CSE 421 Introduction to Algorithms

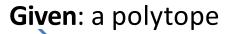
Lecture 21: Linear Programming Duality

Homework 7

posted later Inday.

Dere next Friday

We start NP-completeness on Monday



Find: the lowest point in the polytope

 $A_1 x \leq b_1$

At maximum x

C

$$\begin{bmatrix} A_2 \\ A_3 \end{bmatrix} x = \begin{bmatrix} b_2 \\ b_3 \end{bmatrix}$$

 $A_5\mathcal{X} \leq b_5$

Maximize $c^{T}x$ subject to $Ax \leq b$.

Typically # constraints $m \ge n$ Lowest point is a vertex defined by some n rows, A'x = b'

Max Flow in Standard Form LP

foundard from

Maximize

$$\sum_{e \text{ out of } s} x_e$$

subject to

 $0 \le x_e \le c(e)$ for every $e \in E$

$$\sum_{e \text{ out of } v} x_e = \sum_{e \text{ into } v} x_e$$

for every node $v \in V - \{s, t\}$

Replace equality constraints by a pair of inequalities

Maximize
$$c^{T}x$$

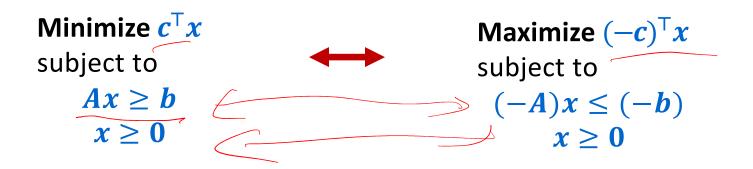
subject to
$$Ax \leq b$$

$$x \geq 0$$
This is for the c above.
Nothing to do with

capacities!

- 1. $c_e = \begin{cases} 1 & \text{if } e \text{ out of } s \\ 0 & \text{otherwise} \end{cases}$
- 2. $x_e \leq c(e)$
- 3. $\sum_{e \text{ out of } v} x_e \sum_{e \text{ into } v} x_e \leq 0$
- 4. $\sum_{e \text{ into } v} x_e \sum_{e \text{ out of } v} x_e \leq 0$
- 5. $x \ge 0$

Minimization converted to Maximization



Shortest Paths

Given: Directed graph G = (V, E) vertices s, t in V

Find: (length of) shortest path from s to t

Claim: Length ℓ of the shortest path is the solution (minimum value) for this program.

Proof sketch: A shortest path yields a solution of cost ℓ. Optimal solution must be a combination of flows on shortest paths also cost ℓ; otherwise there is a part of the 1 unit of flow that gets counted on more than ℓ edges.

Minimize

$$\sum_{e} x_{e}$$

Sum of flow on all edges

subject to

$$x \geq 0$$

$$\sum_{e \text{ out of } s} x_e = 1 \qquad \text{Flow out of } s \text{ is } 1$$

$$\sum_{e \text{ into } t} x_e = \sum_{e \text{ into } v} x_e$$

$$\text{for every node } v \in V - \{s, t\}$$

Flow conservation

Shortest Paths

Given: Directed graph G = (V, E) vertices s, t in V

Find: shortest path from s to t

Claim: Length ℓ of the shortest path is solution (minimum value) for this program.

Proof sketch: A shortest path yields a solution of cost ℓ . Optimal solution must be a combination of flows on shortest paths, also cost ℓ ; otherwise parts of the 1 unit of flow gets counted on more than ℓ edges.



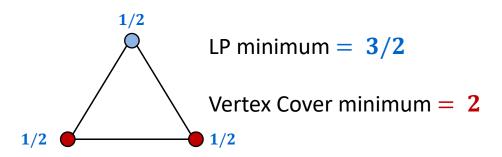
Vertex Cover

Vas

Given: Undirected graph G = (V, E)

Find: smallest set of vertices touching all edges of **G**.

