CSE 421 Introduction to Algorithms

Lecture 23: P, NP, NP-completeness

W PAUL G. ALLEN SCHOOL of computer science & engineering

Polynomial time

Defn: Let **P** (polynomial-time) be the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.

This is the class of decision problems whose solutions we have called "efficient".

Last time: Polynomial Time Reduction

Defn: We write $A \leq_P B$ iff there is an algorithm for A using a 'black box' (subroutine or method) that solves B that

- uses only a polynomial number of steps, and
- makes only a polynomial number of calls to a method for **B**.

Theorem: If $A \leq_P B$ then a poly time algorithm for $B \Rightarrow$ poly time algorithm for A

Proof: Not only is the number of calls polynomial but the size of the inputs on which the calls are made is polynomial!

Corollary: If you can prove there is **no** fast algorithm for **A**, then that proves there is **no** fast algorithm for **B**.

Intuition for " $A \leq_{P} B$ ": "B is at least as hard" as A" * up to polynomial-time slop.

Polynomial Time Reduction

Defn: We write $A \leq_P B$ iff there is an algorithm for A using a 'black box' (subroutine or method) that solves B that

- uses only a polynomial number of steps, and
- makes only a polynomial number of calls to a method for **B**.

Theorem: If $A \leq_P B$ then $B \in P \Rightarrow A \in P$

Proof: Not only is the number of calls polynomial but the size of the inputs on which the calls are made is polynomial!

Corollary: If $A \leq_P B$ then $A \notin P \Rightarrow B \notin P$.

Theorem: If $A \leq_P B$ and $B \leq_P C$ then $A \leq_P C$

Proof: Compose the reductions: Plug in "the algorithm for **B** that uses **C**" in place of **B**.

A Special Kind of Polynomial-Time Reduction

We will often use a restricted form of $A \leq_P B$ often called a Karp or many-one reduction...

Defn: $A \leq_{P}^{1} B$ iff there is an algorithm for A given a black box solving B that on input x that

- Runs for polynomial time computing y = f(x)
- Makes 1 call to the black box for **B** on input **y**
- Returns the answer that the black box gave

We say that the function f is the reduction.

Reminder: The terminology for reductions...

We read " $A \leq_{P} B$ " as "A is polynomial-time reducible to B" or

"A can be **reduced** to **B** in polynomial time"

- It means "we can solve A using at most a polynomial amount of work on top of solving B."
- But word reducible seems to go in the opposite direction of the \leq sign.

Reminder: Reduction steps

4 steps for reducing (decision problem) A to problem B

- 1. Describe the reduction itself
 - i.e., the function **f** that converts the input **x** for **A** to the one for problem **B**.
- 2. Make sure the running time to compute *f* is polynomial
 - In lecture, we'll sometimes skip writing out this step.
- 3. Argue that if the correct answer to the instance x for A is YES, then the instance f(x) we produced is a YES instance for B.
- 4. Argue that if the instance f(x) we produced is a YES instance for **B** then the correct answer to the instance x for **A** is YES.

Last time: Some reductions

Theorem: Independent-Set \leq_P Clique

Theorem: Clique \leq_P Independent-Set

Given:

• (G, k) as input to Clique where G = (V, E)

Use function f that transforms (G, k) to (G', k) where

• G' = (V, E') has the same vertices as G but E' consists of **precisely** those edges on V that are not edges of G.

From the definitions, **U** is an clique in **G**

 $\Leftrightarrow U$ is an independent set in G'

Easy to check both directions given this...

Another Reduction

Vertex-Cover:

Given a graph G = (V, E) and an integer kIs there a $W \subseteq V$ with $|W| \leq k$ such that every edge of G has an endpoint in W? (W is a vertex cover, a set of vertices that covers E.) i.e., Is there a set of at most k vertices that touches all edges of G?

