
CSE 421

Introduction to Algorithms

Lecture 20: Linear Programming:

A really very extremely big hammer

1

Midterm

Median 68.5

Average 65.28

Standard Deviation 20.74

Histogram

90s 23

80s 10

70s 26

60s 23

50s 15

40s 18

<40 15

Midterm grades will be released at the end of this class.

• Breathe!

• These grades don’t count for that much.

• In past 421 I’ve had a student with a midterm grade in the mid-60’s

end with a 4.0 in the course.

Given: a polytope

Find: the lowest point in the polytope

polytope

3
3

Maximize �� + ���
subject to:��� − �� + ��� ≤ �−�� + �� − �� ≤ 	

polytope

We have fast

algorithms for this!

Given: a polytope

Find: the lowest point in the polytope

4

Linear Algebra primer

For
, � ∈ ℝ� we think of
 and � as column vectors

�� =
��� + ⋯ +
���
The set of � satisfying
�� = � is hyperplane

5

�� = �
6

�� ≤ �
7

�� ≤ �
8

Given: a polytope

Find: the lowest point in the polytope

9

Given: a polytope

Find: the lowest point in the polytope

10

Linear Algebra primer

For
, � ∈ ℝ� we think of
 and � as column vectors

�� =
��� + ⋯ +
���

Write � × � matrix �, for �� =
���������… ���

where ��, … , �� are rows of �.

11

Given: a polytope

Find: the lowest point in the polytope

Maximize ���
subject to�� ≤ �.
�� ≤ � means

�� � ≤ ��
for all �

�

12

Given: a polytope

Find: the lowest point in the polytope

Maximize ���
subject to�� ≤ �.

Typically # constraints � ≥ �
Lowest point is a vertex defined

by some � rows, ��� = �′

�
At maximum ����� � = ����

13

Standard Form

Maximize ���
subject to�� ≤ �� ≥ �

Maximize �� + ���
subject to��� − �� + ��� ≤ �−�� + �� − �� ≤ 	

Maximize ��,
 − ��,� + �(��,
 − ��,�)
subject to

� ��,
 − ��,� − ��,
 − ��,� + �(��,
 − ��,�) ≤ �
− ��,
 − ��,� + ��,
 − ��,� − (��,
 − ��,�) ≤ 	� ≥ �

replace each �� by��,
 − ��,�
for ��,
,��,� ≥ �

14

Max Flow

Maximize

subject to

� ≤ �! ≤ � ! for every ! ∈ "
�!

! $%& $' (
= # �!

!)*&$ (
for every node (∈ + − {-, .}

Given: A Flow Network 0 = (+, ")
with source -, sink ., and �: " → ℝ3�

Maximize flow out of -
subject to

• respecting capacities

• flow conservation at internal

nodes

�!
! $%& $' -

LP Variables:

�! for each ! ∈ " representing

flow on edge !

15

Maximize

subject to

� ≤ �! ≤ � ! for every ! ∈ "
�!

! $%& $' (
= # �!

!)*&$ (
for every node (∈ + − {-, .}

�!
! $%& $' -

Maximize ���
subject to�� ≤ �� ≥ �

1. �! = 4� if ! out of -� otherwise
2. �! ≤ �(!)
3. ∑ �!! $%& $' (− ∑ �! ≤ � !)*&$ (
4. ∑ �!!)*&$ (− ∑ �! ≤ � ! $%& $' (
5. � ≥ �

Replace equality constraints by a

pair of inequalities

This is for the � above.

Nothing to do with

capacities!

Max Flow

16

Minimization or Maximization

Minimize ���
subject to�� ≥ �� ≥ �

Maximize (−�)��
subject to(−�)� ≤ (−�)� ≥ �

17

Shortest Paths

Given: Directed graph 0 = (+, ")
vertices -, . in +

Find: (length of) shortest path from - to .
Claim: Length ℓ of the shortest path is

the solution (minimum value) for this

program.

Proof sketch: A shortest path yields a

solution of cost ℓ. Optimal solution

must be a combination of flows on

shortest paths also cost ℓ; otherwise

there is a part of the � unit of flow that

gets counted on more than ℓ edges.

Minimize

subject to

� ≥ �
�!

! $%& $' -
= �

�!
!)*&$.

= �
�!

! $%& $' (
= # �!

!)*&$ (
for every node (∈ + − {-, .}

�!
!

Flow out of - is �

Flow into . is �

Flow conservation

Sum of flow on

all edges

18

Shortest Paths

Given: Directed graph 0 = (+, ")
vertices -, . in +

Find: shortest path from - to .
Claim: Length ℓ of the shortest path is

solution (minimum value) for this

program.

Proof sketch: A shortest path yields a

solution of cost ℓ. Optimal solution

must be a combination of flows on

shortest paths, also cost ℓ; otherwise

parts of the � unit of flow gets counted

on more than ℓ edges.
19

- .
�
�

�
�

�
�

�
�

�
A

�
A

- .
�
�

�
�

�
�

�
�

Not optimal

1/6 routed

through 3 edges

instead of 2.

Value = 2.166666

Optimal

Value = 2

Vertex Cover

Given: Undirected graph 0 = (+, ")
Find: smallest set of vertices touching all

edges of 0.

Doesn’t work: To define a set we need�(= � or �(= �

Minimize

subject to
 � ≤ �(≤ � for each node (∈ +
�B + �(≥ � for each edge B, (∈ "

�(
(

Natural Variables for LP:

�(for each (∈ +

�/�

�/��/�

LP minimum = �/�
Vertex Cover minimum = �

This LP optimizes for a different problem:

“fractional vertex cover”.�(indicates the fraction of vertex (that

is chosen in the cover.

20

What makes Max Flow different?
For Vertex Cover we only got a fractional optimum but for Max Flow can get integers.

• Why?

• Ford-Fulkerson analysis tells us this for Max Flow.

• Is there a reason we can tell just from the LP view?

Recall: Optimum is at some vertex � satisfying ��� = �′ for some subset of exactly� constraints.

This means that � = �′ D��′.

Entries of the matrix inverse are quotients of determinants of sub-matrices of

�′ so, for integer inputs, optimum is always rational.

Fact: Every full rank submatrix of MaxFlow matrix � has determinant ±�
⇒ ⇒ ⇒ ⇒ all denominators are ±� ⇒ ⇒ ⇒ ⇒ integers. � is “totally unimodular”

Next: How MaxFlow=MinCut is an example of a general “duality” property of LPs
21