Doesn't work: To define a set we need $x_v = \mathbf{0}$ or $x_v = \mathbf{1}$



Natural Variables for LP:

 x_v for each $v \in V$

Minimize $\sum_{v} x_{v}$

subject to

 $0 \le x_v \le 1$ for each node $v \in V$

 $x_u + x_v \ge 1$ for each edge $\{u, v\} \in E$

This LP optimizes for a different problem: "fractional vertex cover".

 x_v indicates the fraction of vertex v that is chosen in the cover.

What makes Max Flow different?

For Vertex Cover we only got a fractional optimum but for Max Flow can get integers.

- Why?
 - Ford-Fulkerson analysis tells us this for Max Flow.
 - Is there a reason we can tell just from the LP view?

Recall: Optimum is at some vertex x satisfying A'x = b' for some subset of exactly n constraints.

This means that $x = (A')^{-1}b'$.

Entries of the matrix inverse are quotients of determinants of sub-matrices of A' so, for integer inputs, optimum is always rational.

Fact: Every full rank submatrix of MaxFlow matrix A has determinant ± 1 \Rightarrow all denominators are $\pm 1 \Rightarrow$ integers. A is "totally unimodular"

Next: How MaxFlow=MinCut is an example of a general "duality" property of LPs

Coefficients 1, 0, and 2

Maximize
$$x_1 + 2x_3$$
 subject to

$$a$$
 $2x_1 - x_2 + 3x_3 \le 1$
 b $-x_1 + x_2 - x_3 \le 5$
 $x \ge 0$

Want coefficients of weighted sum ≥ all coefficients above

Claim: Optimum ≤ 6

Proof: Add the two LHS:

Must be \leq sum of RHS = 6.

We multiplied the 1st inequality by a = 1, the 2nd by b = 1 and added.

Claim: For all
$$a, b \ge 0$$
 if $2a - b \ge 1$ or $2a - b \ge 1$ or $2a + b \ge 0$ then Optimum $4a + 5b$

Proof:
$$x_1 + 2x_3$$

 $\leq a(2x_1 - x_2 + 3x_3)$
 $+b(-x_1 + x_2 - x_3)$
 $\leq 1a + 5b$.

Maximize $x_1 + 2x_3$ subject to $|2x_1 - x_2 + 3x_3| \le |1|$ \boldsymbol{a} b primal $-x_1 + x_2 - x_3$ $x \ge 0$ Minimize a + 5bsubject to |2a-b|dual

We multiplied the 1st inequality by a = 1, the 2nd by b = 1 and added.

Claim: For all
$$a, b \ge 0$$
 if $2a - b \ge 1$ $-a + b \ge 0$ $3a - b \ge 2$ then Optimum $\le a + 5b$

Proof:
$$x_1 + 2x_3$$

 $\leq a(2x_1 - x_2 + 3x_3)$
 $+b(-x_1 + x_2 - x_3)$
 $\leq 1a + 5b$.

Maximize
$$x_1 + 2x_3$$

subject to
$$\begin{array}{ll} a & 2x_1 - x_2 + 3x_3 \leq 1 \\ b & -x_1 + x_2 - x_3 \leq 5 \end{array}$$
 primal $x \geq 0$

Minimize
$$a+5b$$

subject to
$$2a-b\geq 1$$

$$-a+b\geq 0$$

$$3a-b\geq 2$$

$$a,b\geq 0$$

We multiplied the 1st inequality by a = 1, the 2nd by b = 1 and added.

Claim: For all
$$a, b \ge 0$$
 if $2a - b \ge 1$ $-a + b \ge 0$ $3a - b \ge 2$

then Optimum $\leq a + 5b$

Proof:
$$x_1 + 2x_3$$

 $\leq a(2x_1 - x_2 + 3x_3)$
 $+b(-x_1 + x_2 - x_3)$
 $\leq 1a + 5b$.

