
CSE 421

Introduction to Algorithms

Lecture 21:  Linear Programming Duality
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Given: a polytope

Find: the lowest point in the polytope

Maximize ���
subject to�� ≤ �.

Typically # constraints � ≥ 
 
Lowest point is a vertex defined 

by some 
 rows, ��� = �′

�
At maximum ����� � = ����
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Maximize

subject to

� ≤ �� ≤ � � for every � ∈ �
� ��� ��� �� � = � ��                               � ���� �

for every node � ∈ � − { , "}

� ��� ��� ��  Maximize ���
subject to�� ≤ �� ≥ �

1. �� = $% if � out of  � otherwise
2. �� ≤ �(�)
3. ∑ ��� ��� �� � − ∑ �� ≤ � � ���� �
4. ∑ ��� ���� � − ∑ �� ≤ � � ��� �� �
5. � ≥ �

Replace equality constraints by a 

pair of inequalities

This is for the � above. 

Nothing to do with 

capacities!

Max Flow in Standard Form LP
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Minimization converted to  Maximization

Minimize ���
subject to�� ≥ �� ≥ �

Maximize (−�)��
subject to(−�)� ≤ (−�)� ≥ �
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Shortest Paths

Given: Directed graph 3 = (�, �)
vertices  , " in �

Find: (length of) shortest path from  to "
Claim: Length ℓ of the shortest path is 

the solution (minimum value) for this 

program.

Proof sketch: A shortest path yields a  

solution of cost ℓ.  Optimal solution 

must be a combination of flows on 

shortest paths also cost ℓ; otherwise 

there is a part of the % unit of flow that 

gets counted on more than ℓ edges.

Minimize

subject to

� ≥ �
� ��� ��� ��  = %              
� ��� ���� " = %           

� ��� ��� �� � = � ��� ���� �
for every node � ∈ � − { , "}

� ��� 

Flow out of  is %
Flow into " is %

Flow conservation

Sum of flow on

all edges
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Shortest Paths

Given: Directed graph 3 = (�, �)
vertices  , " in �

Find: shortest path from  to "
Claim: Length ℓ of the shortest path is 

solution (minimum value) for this 

program.

Proof sketch: A shortest path yields a  

solution of cost ℓ.  Optimal solution 

must be a combination of flows on 

shortest paths, also cost ℓ; otherwise 

parts of the % unit of flow gets counted 

on more than ℓ edges.
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Not optimal

1/6 routed 

through 3 edges 

instead of 2.

Value = 2.166666

Optimal

Value = 2



Vertex Cover

Given: Undirected graph 3 = (�, �)
Find: smallest set of vertices touching all 

edges of 3.

Doesn’t work: To define a set we need�� = � or �� = %

Minimize

subject to                               � ≤ �� ≤ % for each node � ∈ �
�6 + �� ≥ % for each edge 6, � ∈ �

� ��� 

Natural Variables for LP: 

�� for each � ∈ �

%/�

%/�%/�

LP minimum =  �/�
Vertex Cover minimum =  �

This LP optimizes for a different problem: 

“fractional vertex cover”.�� indicates the fraction of vertex � that 

is chosen in the cover.
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What makes Max Flow different?
For Vertex Cover we only got a fractional optimum but for Max Flow can get integers.

• Why?

• Ford-Fulkerson analysis tells us this for Max Flow.

• Is there a reason we can tell just from the LP view?

Recall: Optimum is at some vertex � satisfying ��� = �′ for some subset of exactly
 constraints.

This means that � = �′ 9%�′.

Entries of the matrix inverse are quotients of determinants of sub-matrices of 

�′ so, for integer inputs, optimum is always rational.

Fact:  Every full rank submatrix of MaxFlow matrix � has determinant ±%⇒ ⇒ ⇒ ⇒ all denominators are ±% ⇒ ⇒ ⇒ ⇒ integers. � is “totally unimodular”

Next:  How MaxFlow=MinCut is an example of a general “duality” property of LPs
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Duality

Maximize �% + ���
subject to��% − �� + ��� ≤ %−�% + �� −    �� ≤ <� ≥ �
Claim: Optimum ≤ 5
Proof:  Add the two LHS:��% − �� + ���+ −�% + �� −    ��  =    �%                  +���.      
Must be ≤ sum of RHS =  5.

We multiplied the 1st inequality by = = %, the 2nd by � = % and added.

Claim: For all =, � ≥ � if �= − � ≥ %−= + � ≥ ��= − � ≥ �
then Optimum ≤ = + <�

Proof:                 �%               +   ���≤ = ��% − �� + ���+� −�% + �� −    ��≤ %= + <�.