Claim: Independent-Set \leq_P Vertex-Cover

Lemma: In a graph G = (V, E) and $U \subseteq V$

U is an independent set $\Leftrightarrow V - U$ is a vertex cover

Reduction Idea

Lemma: In a graph G = (V, E) and $U \subseteq V$

U is an independent set $\Leftrightarrow V - U$ is a vertex cover

Proof:

 (\Rightarrow) Let U be an independent set in G

Then for every edge $e \in E$,

U contains at most one endpoint of *e*

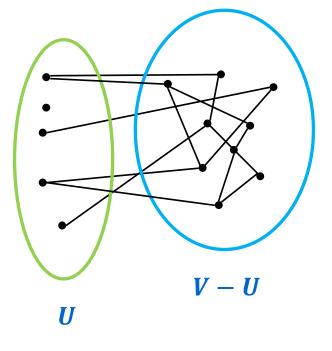
So, at least one endpoint of e must be in V - U

So, V - U is a vertex cover

(\Leftarrow) Let W = V - U be a vertex cover of G

Then U does not contain both endpoints of any edge (else W would miss that edge)

So *U* is an independent set



Reduction for Independent-Set \leq_P **Vertex-Cover**

- Map (*G*, *k*) to (*G*, *n k*)
 - Previous lemma proves correctness
- Clearly polynomial time
- Just as for Clique, we also can show
 - Vertex-Cover \leq_P Independent-Set
 - Map (G, k) to (G, n − k)

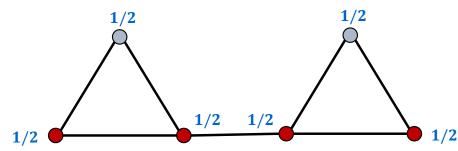
Recall: Vertex-Cover as LP

Given: Undirected graph G = (V, E)

Q: Is there a set of at most *k* vertices touching all edges of *G*?

Doesn't work: To define a set we need $x_v = 0$ or $x_v = 1$

It would work if we only allowed 0-1 solutions!



Natural Variables for LP:

 x_v for each $v \in V$

Does this have a solution?

 $\sum_{v} x_{v} \leq k$ $0 \leq x_{v} \leq 1 \text{ for each node } v \in V$ $x_{u} + x_{v} \geq 1 \text{ for each edge } \{u, v\} \in E$

LP minimum = 3

Vertex Cover minimum = 4

12

Integer-Programming, 01-Programming

Integer-Programming (ILP): Exactly like Linear Programming but with the extra constraint that the solutions must be integers. Decision version:

Given: (integer) matrix **A** and (integer) vector **b**

Is there an integer solution to $Ax \leq b$ and $x \geq 0$?

01-Programming:

Given: (integer) matrix *A* and (integer) vector *b* Is there an solution to $Ax \le b$ with $x \in \{0, 1\}$?

Then we have Vertex-Cover $\leq_P 01$ -Programming \leq_P Integer-Programming

Beyond P?

Independent-Set, Clique, Vertex-Cover, 01-Programming, Integer-Programming and **3Color** are examples of natural and practically important problems for which we don't know any polynomial-time algorithms.

There are many others such as...

DecisionTSP:

Given a weighted graph G and an integer k,

Is there a tour that visits all vertices in G having total weight at most k?

and...

Satisfiability

- Boolean variables x_1, \ldots, x_n
 - taking values in {0, 1}. 0=false, 1=true
- Literals
 - x_i or $\neg x_i$ for i = 1, ..., n. ($\neg x_i$ also written as $\overline{x_i}$.)
- Clause
 - a logical OR of one or more literals
 - e.g. $(x_1 \lor \neg x_3 \lor x_7 \lor x_{12})$
- CNF formula
 - a logical AND of a bunch of clauses
- **k**-CNF formula
 - All clauses have exactly k variables

Satisfiability

CNF formula example:

$$(x_1 \lor \neg x_3 \lor x_4) \land (\neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$$

Defn: If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable

- $(x_1 \lor \neg x_3 \lor x_4) \land (\neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$ is satisfiable: $x_1 = x_3 = 1$
- $x_1 \land (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land \neg x_3$ is not satisfiable.

3SAT: Given a CNF formula *F* with exactly **3** variables per clause, is *F* satisfiable?

Common property of these problems

- There is a special piece of information, a short certificate or proof, that allows you to efficiently verify (in polynomial-time) that the YES answer is correct. This certificate might be very hard to find.
 - **3Color**: the coloring.
 - Independent-Set, Clique: the set **U** of vertices
 - Vertex-Cover: the set W of vertices
 - 01-Programming, Integer-Programming: the solution x
 - Decision-TSP: the tour
 - **3SAT**: a truth assignment that makes the CNF formula *F* true.

