CSE 421
Introduction to Algorithms

Lecture 21: Linear Programming Duality
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Given: a polytope \ X 0V

&N
7 7
Find: the lowest point in the polytope Y; V“?
g
- A
s \N
\V =
e
Maximize ¢ x
subject to
Ax < b.
2 b1
As At maX|mum x Typically # constraints m > n
2 x = Lowest point is a vertex defined
A3 by some nrows, A’x = b’



Max Flow in Standard Form LP

3

eoutofs

Maximize
subject to

0<x,<c(e)foreverye €E

Y x= Y s )

e outofv eintov

for every nodev € V — {s, t} 2.

Replace equality constraints by a 3.
pair of inequalities 4

5.

gw i

aximize c'x
subject to
Ax < b

THis is for the ¢ above.

x=0
othing to do with
/ capacities!
- — 1 ifeoutofs
® |0 otherwise
Xe < c(e)

Zeoutofvxe _ Zeintovxe <0
Zeintovxe _ Zeoutofvxe <0

x>0



Minimization converted to Maximization

Minimize c'x Maximize (—¢)"x
subject to > subject to

Ax2b ;5 (-A)x < (-b)
x=0 Q//‘/—jA x>0



Shortest Paths

Given: Directed graph ¢ = (V,E)

vertices s, tinV
=

Find: (length of) shortest path from s to £

Claim: Length ¥ of the shortest path is
the solution (minimum value) for this
program.

Proof sketch: A shortest path yields a
solution of cost Y. Optimal solution
must be a combination of flows on
shortest paths also cost #; otherwise
there is a part of the 1 unit of flow that
gets counted on more than £ edges.

Sum of flow on
all edges

Minimize

subject to

Flowoutof sis 1

Flowintotis 1

e into ¢ l/
B
eoutofv eintov

for every node v € V- {s, t}
\ Flow conservation
LT



Shortest Paths

Given: Directed graph ¢ = (V,E)
vertices s, tinV

Find: shortest path from sto ¢

Claim: Length ¥ of the shortest path is
solution (minimum value) for this
program.

Proof sketch: A shortest path yields a
solution of cost Y. Optimal solution
must be a combination of flows on
shortest paths, also cost ¥; otherwise
parts of the 1 unit of flow gets counted
on more than ¢ edges.

Not optimal

1/6 routed
through 3 edges
instead of 2.
Value = 2.166666

1
2



Vertex Cover

Given: Undirected graph G = (V,E)

Find: smallest set of vertices touching all
edges of (. =

Doesn’t work: To define a set we need
X, =0o0rx, =1

1/2

LP minimum = 3/2

Vertex Cover minimum = 2
1/2 1/2

J ok
S O2

“Natural Variables for LP:

x, foreachv eV

Minimize Z Xv
v —
subject to

0<x,<1foreachnodev eV

——

X, +x, = 1foreachedge {u,v}€E
Tw o v =
This LP optimizes for a different problem:
“fractional vertex cover”.
X, indicates the fraction of vertex v that
is chosen in the cover.



What makes Max Flow different?

For Vertex Cover we only got a fractional optimum but for Max Flow can get integers.
 Why?
* Ford-Fulkerson analysis tells us this for Max Flow.
* Is there a reason we can tell just from the LP view?

ST
IN

g A'x = b’ for some subset of exactly

. . , éf‘) Tk
Recall: Optimum is at some vertex x satisfy
n constraints. ‘
This means that x = (A")~1b’'.
Entries of the matrix inverse are quotients of determinants of sub-matrices of
A’ so, for integer inputs, optimum is always rational.

Fact: Every full rank submatrix of MaxFlow matrix A has determinant +1
= all denominators are +1 = integers. A is “totally unimodular”

Next: How MaxFlow=MinCut is an example of a general “duality” property of LPs



Duality

Coefficients 1, 0, and 2

Maximize I{l + 2x3

subject to
a 2xq;—Xxp+ 3x3 <
b —X1 + X2 — X3
x=0

Want coefficients of weighted sum 2 all coefficients above

Claim: Optimum < 6
Proof: e two LHS:
2x1 — X2 -+ 3 3 4

1

+2x3.
Must be < sum of RHS = 6.

We multiplied the 1st inequality by
a =1,the 2" by b = 1 and added.

> D = /2 . 3 \f\,—s Co e
then Optimum@
Proof: X1 + 2x3 .
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Maximize X1 + 2x3

su.TbJ{ct to

le — X2 + 3.X'3
—X1 + X2 — X3

e

primal

= IN IN
U1

x>0

inimize|a + 5b
subject to /é

2a — b|>|1
—a + b|=|0
3a— b|>

dual

We multiplied the 1st inequality by
a =1,the 2" by b = 1 and added.

Claim: Foralla,b = 0 if

2a—b > 1
—a+b=>0
3a—b=>2

then Optimum < a + 5b

Proof: X1 + 2x3
<a(2x1—x, + 3x3)
+b (—x1 + x5 — Xx3)
< 1la + 5b.