=�
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Coefficients 1, 0, and 2

Want coefficients of weighted sum ≥ all coefficients above 



=�

Duality

Maximize �% + ���
subject to��% − �� + ��� ≤ %−�% + �� −    �� ≤ <� ≥ �
Minimize = + <�
subject to�= − � ≥ %−= + � ≥ ��= − � ≥ �=, � ≥ �

We multiplied the 1st inequality by = = %, the 2nd by � = % and added.

Claim: For all =, � ≥ � if �= − � ≥ %−= + � ≥ ��= − � ≥ �
then Optimum ≤ = + <�

Proof:                 �%               +   ���≤ = ��% − �� + ���+� −�% + �� −    ��≤ %= + <�.

primal

dual
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=�

Duality

Maximize �% + ���
subject to��% − �� + ��� ≤ %−�% + �� −    �� ≤ <� ≥ �
Minimize = + <�
subject to�= − � ≥ %−= + � ≥ ��= − � ≥ �=, � ≥ �

We multiplied the 1st inequality by = = %, the 2nd by � = % and added.

Claim: For all =, � ≥ � if �= − � ≥ %−= + � ≥ ��= − � ≥ �
then Optimum ≤ = + <�

Proof:                 �%               +   ���≤ = ��% − �� + ���+� −�% + �� −    ��≤ %= + <�.

primal

dual
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Duality

Maximize �% + ���
subject to��% − �� + ��� ≤ %−�% + �� −    �� ≤ <� ≥ �
Maximize −= − <�
subject to−�= + � ≤ −%  = − � ≤   �−�= + � ≤ −�=, � ≥ �

We multiplied the 1st inequality by = = %, the 2nd by � = % and added.

Claim: For all =, � ≥ � if �= − � ≥ %−= + � ≥ ��= − � ≥ �
then Optimum ≤ = + <�

Proof:                 �%               +   ���≤ = ��% − �� + ���+� −�% + �� −    ��≤ %= + <�.

primal

dual

=�
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Duality

Maximize �% + ���
subject to��% − �� + ��� ≤ %−�% + �� −    �� ≤ <� ≥ �

What is the dual of the dual?

Minimize  −%>%   − �>�
subject to−�>% + >� − �>� ≥ −%>% − >�  +   >� ≥ −<> ≥ �
equivalent to

Maximize    >% + �>�
subject to�>% − >� + �>� ≤ %−>% + >�  − >� ≤ <> ≥ �

primal

dual

=�

>%>�>�

Maximize −= − <�
subject to−�= + � ≤ −%  = − � ≤   �−�= + � ≤ −�=, � ≥ �
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Duality

primal dual

Minimize ��>
subject to��> ≥ �> ≥ �

Maximize ���
subject to�� ≤ �� ≥ �

Maximize −� �>
subject to(−�)�> ≤ −�> ≥ �

dual

Theorem:  The dual of the dual is the primal.

Proof:

Minimize (−�)��
subject to((−�)�)�� ≥ −�� ≥ �

dual of dual

Minimize −���
subject to−�� ≥ −�� ≥ �

dual of dual

Maximize ���
subject to�� ≤ �� ≥ �

dual of dual

≡
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Duality

primal dual

Minimize ��>
subject to��> ≥ �> ≥ �

Maximize ���
subject to�� ≤ �� ≥ �

Theorem:  The dual of the dual is the primal.

Theorem (Weak Duality): Every solution to primal has a value that is at

most that of every solution to dual.     

Proof: We constructed the dual to give upper bounds on the primal.

15



Duality

primal dual

Minimize ��>
subject to��> ≥ �> ≥ �

Maximize ���
subject to�� ≤ �� ≥ �

Theorem:  The dual of the dual is the primal.

Theorem (Weak Duality): Every solution to primal has a value that is at

most that of every solution to dual.     

Theorem (Strong Duality): If primal has a solution of finite value, then

that value is equal to optimal solution of dual.
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Duality

dual

Minimize ��>
subject to��> ≥ �> ≥ �

primal

Maximize ���
subject to�� ≤ �� ≥ �
Theorem (Strong Duality): If

primal has a solution of finite

value, then that value is equal

to optimal solution of dual.

Fact: At vertex, 

inequalities are tight��� = ��.

primal

−�%

−�@−�A �Physics: Coefficient vectors >� ≥ � for tight rows  can be 

combined to get ��.
E.g. there are >A, >@ ≥ � s.t. >A�A + >@�@ =  ��. 
Set >B for all other rows to �, get >�� = >′ ��� = ��

so ��> = �.