Maximize
$$x_1+2x_3$$
 subject to
$$\begin{array}{ll} a & 2x_1-x_2+3x_3 \leq 1 \\ b & -x_1+x_2-x_3 \leq 5 \end{array}$$
 primal $x \geq 0$

Maximize
$$-a-5b$$

subject to
$$-2a+b \le -1$$

$$a-b \le 0$$

$$-3a+b \le -2$$

$$a,b \ge 0$$

We multiplied the 1st inequality by a = 1, the 2nd by b = 1 and added.

Claim: For all
$$a, b \ge 0$$
 if $2a - b \ge 1$ $-a + b \ge 0$ $3a - b \ge 2$

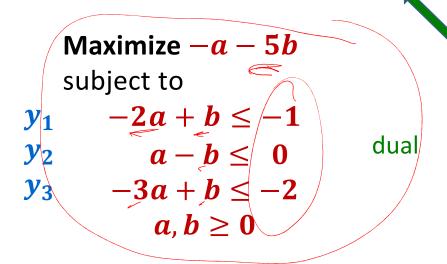
then Optimum $\leq a + 5b$

Proof:
$$x_1 + 2x_3$$

 $\leq a(2x_1 - x_2 + 3x_3)$
 $+b(-x_1 + x_2 - x_3)$
 $\leq 1a + 5b$.

Maximize $x_1 + 2x_3$ subject to

$$egin{array}{lll} m{a} & 2x_1-x_2+3x_3 \leq 1 \ m{b} & -x_1+x_2-x_3 \leq 5 \end{array}$$
 primal $x \geq 0$



What is the dual of the dual?

Minimize
$$-1y_1 - 2y_3$$

subject to $-2y_1 + y_2 - 3y_3 \ge -1$ $y_1 - y_2 + y_3 \ge -5$ $y \ge 0$

equivalent to

Maximize
$$y_1+2y_3$$
 subject to
$$2y_1-y_2+3y_3\leq 1 \\ -y_1+y_2-y_3\leq 5 \\ y\geq 0$$

dual

Minimize
$$b^{T}y$$

subject to
$$A^{T}y \geq c$$

$$y \geq 0$$

dual

Maximize
$$(-b)^{T}y$$

subject to
$$(-A)^{T}y \leq -c$$

$$y \geq 0$$

Theorem: The dual of the dual is the primal.

Proof:

Minimize
$$(-c)^{T}x$$

subject to
 $((-A)^{T})^{T}x \ge -b$
 $x \ge 0$

dual of dual

dual of dual

Minimize
$$-c^{T}x$$
 \equiv subject to

 $-Ax \ge -b$
 $x \ge 0$

dual of dual Maximize
$$c^{T}x$$
 subject to $Ax \leq b$ $x \geq 0$

Maximize
$$c^{\mathsf{T}}x$$
Subject to
$$Ax \leq b$$

$$x \geq 0$$
Minimize $b^{\mathsf{T}}y$
Subject to
$$A^{\mathsf{T}}y \geq c$$

$$y \geq 0$$

Theorem: The dual of the dual is the primal.

Theorem (Weak Duality): Every solution to primal has a value that is at most that of every solution to dual.

Proof: We constructed the dual to give upper bounds on the primal.

```
\begin{array}{ll} \text{primal} & \text{dual} \\ \textbf{Maximize } c^{\mathsf{T}}x & \textbf{Minimize } b^{\mathsf{T}}y \\ \text{subject to} & \text{subject to} \\ Ax \leq b & A^{\mathsf{T}}y \geq c \\ x \geq 0 & y \geq 0 \end{array}
```

Theorem: The dual of the dual is the primal.

Theorem (Weak Duality): Every solution to primal has a value that is at most that of every solution to dual.

Theorem (Strong Duality): If primal has a solution of finite value, then that value is equal to optimal solution of dual.

primal dual

Maximize
$$c^{T}x$$
 Minimize $b^{T}y$

subject to subject to

 $Ax \leq b$ $A^{T}y \geq c$
 $x \geq 0$ $y \geq 0$

Theorem (Strong Duality): If primal has a solution of finite value, then that value is equal to optimal solution of dual.

