 3
x \
—1X3 4 —X1

G has both kinds of edges.
The color is just to show why the edges were included.

k=m

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Correctness (=)

Suppose that F is satisfiable (YES for 3SAT) F=(x1V—xsVxg) Ay V—xsVxs) A(=xy V—xy VXs)

* Let a be a satisfying assignment; it satisfies at

least one literal in each clause.

* Choose the set U in G to correspond to the first
satisfied literal in each clause.

* Ul =m
* Since U has 1 vertex per clause, no green Satisfying assignment ar:
edges inside U.
; a(xy) = a(xy) = alxs) = a(xy) = 1
* A truth assignment never satisfies both x and
—1X, so no red edges inside U. Set U marked in purple is independent.

* Therefore U is an independent set of size m

Therefore (G, m) is a YES for Independent-Set.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Correctness (<)

Suppose that G has an independent set of size m

F = (x1 Vax3V X4) A (.X'z V aXsq V X3) A (—|x2 V Xy VX3)

((G,m) is a YES for Independent-Set)

m=3

Let U be the independent set of size m;

U must have one vertex per column (green edges)

Because of red edges, U doesn’t have vertex
labels with conflicting literals.

Given independent set U of size m

Set all literals labelling vertices in U to true

This may not be a total assignment but just extend Satisfying assignment a: Part defined by U:

arbitrarily to a total assignment «a. a(x1) =0,a(xy) =1, a(x3) =0

» This assignment satisfies F since it makes at Set a(xy) = 0.
least one literal per clause true.

Therefore F is satisfiable and a YES for 3SAT.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Many NP-complete problems

Since 3SAT <p Independent-Set, Independent-Set is NP-hard.
We already showed that Independent-Set is in NP.

= Independent-Set is NP-complete

Corollary: Clique, Vertex-Cover, 01-Programming, and Integer-Programming
are also NP-complete.

Proof: We already showed that all are in NP.
We also showed that Independent-Set polytime reduces to all of them.

Combining this with 3SAT <, Independent-Set we get that all are NP-hard. =

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

