
CSE 421

Introduction to Algorithms

Lecture 20:  Linear Programming:

A really very extremely big hammer
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Midterm

Median    68.5

Average    65.28

Standard Deviation 20.74

Histogram

90s    23

80s 10

70s 26

60s 23

50s 15

40s 18

<40 15 

Midterm grades will be released at the end of this class.

• Breathe! 

• These grades don’t count for that much.  

• In past 421 I’ve had a student with a midterm grade in the mid-60’s 

end with a 4.0 in the course.  



Given: a polytope

Find: the lowest point in the polytope

polytope
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Maximize �� +  ���
subject to:��� − �� + ��� ≤ �−�� + �� −   �� ≤ 	 

polytope

We have fast

algorithms for this!

Given: a polytope

Find: the lowest point in the polytope
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Linear Algebra primer

For 
, � ∈ ℝ� we think of 
 and � as column vectors


�� = 
��� + ⋯ + 
���
The set of � satisfying 
�� = � is hyperplane
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�� = �
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�� ≤ �
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�� ≤ �
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Given: a polytope

Find: the lowest point in the polytope
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Given: a polytope

Find: the lowest point in the polytope
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Linear Algebra primer

For 
, � ∈ ℝ� we think of 
 and � as column vectors


�� = 
��� + ⋯ + 
���

Write � × � matrix �, for �� =
���������… ���

where ��, … , �� are rows of �.
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Given: a polytope

Find: the lowest point in the polytope

Maximize ���
subject to�� ≤ �.
�� ≤ � means

�� � ≤ �� 
for all �

�
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Given: a polytope

Find: the lowest point in the polytope

Maximize ���
subject to�� ≤ �.

Typically # constraints � ≥ � 
Lowest point is a vertex defined 

by some � rows, ��� = �′

�
At maximum ����� � = ����

13



Standard Form

Maximize ���
subject to�� ≤ �� ≥ �

Maximize �� +  ���
subject to��� − �� + ��� ≤ �−�� + �� −   �� ≤ 	

Maximize ��,
 − ��,� +  �(��,
 − ��,�)
subject to

� ��,
 − ��,� − ��,
 − ��,� + �(��,
 − ��,�) ≤ �
− ��,
 − ��,� + ��,
 − ��,� −    (��,
 − ��,�) ≤ 	� ≥ �

replace each �� by��,
 − ��,�
for ��,
,��,� ≥ �
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Max Flow

Maximize

subject to

� ≤ �! ≤ � ! for every ! ∈ "
# �!

! $%& $' (
= # �!                               

! )*&$ (
for every node ( ∈ + − {-, .}

Given: A Flow Network 0 = (+, ")
with source -, sink ., and �: " → ℝ3�

Maximize flow out of -
subject to

• respecting capacities

• flow conservation at internal 

nodes

# �!
! $%& $' -

LP Variables: 

�! for each ! ∈ " representing   

flow on edge !
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Maximize

subject to

� ≤ �! ≤ � ! for every ! ∈ "
# �!

! $%& $' (
= # �!                               

! )*&$ (
for every node ( ∈ + − {-, .}

# �!
! $%& $' -

Maximize ���
subject to�� ≤ �� ≥ �

1. �! = 4� if ! out of -� otherwise
2. �! ≤ �(!)
3. ∑ �!! $%& $' ( − ∑ �! ≤ � ! )*&$ (
4. ∑ �!! )*&$ ( − ∑ �! ≤ � ! $%& $' (
5. � ≥ �

Replace equality constraints by a 

pair of inequalities

This is for the � above. 

Nothing to do with 

capacities!

Max Flow
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Minimization or Maximization

Minimize ���
subject to�� ≥ �� ≥ �

Maximize (−�)��
subject to(−�)� ≤ (−�)� ≥ �
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Shortest Paths

Given: Directed graph 0 = (+, ")
vertices -, . in +

Find: (length of) shortest path from - to .
Claim: Length ℓ of the shortest path is 

the solution (minimum value) for this 

program.

Proof sketch: A shortest path yields a  

solution of cost ℓ.  Optimal solution 

must be a combination of flows on 

shortest paths also cost ℓ; otherwise 

there is a part of the � unit of flow that 

gets counted on more than ℓ edges.

Minimize

subject to

� ≥ �
# �!

! $%& $' -
= �              

# �!
! )*&$ .

= �           
# �!

! $%& $' (
= # �!

! )*&$ (
for every node ( ∈ + − {-, .}

# �!
! 

Flow out of - is �

Flow into . is �

Flow conservation

Sum of flow on

all edges
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Shortest Paths

Given: Directed graph 0 = (+, ")
vertices -, . in +

Find: shortest path from - to .
Claim: Length ℓ of the shortest path is 

solution (minimum value) for this 

program.

Proof sketch: A shortest path yields a  

solution of cost ℓ.  Optimal solution 

must be a combination of flows on 

shortest paths, also cost ℓ; otherwise 

parts of the � unit of flow gets counted 

on more than ℓ edges.
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Not optimal

1/6 routed 

through 3 edges 

instead of 2.

Value = 2.166666

Optimal

Value = 2



Vertex Cover

Given: Undirected graph 0 = (+, ")
Find: smallest set of vertices touching all 

edges of 0.

Doesn’t work: To define a set we need�( = � or �( = �

Minimize

subject to                           
    � ≤ �( ≤ � for each node ( ∈ +
�B + �( ≥ � for each edge B, ( ∈ "

# �(
( 

Natural Variables for LP: 

�( for each ( ∈ +

�/�

�/��/�

LP minimum =  �/�
Vertex Cover minimum =  �

This LP optimizes for a different problem: 

“fractional vertex cover”.�( indicates the fraction of vertex ( that 

is chosen in the cover.
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What makes Max Flow different?
For Vertex Cover we only got a fractional optimum but for Max Flow can get integers.

• Why?

• Ford-Fulkerson analysis tells us this for Max Flow.

• Is there a reason we can tell just from the LP view?

Recall: Optimum is at some vertex � satisfying ��� = �′ for some subset of exactly� constraints.

This means that � = �′ D��′.

Entries of the matrix inverse are quotients of determinants of sub-matrices of 

�′ so, for integer inputs, optimum is always rational.

Fact:  Every full rank submatrix of MaxFlow matrix � has determinant ±�
⇒ ⇒ ⇒ ⇒ all denominators are ±� ⇒ ⇒ ⇒ ⇒ integers. � is “totally unimodular”

Next:  How MaxFlow=MinCut is an example of a general “duality” property of LPs
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