Fact: At vertex, n inequalities are tight A'x = b'.

Physics: Coefficient vectors $y' \geq 0$ for tight rows can be

E.g. there are $y_i, y_j \ge 0$ s.t. $y_i A_i + y_j A_j = c^\top$. Set y_k for all other rows to 0, get $y^\top A = (y')^\top A' = c^\top$ so $A^\top y = c$.

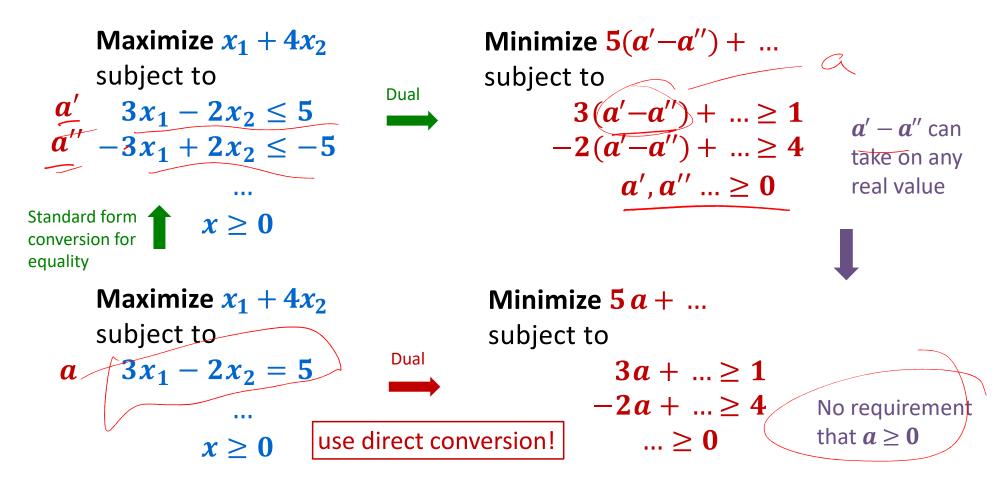
Then

combined to get c^{T} .

$$\mathbf{b}^{\mathsf{T}}\mathbf{y} = (\mathbf{b}')^{\mathsf{T}}\mathbf{y}' = (\mathbf{A}'\mathbf{x})^{\mathsf{T}}\mathbf{y}' = \mathbf{x}^{\mathsf{T}}(\mathbf{A}')^{\mathsf{T}}\mathbf{y}' = \mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{y}$$
$$= \mathbf{x}^{\mathsf{T}}\mathbf{c} = \mathbf{c}^{\mathsf{T}}\mathbf{x}$$

since $x^{\mathsf{T}}c$ and $c^{\mathsf{T}}x$ are just numbers.

Saving dual variables for equalities



Dual of Max Flow

Use a different names to avoid confusion with capacity vector

Maximize
$$g^T x$$

subject to
 $Ax \le h$

 $x \geq 0$

1.
$$g_e = \begin{cases} 1 & \text{if } e \text{ out of } s \\ 0 & \text{otherwise} \end{cases}$$

$$a_e$$
 2. $x_e \le c(e)$

$$b_v$$
 3. $\sum_{e \text{ into } v} x_e - \sum_{e \text{ out of } v} x_e = 0$

4.
$$x \ge 0$$

$$v \in S - \{s, t\}$$

Minimize
$$\sum_e c(e)a_e \equiv c^{\top}a$$
 subject to

$$a_e + b_v \ge 1$$
 if $e = (s, v)$

$$a_e - b_u \ge 0$$
 if $e = (u, t)$

$$a_e - b_u + b_v \ge 0$$
 if $e = (u, v)$

$$a \geq 0$$
 $u, v \in S - \{s, t\}$

More uniform way to write Max Flow Dual

Minimize
$$\sum_e c(e)a_e \equiv c^{\top}a$$
 subject to
$$a_e + b_v \geq 1 \text{ if } e = (s,v) \qquad \text{Define}$$
 subject to
$$b_s = 1$$