Then��> = (��)�>� = ��� �>� = �� �� �>� = ����>= ��� = ���
since ��� and ��� are just numbers.17



Saving dual variables for equalities

Maximize �% + C��
subject to��% − ��� = <…� ≥ �

=′
=′′

=

Minimize <(=�−=��) + …
subject to   �(=�−=��) + … ≥ %−�(=�−=��) + … ≥ C=�, =�� … ≥ �

Maximize �% + C��
subject to��% − ��� ≤ <−��% + ��� ≤ −<…� ≥ �Standard form 

conversion for

equality

Minimize < = + …
subject to   �= + … ≥ %−�= + … ≥ C… ≥ �

=� − =�� can 

take on any 

real value

No requirement 

that = ≥ �

Dual

Dual

use direct conversion!
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Maximize E��
subject to�� ≤ F� ≥ �

1. E� = $% if � out of  � otherwise
2. �� ≤ �(�)
3. ∑ ��� ���� � − ∑ �� = � � ��� �� �
4. � ≥ �

Dual of Max Flow
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Use a different 

names to avoid 

confusion with 

capacity vector

=���

Minimize  ∑ � � =�� ≡ ��=
subject to 

=� + �� ≥ % if � = ( , �)
=� − �6 ≥ �  if � = 6, "

=� − �6 + �� ≥ �  if � = 6, �
= ≥ �  � ∈ G − { , "} 6, � ∈ G − { , "}



More uniform way to write Max Flow Dual

Minimize  ∑ � � =�� ≡ ��=
subject to =� + �� ≥ % if � = ( , �)

=� − �6 ≥ �  if � = 6, "
=� − �6 + �� ≥ �  if � = 6, �

= ≥ �  6, � ∈ G − { , "}

Minimize  ∑ � � =�� ≡ ��=
subject to � = %�" = �

=� − �6 + �� ≥ �  

for � = 6, �
= ≥ �  

Define� = %�" = �
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Simpler to read Max Flow Dual

Minimize  ∑ � � =�� ≡ ��=
subject to � = %�" = �

=� − �6 + �� ≥ �  

for � = 6, �
= ≥ �  

All the � � ≥ � , so 

we want the =� as 

small as possible.

Minimize  ∑ � � =�� ≡ ��=
subject to � = %�" = �

=� = max(�6 − ��, �)
for � = 6, �
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Minimize ∑ � � =�� ≡ ��=
subject to � = %�" = �� ≤ �� ≤ %=� = max(�6 − ��, �)

for � = 6, �

� = %

�" = �

Claim: Optimum is achieved with� ≤ �� ≤ % for every vertex �.
Proof:  

Move �� values between � and %
Reduces:=� = length if � is down

Doesn’t change:=� = � if � is up

Overall solution improves.
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Minimize ∑ � � =�� ≡ ��=
subject to � = %�" = �� ≤ �� ≤ %=� = max(�6 − ��, �)

for � = 6, �

� = %

�" = �

Claim: Optimum is achieved with� ≤ �� ≤ % for every vertex �.
Proof:  

Move �� values between � and %
Reduces:=� = length if � is down

Doesn’t change:=� = � if � is up

Overall solution improves.
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Minimize ∑ � � =�� ≡ ��=

subject to � = %�" = �� ≤ �� ≤ %=� = max0�6 � ��, �1
for � = 6, �

� = %

�" = �
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Minimize ∑ � � =�� ≡ ��=

subject to � = %�" = �� ≤ �� ≤ %=� = max0�6 � ��, �1
for � = 6, �

Claim: Optimum is achieved with�� = � or �� = % for every vertex �.

Proof:  

Choose uniform random K ∈ L�, %M

Set �� = $% if �� 	 K
� if �� N K

Expected value for random K is the 

same as the original since edge � of 

length =� is cut w.p. =�.

So... one of those random choices 

must be at least as good.

� = %

�" = �
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MinCut!

Minimize ∑ � � =�� ≡ ��=

subject to � = %�" = ��� ∈ ��, %#
=� = max0�6 � ��, �1

for � = 6, �

�" = �

� = %
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Duality of Shortest Paths

Minimize ∑ ��� 
subject to

∑ ��� ��� ��  = % 
∑ ��� ���� " = %
∑ ��� ���� � − ∑ ��� ��� �� � = �

for all � ∈ � −  , "
� ≥ �
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Duality of Shortest Paths

Minimize ∑ ��� 

subject to

∑ ��� ����  � ∑ ��� ��� ��  = �% 

∑ ��� ���� " � ∑ ��� ��� �� " = %

∑ ��� ���� � � ∑ ��� ��� �� � = �

for all � ∈ � �  , "

� 	 �

28

= 
="
=�

Maximize  = − ="
subject to 

=6 − =� ≤ %
if � = (6, �1  



Duality and Zero-Sum Games
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Two player zero-sum game:

An � × 
 matrix 33A,@ = payoff to row player assuming: 

row player uses strategy A, and 

column player uses strategy @.