The complexity class NP

NP consists of all decision problems where

 You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) certificate

and

 No fake certificate can fool your polynomial time verifier into saying YES for a NO instance

More precise definition of NP

A decision problem **A** is in **NP** iff there is

- a polynomial time procedure VerifyA(.,.) and
- a polynomial **p**

s.t.

• for every input x that is a YES for A there is a string t with $|t| \le p(|x|)$ with VerifyA(x, t) = YES

and

- for every input x that is a **NO** for **A** there does not exist a string t with $|t| \le p(|x|)$ with VerifyA(x, t) = YES
- A string t on which VerifyA(x, t) = YES is called a certificate for x or a proof that x is a YES input

Verifying the certificate is efficient

3Color: the coloring

- Check that each vertex has one of only 3 colors and check that the endpoints of every edge have different colors
- Independent-Set, Clique: the set U of vertices
- Check that $|U| \ge k$ and either no (IS) or all (Clique) edges on present on UVertex-Cover: the set W of vertices
 - Check that $|W| \leq k$ and W touches every edge.
- **01-Programming, Integer-Programming**: the solution *x*
 - Check type of *x*; plug in *x* and see that it satisfies all the inequalities.

Decision-TSP: the tour

- Check that tour touches each vertex and has total weight $\leq k$.
- **3-SAT**: a truth assignment α that makes the CNF formula F true.
 - Evaluate \mathbf{F} on the truth assignment $\boldsymbol{\alpha}$.

Keys to showing that a problem is in NP

- 1. Must be decision probem (YES/NO)
- 2. For every given **YES** input, is there a certificate (i.e., a hint) that would help?
 - OK if some inputs don't need a certificate
- 3. For any given **NO** input, is there a fake certificate that would trick you?
- 4. You need a polynomial-time algorithm to be able to tell the difference.

Another NP problem

Sudoku:

- Is there a solution where this square has value 4?
- Certificate = full filled in table
 - Easy to check

9			5					
6	2		7			5		
		5				6		7
		6			4			
2				3			9	
	8						1	
4								8
			1	8		4		
7							2	

Fact: All NP problems could be solved efficiently by solving any of the problems on the previous slide efficiently or even by doing it for a general $n^2 \times n^2$ version of Sudoku!

Solving NP problems without hints

There is an obvious algorithm for all **NP** problems:

Brute force:

Try all possible certificates and check each one using the verifier to see if it works.

Even though the certificates are short, this is exponential time

- 2ⁿ truth assignments for n variables
- $\binom{n}{k}$ possible *k*-element subsets of *n* vertices
- *n*! possible TSP tours of *n* vertices
- etc.

What We Know

- Every problem in NP is in exponential time
- Every problem in **P** is in **NP**
 - You don't need a certificate for problems in P so just ignore any hint you are given
- Nobody knows if all problems in NP can be solved in polynomial time;
 i.e., does P = NP?
 - one of the most important open questions in all of science.
 - huge practical implications
- Most CS researchers believe that $P \neq NP$
 - \$1M prize either way
 - but we don't have good ideas for how to prove this ...

NP-hardness & NP-completeness

Notion of hardness we **can** prove that is useful unless $\mathbf{P} = \mathbf{NP}$:

Defn: Problem **B** is **NP**-hard iff every problem $A \in NP$ satisfies $A \leq_P B$.

This means that B is at least as hard as every problem in NP.

Defn: Problem *B* is **NP**-complete iff

- $B \in NP$ and
- *B* is **NP**-hard.

This means that **B** is a hardest problem in **NP**.

Not at all obvious that any NP-complete problems exist!

NP-hard

NP

NP-complete

Cook-Levin Theorem

Theorem [Cook 1971, Levin 1973]: **3SAT** is **NP**-complete **Proof:** See CSE 431.

Corollary: If **3SAT** \leq_P B then B is **NP**-hard.

Proof: Let A be an arbitrary language in NP. Since 3SAT is NP-hard we have $A \leq_P 3SAT$. Then $A \leq_P 3SAT$ and $3SAT \leq_P B$ imply that $A \leq_P B$. Therefore every language A in NP has $A \leq_P B$ so B is NP-hard. Cook & Levin did the hard work.