$$a_e - b_u \geq 0 \text{ if } e = (u,t)$$

$$b_t = 0$$

$$a_e - b_u + b_v \geq 0 \text{ if } e = (u,v)$$

$$a_e - b_u + b_v \geq 0 \text{ if } e = (u,v)$$

$$a_e \geq 0$$

$$a_e = (u,v)$$

$$a_e \geq 0$$

$$a_e \geq 0$$

$$a_e \geq 0$$

Simpler to read Max Flow Dual

Minimize
$$\sum_e c(e)a_e \equiv c^{\mathsf{T}}a$$
 subject to

$$b_s = 1$$
$$b_t = 0$$

$$a_e - b_u + b_v \ge 0$$
 for $e = (u, v)$

 $a \geq 0$

All the $c(e) \geq 0$, so we want the a_e as small as possible.

Minimize
$$\sum_e c(e) a_e \equiv c^{\top} a$$
 subject to $b_s = 1$

$$b_t^3 = 0$$

$$a_e = \max(b_u - b_v, 0)$$

for $e = (u, v)$

$$\sum_{e} c(e) a_e \equiv c^{\mathsf{T}} a$$
 subject to

$$b_s = 1$$
$$b_t = 0$$

$$a_e = \max(b_u - b_v, 0)$$

for $e = (u, v)$

Claim: Optimum is achieved with $0 \le b_v \le 1$ for every vertex v.

Proof:

Move $\boldsymbol{b_v}$ values between $\boldsymbol{0}$ and $\boldsymbol{1}$

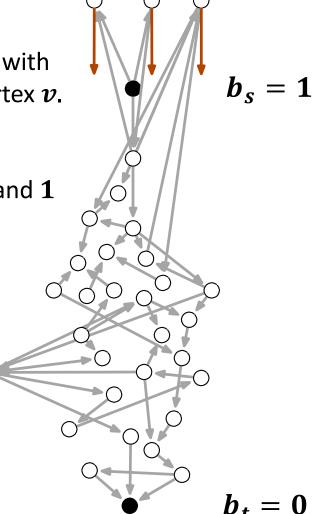
Reduces:

 $a_e = \text{length if } e \text{ is down}$

Doesn't change:

 $a_e = 0$ if e is up

Overall solution improves.



 $\sum_{e} c(e) a_e \equiv c^{\mathsf{T}} a$ subject to $b_s = 1$ $b_t = 0$ $0 \leq b_v \leq 1$ $a_e = \max(b_u - b_v, \mathbf{0})$ for e = (u, v)

Claim: Optimum is achieved with $0 \le b_v \le 1$ for every vertex v.

Proof:

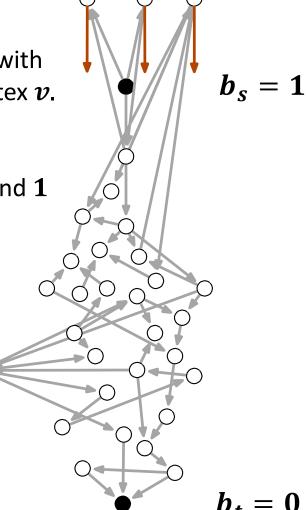
Move $oldsymbol{b}_{oldsymbol{
u}}$ values between $oldsymbol{0}$ and $oldsymbol{1}$ Reduces:

 $a_e = \text{length if } e \text{ is down}$

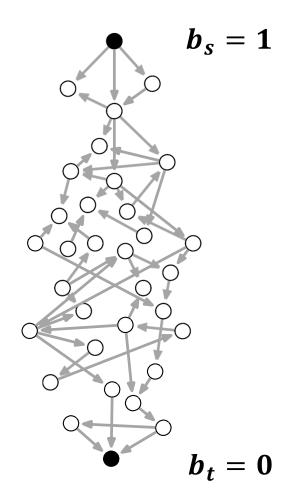
Doesn't change:

 $a_e = 0$ if e is up

Overall solution improves.



$$\sum_e c(e)a_e \equiv c^{\mathsf{T}}a$$
 subject to $b_s = 1$ $b_t = 0$ $0 \leq b_v \leq 1$ $a_e = \max(b_u - b_v, 0)$ for $e = (u, v)$



$$\sum_e c(e) a_e \equiv c^{\top} a$$
 subject to $b_s = 1$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Claim: Optimum is achieved with $b_v = 0$ or $b_v = 1$ for every vertex v.

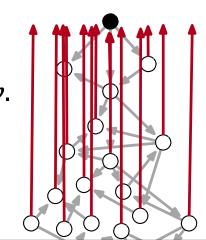
Proof:

Choose uniform random $r \in [0, 1]$

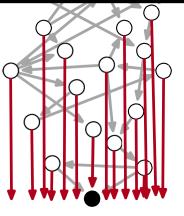
Set
$$\boldsymbol{b}_{\boldsymbol{v}} = \begin{cases} \mathbf{1} & \text{if } \boldsymbol{b}_{\boldsymbol{v}} \geq \boldsymbol{r} \\ \mathbf{0} & \text{if } \boldsymbol{b}_{\boldsymbol{v}} < \boldsymbol{r} \end{cases}$$

Expected value for random r is the same as the original since edge e of length a_e is cut w.p. a_e .

So... one of those random choices must be at least as good.



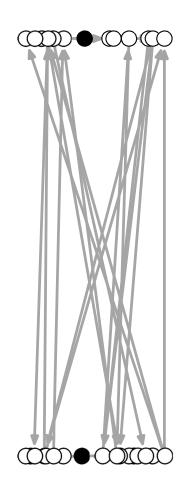
 $b_s = 1$



$$b_t = 0$$

$$\sum_e c(e)a_e \equiv c^{\mathsf{T}}a$$
 subject to $b_s = 1$ $b_t = 0$ $b_v \in \{0, 1\}$ $a_e = \max(b_u - b_v, 0)$ for $e = (u, v)$

MinCut!



 $b_s = 1$

 $b_t = 0$

Duality of Shortest Paths

Minimize $\sum_{e} x_{e}$

subject to

$$\sum_{e \text{ out of } s} x_e = 1$$

$$\sum_{e \text{ into } t} x_e = 1$$

$$\sum_{e \text{ into } v} x_e - \sum_{e \text{ out of } v} x_e = 0$$
 for all $v \in V - \{s, t\}$

$$x \ge 0$$

Duality of Shortest Paths

Minimize $\sum_{e} x_{e}$

subject to

$$a_s \sum_{e \text{ into } s} x_e - \sum_{e \text{ out of } s} x_e = -1$$

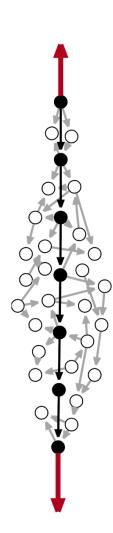
$$a_t \sum_{e \text{ into } t} x_e - \sum_{e \text{ out of } t} x_e = 1$$

$$a_{v} \sum_{e \text{ into } v} x_{e} - \sum_{e \text{ out of } v} x_{e} = 0$$
 for all $v \in V - \{s, t\}$

$$x \ge 0$$

Maximize $a_s - a_t$ subject to

$$a_u - a_v \le 1$$
 if $e = (u, v)$



Duality and Zero-Sum Games

Set lager Scisson

Two player zero-sum game:

An $m \times n$ matrix G

 $G_{i,j}$ = payoff to row player assuming: row player uses strategy i, and column player uses strategy j.

