CSE 421Introduction to Algorithms

1

Lecture 20: Linear Programming:A really very extremely big hammer

Midterm

Midterm grades will be released at the end of this class.

- •Breathe!
- These grades don't count for that much.
	- \bullet In past 421 I've had a student with a midterm grade in the mid-60's end with a 4.0 in the course.

Histogram

Given: a polytope

Find: the lowest point in the polytope

 $\mathbf{3}$

Given: ^a polytope

Find: the *lowest* point in the polytope

Linear Algebra primer

For $a, x \in \mathbb{R}^n$ we think of a and x as column vectors

 $a^{T}x = a_1x_1 + \cdots + a_nx_n$

The set of x satisfying $a^{\top}x = 0$ is hyperplane

Given: ^a polytope

Find: the *lowest* point in the polytope

Linear Algebra primer

For $a,x\in\mathbb{R}^n$ we think of a and x as column vectors

 $a^{\top}x=a$ $_1x_1 + \cdots + a$ $n^\mathcal{X} n$

Write
$$
\mathbf{m} \times \mathbf{n}
$$
 matrix \mathbf{A} , for $A\mathbf{x} = \begin{bmatrix} A_1x \\ A_2x \\ A_3x \\ \vdots \\ A_mx \end{bmatrix}$ where A_1, \dots, A_m are rows of \mathbf{A} .

Standard Form

Maximize $c^\top x$ subject to $Ax \leq b$ $x\geq 0$

Maximize $\overline{z}_1 + 2\overline{z}_3$ subject to $2z_1 - z_2 + 3z_3 \leq 1$ $-z_1 + z_2 - z_3 \leq 5$ Maximize $(x_{1,a} - x_{1,b}) + 2(x_{3,a} - x_{3,b})$ subject to $2(x_{1,a}-x_{1,b})-(x_{2,a}-x_{2,b})+3(x_{3,a}-x_{3,b})\leq 1$ $-(x_{1,a}-x_{1,b})+(x_{2,a}-x_{2,b})-(x_{3,a}-x_{3,b})\leq 5$ $x\geq 0$ replace each $\boldsymbol{z_i}$ by $x_{i,a}-x_{i,b}$ for $x_{i,a}$, $x_{i,b} \geq 0$

Max Flow

Given: A Flow Network $\boldsymbol{G} = (\boldsymbol{V}, \boldsymbol{E})$ with source s, sink t, and $c: E \to \mathbb{R}^{\geq 0}$

Maximize flow out of <mark>*s*</mark>

subject to

- respecting capacities
- flow conservation at internal nodes

LP Variables:

 x_e for each $e \in E$ representing flow on edge e

Maximizesubject to

$$
\sum_{e \text{ out of } s} x_e
$$

 $0 \leq x_e \leq c(e)$ for every $e \in E$

$$
\sum_{e \text{ out of } v} x_e = \sum_{e \text{ into } v} x_e
$$

for every node $v \in V - \{s, t\}$

Max Flow

Maximize

subject to

 $0 \leq x_e \leq c(e)$ for every $e \in E$

 $\sum x_e = \sum x_e$ e out of v for every node $v \in V - \{s, t\}$

> Replace equality constraints by a pair of inequalities

Maximize $c^{\top}x$ subject to $Ax \leq b$ $x \geq 0$ This is for the c above. Nothing to do with capacities! 1. $c_e = \begin{cases} 1 & \text{if } e \text{ out of } s \\ 0 & \text{otherwise} \end{cases}$ 2. $x_e \leq c(e)$ 3. $\sum_{e \text{ out of } v} x_e - \sum_{e \text{ into } v} x_e \leq 0$ 4. $\sum_{e \text{ into } p} x_e - \sum_{e \text{ out of } p} x_e \leq 0$ 5. $x \geq 0$

Minimization or Maximization

Minimize $\boldsymbol{c}^\top x$ subject to $Ax \geq b$ $x\geq 0$

Maximize $(-c)^{T}$ \mathbf{x} subject to $(-A)x \le (-b)$ $x\geq 0$

Shortest Paths

Given: Directed graph $G = (V, E)$ vertices \bm{s} , \bm{t} in \bm{V}

Find: (length of) shortest path from \bm{s} to \bm{t}

Claim: *Length* ^ℓ of the shortest path is the solution (minimum value) for this program.

Proof sketch: A shortest path yields a solution of cost ℓ . Optimal solution must be a combination of flows on shortest paths also cost ℓ ; otherwise there is a part of the $\bf 1$ unit of flow that gets counted on more than ℓ edges.

Shortest Paths

Given: Directed graph $G = (V, E)$ vertices \bm{s} , \bm{t} in \bm{V}

Find: shortest path from \bm{s} to \bm{t}

Claim: *Length* ^ℓ of the shortest path is solution (minimum value) for this program.

Proof sketch: A shortest path yields a solution of cost ℓ . Optimal solution must be a combination of flows on shortest paths, also cost ℓ ; otherwise parts of the $\bf 1$ unit of flow gets counted on more than ℓ edges.

Vertex Cover

Given: Undirected graph $G = (V, E)$

Find: smallest set of vertices touching all edges of \boldsymbol{G} .

Doesn't work: To define a set we need $x_v = \mathbf{0}$ or $x_v = \mathbf{1}$

Natural Variables for LP:

 $\bm{x}_{\bm{\mathcal{v}}}$ for each $\bm{v} \in \bm{V}$

Minimizesubject to $0 \leq x_v \leq 1$ for each node $v \in V$ $\sum_{v} x_v$ \boldsymbol{v}

 $x_{u} + x_{v} \ge 1$ for each edge $\{u, v\} \in E$

This LP optimizes for a different problem: "**fractional vertex cover**". x_v indicates the fraction of vertex v that is chosen in the cover.

What makes Max Flow different?

For Vertex Cover we only got a fractional optimum but for Max Flow can get integers.

- Why?
	- Ford-Fulkerson analysis tells us this for Max Flow.
	- Is there a reason we can tell just from the LP view?
- **Recall:** Optimum is at some vertex \boldsymbol{x} satisfying $\boldsymbol{A}'\boldsymbol{x} = \boldsymbol{b}'$ for some subset of exactly n constraints.

This means that $\boldsymbol{x} = (A')^{-1} \boldsymbol{b}'$.

Entries of the matrix inverse are quotients of determinants of sub-matrices of \boldsymbol{A}' so, for integer inputs, optimum is always rational.

Fact: Every full rank submatrix of MaxFlow matrix \boldsymbol{A} has determinant $\pm \boldsymbol{1}$

 \boldsymbol{A} is "totally unimodular" \Rightarrow all denominators are $\pm 1 \Rightarrow$ integers.

Next: How **MaxFlow**=**MinCut** is an example of a general "duality" property of LPs