Duality

Maximize X1 + 2x3

subject to
a 2x;—x,+3x3<1
b —X1 -+ X2 — X3 < 5 primal
x=0
T N\
ﬁinimize a+ 5b \
subject to
\ 2a—b>1
—a+b=>0 dual
3a—b =2

ab>0
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We multiplied the 1st inequality by
a =1,the 2" by b = 1 and added.

Claim: Foralla,b = 0 if

2a—b > 1
—a+b=>0
3a—b=>2

then Optimum < a + 5b

Proof: X1 + 2x3
<a(2x1—x, + 3x3)
+b (—x1 + x5 — Xx3)
< 1la + 5b.
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Duality

Maximize X1 + 2x3

subject to
a 2x;—x,+3x3<1
b —X1 -+ X2 — X3 < 5 primal
x=0

Maximize —a — 5b

subject to
—2a+b < -1
a—-b< 0 dual
—-3a+b < -2

ab>0

We multiplied the 1st inequality by
a =1,the 2" by b = 1 and added.

Claim: Foralla,b = 0 if

2a—b > 1
—a+b=>0
3a—b=>2

then Optimum < a + 5b

Proof: X1 + 2x3
<a(2x1—x, + 3x3)
+b (—x1 + x5 — Xx3)
< 1la + 5b.
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Duality

a
b

Maximize X1 + 2x3
subject to
2xq1—Xx, +3x3 <1
—X1 + X2 — X3 <5 primal
x=0

O iy
@mlze —a —5b
~ subject to A

What is the dual of the dual?

Minimize —1y; — 2y3
subject to
—2y1tYy2—3y3=2 -1
Yy1—Y2 + y3=—-5
y=0
equivalent to

Maximize vy; + 2y;
subject to
2y, —y2+3y3 =1

—y1+Y2 —Y3<5
y=0
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Duality

primal
Maximize ¢ x
subject to
Ax < b
x=0

dual
Minimize by
subject to
Ay > ¢
y=0

Theorem: The dual of the dual is the primal.

Proof:
dual of dual

Minimize (—c¢)"x
subject to

((=A)N'x = -b

x>0

dual of dual
Minimize —c'x
subject to
—Ax = —b
x=0

dual
Maximize (—b) "y
subject to
(-A)'y < —c
y=0

dual of dual
Maximize ¢’ x
subject to
Ax < Db
x=>0
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Maximize c' x — y
o
subject to bjec
Ax <b Ay > ¢
x=>0 y=0

Theorem: The dual of the dual is the primal.

Theorem (Weak Duality): Every solution to primal has a value that is at
most that of every solution to dual.

Proof: We constructed the dual to give upper bounds on the primal.



16

Duality

primal dual
Maximize ¢ x Minimize b"y
subject to subject to
Ax <b Ay > ¢
x=>0 y=0

Theorem: The dual of the dual is the primal.

Theorem (Weak Duality): Every solution to primal has a value that is at
most that of every solution to dual.

Theorem (Strong Duality): If primal has a solution of finite value, then
that value is equal to optimal solution of dual.
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Duality

primal dual
Maximize c'x Minimize b"y
subject to subject to
Ax <b Ay > ¢
x=0 y=0

Theorem (Strong Duality): If
primal has a solution of finite
value, then that value is equal
to optimal solution of dual.

primal
Fact: At vertex, n
inequalities are tight _
: Ax=Db' ° A1
— b, S

Physics: Coefficient vectors
y' = 0 for tight rows can be
combined to get c.

E.g.therearey;, y; = 0s.t. y;A; + yjA; = c.
Set v, for all otherrowsto 0, gety'4 = (y")TA" = ¢

soATy = c.
Then
b’y =)y =Ax)"y =xT(A)Ty =x"ATy
=x"c=c"x

since x'c and ¢ ' x are just numbers.
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Saving dual variables for equalities

Maximize x; + 4x,
subject to
a, 3x1 sz <5

X1 — 24X S0
dw 3x1+2xy < =5

—

Standard form I x 2 0

conversion for
equality

Maximize X1 + 4x2
subject to

Minimize 5(a’—a’) + .

- subject to / A
m—) 3@+ 21 a —a’ can

144
—2@-a’)+ .24  zeon any
a,a’..>0 real value

!

Minimize 5a + ...
subject to

3a+ .21

—-2a+ .= 4

Dual

—

No requiremen

use direct conversion!

>0 thata =0
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Dual of Max Flow

Use a different
names to avoid
confusion with
capacity vector

Maximize g x

subject to
Ax < h
x>0
)1 ifeoutofs
Je = .
0 otherwise
xe < c(e)
Zeintovxe - Ze outofvXe =
x>0
vES—{st}

0

Minimize Y, c(e)a, =c'a
subject to

a,+b,=>1 ife=(s,v)
a,— b, >0 ife=(u,t)
a,—b,+b,>0 ife=(u,v)

a=>0 u,v €S —{s,t}
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More uniform way to write Max Flow Dual

Minimize Y .c(e)a, =c'a
subject to
a,+b,=>1 ife=(s,v) Define
b, =1
a,— b, >0 ife=(ut) by =0

a,—b,+b,=>0 ife=(uv)

u,veS—{st}
a=0

Minimize Y. c(e)a, =c'a
subject to
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Simpler to read Max Flow Dual

Minimize Y, c(e)a, =c'a
subject to

b, =1

b, = 0

a,—b,+b,=>0
fore = (u, v)

a=>0

All the c(e) = 0, so
we want the a, as
small as possible.