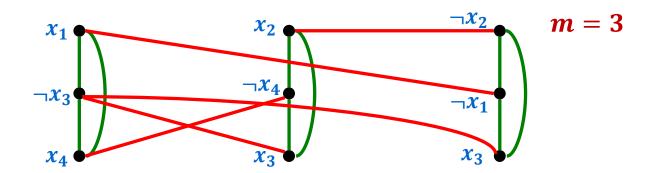
We only need to give one reduction to show that a problem is NP-hard!

Another NP-complete problem: $3SAT \leq_P Independent-Set$

- 1. The reduction:
 - Map CNF formula **F** to a graph **G** and integer **k**
 - Let *m* = # of clauses of *F*
 - Create a vertex in **G** for each literal occurrence in **F**
 - Join two vertices *u*, *v* in *G* by an edge iff
 - u and v correspond to literals in the same clause of F (green edges) or
 - u and v correspond to literals x and $\neg x$ (or vice versa) for some variable x (red edges).
 - Set *k* = *m*
- 2. Clearly polynomial-time computable

Another NP-complete problem: $3SAT \leq_P Independent-Set$

 $\boldsymbol{F} = (x_1 \vee \neg x_3 \vee x_4) \land (x_2 \vee \neg x_4 \vee x_3) \land (\neg x_2 \vee \neg x_1 \vee x_3)$



G has both kinds of edges. The color is just to show why the edges were included.

k = m

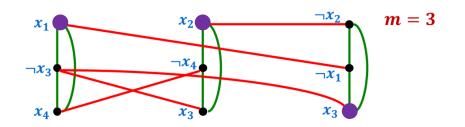
Correctness (\Rightarrow)

Suppose that **F** is satisfiable (YES for 3SAT)

- Let *α* be a satisfying assignment; it satisfies at least one literal in each clause.
- Choose the set *U* in *G* to correspond to the first satisfied literal in each clause.
 - $|\boldsymbol{U}| = \boldsymbol{m}$
 - Since *U* has 1 vertex per clause, no green edges inside *U*.
 - A truth assignment never satisfies both *x* and ¬*x*, so no red edges inside *U*.
 - Therefore U is an independent set of size m

Therefore (*G*, *m*) is a YES for Independent-Set.

$$\mathbf{F} = (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (\neg x_2 \lor \neg x_1 \lor x_3)$$



Satisfying assignment α : $\alpha(x_1) = \alpha(x_2) = \alpha(x_3) = \alpha(x_4) = 1$

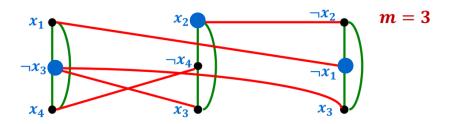
Set *U* marked in purple is independent.

Correctness (⇐)

Suppose that *G* has an independent set of size *m* ((*G*, *m*) is a YES for Independent-Set)

- Let **U** be the independent set of size **m**;
- **U** must have one vertex per column (green edges)
- Because of red edges, *U* doesn't have vertex labels with conflicting literals.
- Set all literals labelling vertices in **U** to true
- This may not be a total assignment but just extend arbitrarily to a total assignment *α*.
 - This assignment satisfies *F* since it makes at least one literal per clause true.

Therefore **F** is satisfiable and a **YES** for **3SAT**.



Given independent set U of size mSatisfying assignment α : Part defined by U: $\alpha(x_1) = 0, \alpha(x_2) = 1, \alpha(x_3) = 0$ Set $\alpha(x_4) = 0$.

Many NP-complete problems

Since **3SAT** \leq_P **Independent-Set**, **Independent-Set** is **NP**-hard.

We already showed that **Independent-Set** is in **NP**.

⇒ Independent-Set is NP-complete

Corollary: Clique, Vertex-Cover, 01-Programming, and Integer-Programming are also **NP**-complete.

Proof: We already showed that all are in **NP**.

We also showed that Independent-Set polytime reduces to all of them.

Combining this with $3SAT \leq_P Independent-Set$ we get that all are NP-hard.