Column player’s payoff for game = −3A,@
Example: Chess (idealized)A specifies how white would move in every 

possible board configuration.@ specifies how black would move.    

3A,@ = P+% White checkmates−% Black checkmates� Draw on board

Randomized Strategy:

Probability distribution on row strategies:

• A column vector � with each �A ≥ �
� �A = %A

Probability distribution on column strategies:

• A column vector > with each >@ ≥ �
� >@ = %@

Expected payoff to row player:��3 >



Zero-Sum Game Example: Rock-Paper-Scissors

3 Rock Paper Scissors

Rock 0 -1 1

Paper 1 0 -1

Scissors -1 1 0

The payoff matrix tells you how much the row 

player wins (and the column player loses).



Who decides on their strategy first
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If row player commits to �:

Row player will get payoff min>  ��3> = min@ ��3 @
So if row player plays first they can get payoffmax� min>  ��3>
If column player commits to >:

Row player will get payoff max�  ��3> = maxA 3 > A
So if column player plays first, row player can 

get payoff min> max�  ��3>

Randomized Strategy:

Probability distribution on row strategies:

• A column vector � with each �A ≥ �
� �A = %A

Probability distribution on column strategies:

• A column vector > with each >@ ≥ �
� >@ = %@

Expected payoff to row player:��3 >



Zero-Sum Game Example: Rock-Paper-Scissors

3 Rock Paper Scissors

Rock 0 -1 1

Paper 1 0 -1

Scissors -1 1 0

The payoff matrix tells you how much the row 

player wins (and the column player loses).

� % �3 Rock Paper Scissors%/� Rock 0 -1 1%/C Paper 1 0 -1%/C Scissors -1 1 0

• Suppose that a player chose imbalanced probabilities:

If the row player chose with probabilities 1/2,1/4,1/4

... then the column player could always choose Paper and get 

an expected payoff of (-1)∗∗∗∗1/2+0∗∗∗∗1/4+1∗∗∗∗1/4 = -1/4.



Von Neumann’s MiniMax Theorem
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If row player commits to �:

Row player will get payoff min>  ��3> = min@ ��3 @
So if row player plays first they can get payoffmax� min>  ��3>
If column player commits to >:

Row player will get payoff max�  ��3> = maxA 3 > A
So if column player plays first, row player can 

get payoff min> max�  ��3>

It doesn’t matter who plays first!

Theorem:max� min>  ��3> = min>  max�  ��3>



Zero-Sum Game Example: Rock-Paper-Scissors

3 Rock Paper Scissors

Rock 0 -1 1

Paper 1 0 -1

Scissors -1 1 0

The payoff matrix tells you how much the row 

player wins (and the column player loses).

� % �3 Rock Paper Scissors%/� Rock 0 -1 1%/C Paper 1 0 -1%/C Scissors -1 1 0

• Suppose that a player chose imbalanced probabilities:

If the row player chose with probabilities 1/2,1/4,1/4

... then the column player could always choose Paper and get 

an expected payoff of (-1)∗∗∗∗1/2+0∗∗∗∗1/4+1∗∗∗∗1/4 = -1/4.

%/� %/� %/�3 Rock Paper Scissors%/� Rock 0 -1 1%/� Paper 1 0 -1%/� Scissors -1 1 0

• The Von Neumann Minimax Theorem is NOT about one player 

playing first (That would be bad for Rock-Paper-Scissors!)              

• It is about the order in which players reveal their probabilities.

• For Rock-Paper-Scissors, if a player uses 1/3,1/3,1/3 then the 

payoff is 0 no matter what the other player chooses!  

• If they choose anything else, the other player could do better.



Use Strong Duality to prove MiniMax Theorem

Theorem: max� min>  ��3> = min>  max�  ��3>
i.e., max � min@ ��3 @ = min>  maxA 3 > A

Maximize [
subject to∑ �A = %  A[ − ��3 @ ≤ �∗

for all @� ≥ �
>@
\

Minimize \
subject to∑ >@ = %  @\ − 3 > A ≥ �∗

for all A> ≥ �
Coefficient of [ must be %
Coefficient of �A must be ≥ �

*equivalent to [ ≤ min@ ��3 @ *equivalent to \ ≥ maxA 3 > A

Primal Dual
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