Minimize Y .c(e)a, =c'a
subject to

b, =

b, = 0

a, = max(b, — b,,0)
fore = (u,v)
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Minimize
Y.c(e)a, =c'a
subject to
b, =1
b;=0

a, = max(b, — b,,0)
fore = (u, v)

Claim: Optimum is achieved with T T T

0 < b, < 1 for every vertex v. ®
Proof: O
Move b,, values between 0 and 1 O
Reduces: O«

a, = length if e is down o 0«0
Doesn’t change: O.3 0 OO O
a, =0ifeisup O
.. O O
Overall solution improves. O O
O+LO
O
O
O
OO
Q O
®
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Minimize
Y.c(e)a, =c'a
subject to
b, =1
b;=0
0<b,<1

a, = max(b, — b,,0)
fore = (u, v)

Claim: Optimum is achieved with T T T

0 < b, < 1 for every vertex v. ®
Proof: O
Move b,, values between 0 and 1 O
Reduces: O«

a, = length if e is down o 0«0
Doesn’t change: O.3 0 OO O
a, =0ifeisup O
.. O O
Overall solution improves. O O
O+LO
O
O
O
OO
Q O
®
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Minimize
Ye.cle)a, =c'a
subject to
b, =1
b,=0
0<b,<1

a, = max(b, — b,,0)
fore = (u, v)
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Minimize
Ye.cle)a, =c'a
subject to
b, =1
b,=0
0<b,<1

a, = max(b, — b,,0)
fore = (u, v)

PN

Claim: Optimum is achieved with |
b, = 0 or b, = 1 for every vertex v. P
Proof: O %
Choose uniform random r € [0, 1] e ©

1 ifb, > O B0 A° 7O
Setb,, = : b, =1 L

0 ifb,<r O ¢

Expected value for random 7 is the
same as the original since edge e of
length a, is cut w.p. a,.

So... one of those random choices
must be at least as good.
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Minimize
Y.c(e)a, =c'a
subject to
b, =1
b; =0
b, €{0,1}

a, = max(b, — b,,0)
fore = (u,v)

MinCut!
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Duality of Shortest Paths

Minimize )., x,
subject to

Zeoutofsxe =1
Zeintotxe =1

Zeintovxe - Zeoutofvxe =0
forallv eV —{s, t}

x>0



Duality of Shortest Paths

Minimize )., x,

subject to
Maximize a, — a;
as Zeintosxe B Ze outofsXe = —1 subject to
ag Zeintotxe_z:eoutoftxe:]- a,—a, <1

ife=(u,v)
a, 2eintovXe ~ ZeoutofvXe = 0
forallv eV — {s, t}

x>0

28




ol g Cess/ v
Duality and Zero-Sum Games M W

Two player zero-sum game: Randomized St

Anm X n matrix G

G;; = payoff to row player assuming:
row player uses strategy i, and

Probability distribution on row strategies:
* A column vector x with eachx; = 0

column player uses strategy j. Z x;=1
Column player’s payoff for game = —G; ; i
= Probability distribution on column strategies:
Example: Chess (idealized) * A column vector y witheachy; = 0
[ specifies how white would move in every
possible board configuration. z yi=1

J specifies how black would move.

+1 White checkmates -
G;j ={—1 Black checkmates X Gy

0 Draw on board

Expected payoff to row player:
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Who decides on their strategy first

If row player commits to x: Randomized Strategy:
Row player will get payoff

minx'Gy = min(x' G);

y = J * A column vector x with eachx; = 0

i

So if row pla;er plays first theycan get payoff X =1
ﬁ E ;=
M i

. Probability distribution on column strategies:
If column player commits to y:

Row player will get payoff
T — . _
max x Gy = miax(G y)/,/ Zyj =1
J

So if column player plays first, row player can Expected payoff to row player:

Probability distribution on row strategies:

* A column vector y with each y; = 0
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Von Neumann’s MiniMax Theorem

If row player commits to x:
Row player will get payoff
minx'Gy = min(x'G);
y J It doesn’t matter who plays first!
So if row player plays first they can get payoff

max min x' Gy Theorem:
X y . TG . TG
If column player commits to y: my?x m)}n X ay = m)}n man by

Row player will get payoff -

max x' Gy = max(G y);
X l

So if column player plays first, row player can
get payoff

min max x' Gy
y X



Use Strong Duality to prove MiniMax Theorem

Theorem: max min x"Gy = min maxx' Gy
X y y X

i.e., max min(x' G); = min max(G y);
X j y i
Primal Dual

Maximize z Minimize w

subject to subject to
w 2ixi=1 Zj yj = 1 Coefficient of z must be 1
Yi Z-— (xTG)]- <0 w — (G y); = 07 Coefficient of x; must be > 0

forall j forall i
x=0 y=>0

*equivalentto z < m_in(xTG)]- *equivalenttow = m?x(G Y)i
32 J