Column player's payoff for game $= -G_{i,j}$

Example: Chess (idealized)

i specifies how white would move in every possible board configuration.

j specifies how black would move.

$$G_{i,j} = \begin{cases} +1 & \text{White checkmates} \\ -1 & \text{Black checkmates} \\ 0 & \text{Draw on board} \end{cases}$$

Randomized Strategy:

Probability distribution on row strategies:

• A column vector x with each $x_i \ge 0$

$$\sum_{i} x_i = 1$$

Probability distribution on column strategies:

• A column vector y with each $y_i \ge 0$

$$\sum_{i} y_{j} = 1$$

Expected payoff to row player:

$$x^{\mathsf{T}}Gy$$

Who decides on their strategy first

If row player commits to x:

Row player will get payoff

$$\min_{\mathbf{y}} \mathbf{x}^{\mathsf{T}} \mathbf{G} \mathbf{y} = \min_{\mathbf{j}} (\mathbf{x}^{\mathsf{T}} \mathbf{G})_{\mathbf{j}}$$

So if row player plays first they can get payoff

$$\max_{x} \min_{y} x^{\mathsf{T}} G y$$

If column player commits to y:

Row player will get payoff

$$\max_{\mathbf{x}} \mathbf{x}^{\mathsf{T}} \mathbf{G} \mathbf{y} = \max_{\mathbf{i}} (\mathbf{G} \ \mathbf{y})_{\mathbf{i}}$$

So if column player plays first, row player can

 $\min \max x^{\mathsf{T}} G y$

get payoff

Randomized Strategy:

Probability distribution on row strategies:

• A column vector x with each $x_i \ge 0$

$$\sum_{i} x_i = 1$$

Probability distribution on column strategies:

• A column vector y with each $y_i \ge 0$

$$\sum_{j} y_{j} = 1$$

Expected payoff to row player:

$$x^{\mathsf{T}}Gy$$

Von Neumann's MiniMax Theorem

If row player commits to x:

Row player will get payoff

$$\min_{\mathbf{y}} \mathbf{x}^{\mathsf{T}} \mathbf{G} \mathbf{y} = \min_{\mathbf{j}} (\mathbf{x}^{\mathsf{T}} \mathbf{G})_{\mathbf{j}}$$

So if row player plays first they can get payoff

$$\max_{x} \min_{y} x^{\mathsf{T}} G y$$

If column player commits to y:

Row player will get payoff

$$\max_{\mathbf{x}} \mathbf{x}^{\mathsf{T}} \mathbf{G} \mathbf{y} = \max_{\mathbf{i}} (\mathbf{G} \ \mathbf{y})_{\mathbf{i}}$$

So if column player plays first, row player can get payoff

$$\min_{\mathbf{y}} \max_{\mathbf{x}} \mathbf{x}^{\mathsf{T}} \mathbf{G} \mathbf{y}$$

It doesn't matter who plays first!

Theorem:

$$\max_{\mathbf{x}} \min_{\mathbf{y}} \mathbf{x}^{\mathsf{T}} \mathbf{G} \mathbf{y} = \min_{\mathbf{y}} \max_{\mathbf{x}} \mathbf{x}^{\mathsf{T}} \mathbf{G} \mathbf{y}$$

Use Strong Duality to prove MiniMax Theorem

Theorem:
$$\max_{x} \min_{y} x^{T}Gy = \min_{y} \max_{x} x^{T}Gy$$

i.e., $\max_{x} \min_{j} (x^{T}G)_{j} = \min_{y} \max_{i} (Gy)_{i}$

Primal

Maximize **Z**

subject to

$$w \qquad \sum_{i} x_{i} = 1$$

$$y_{j} \quad z - (x^{T}G)_{j} \leq 0^{*}$$
for all j

$$x \geq 0$$

*equivalent to $z \leq \min_{i} (x^{\top}G)_{i}$

Dual

Minimize w

subject to

$$\sum_j y_j = 1$$
 Coefficient of z must be 1 $w - (G y)_i \geq 0^*$ Coefficient of x_i must be ≥ 0 for all i $y \geq 0$

*equivalent to $w \ge \max_{i} (G y)_{i}$