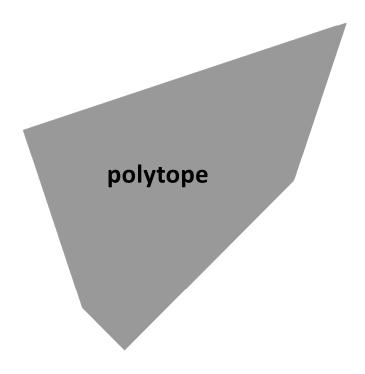
CSE 421 Introduction to Algorithms

Lecture 20: Linear Programming: A really very extremely big hammer

Will discuss midtern 1st

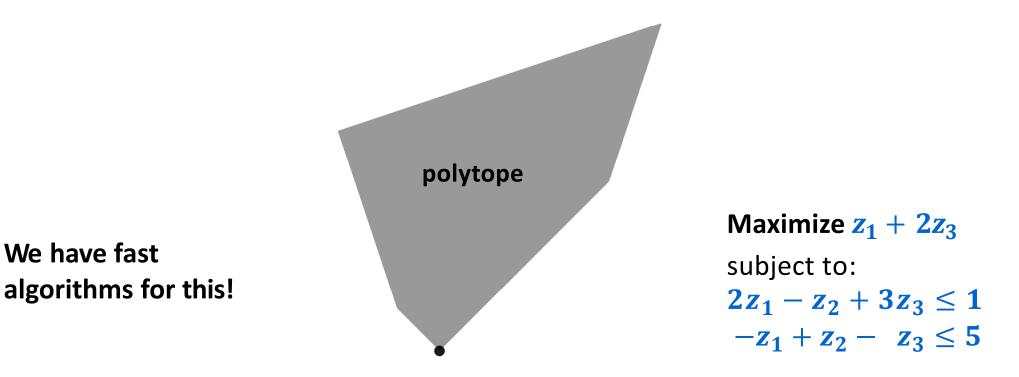
Given: a polytope

Find: the *lowest* point in the polytope



Given: a polytope

Find: the *lowest* point in the polytope

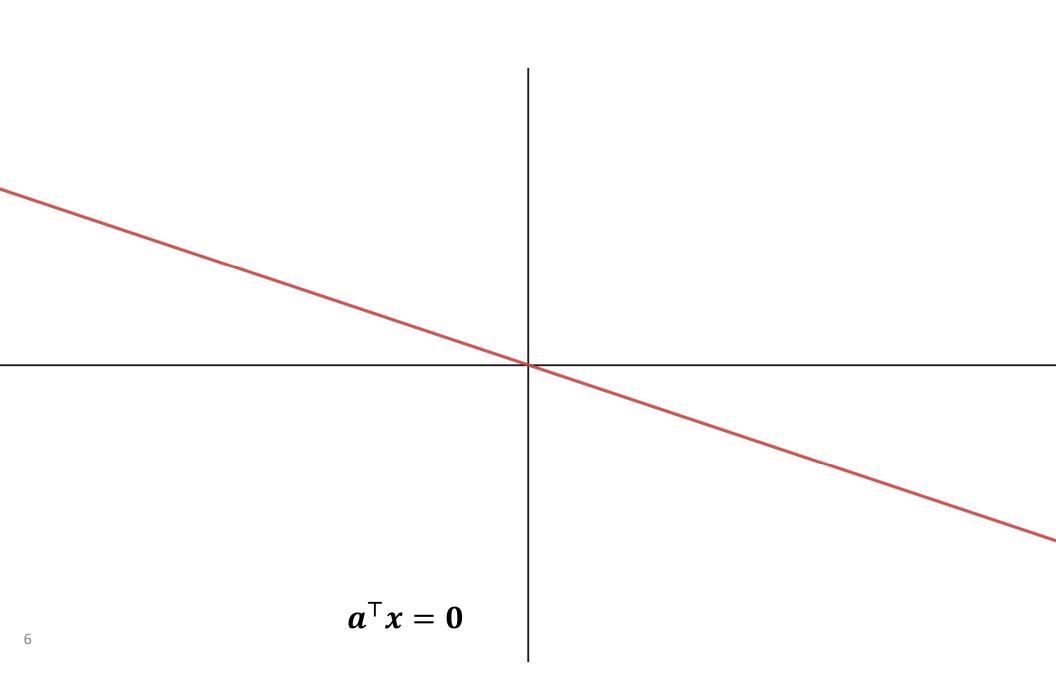


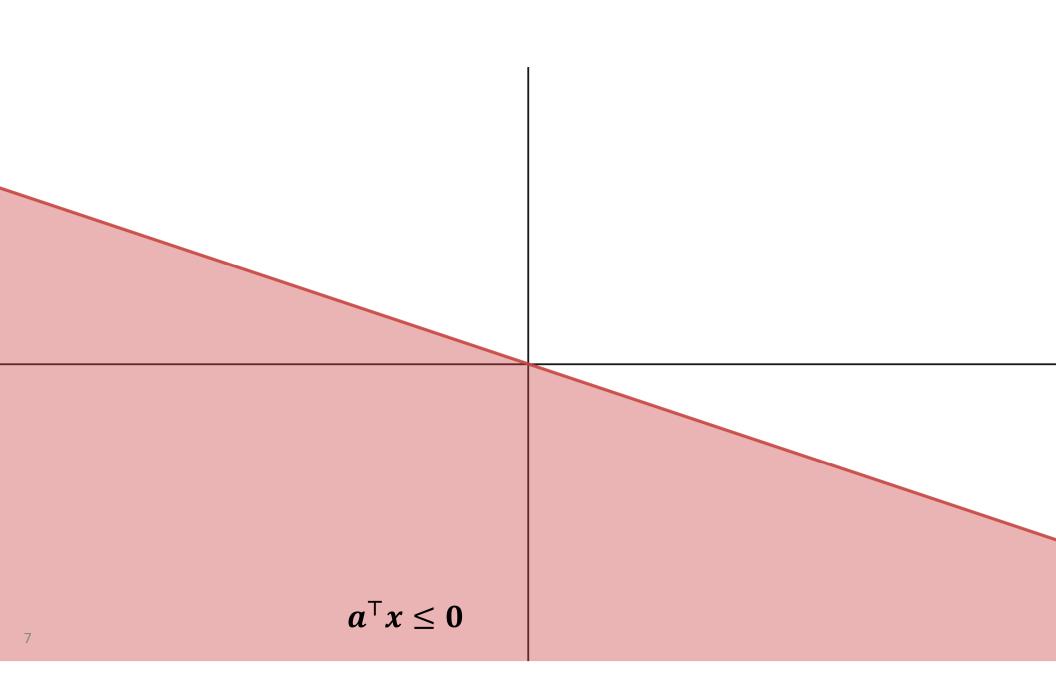
Linear Algebra primer

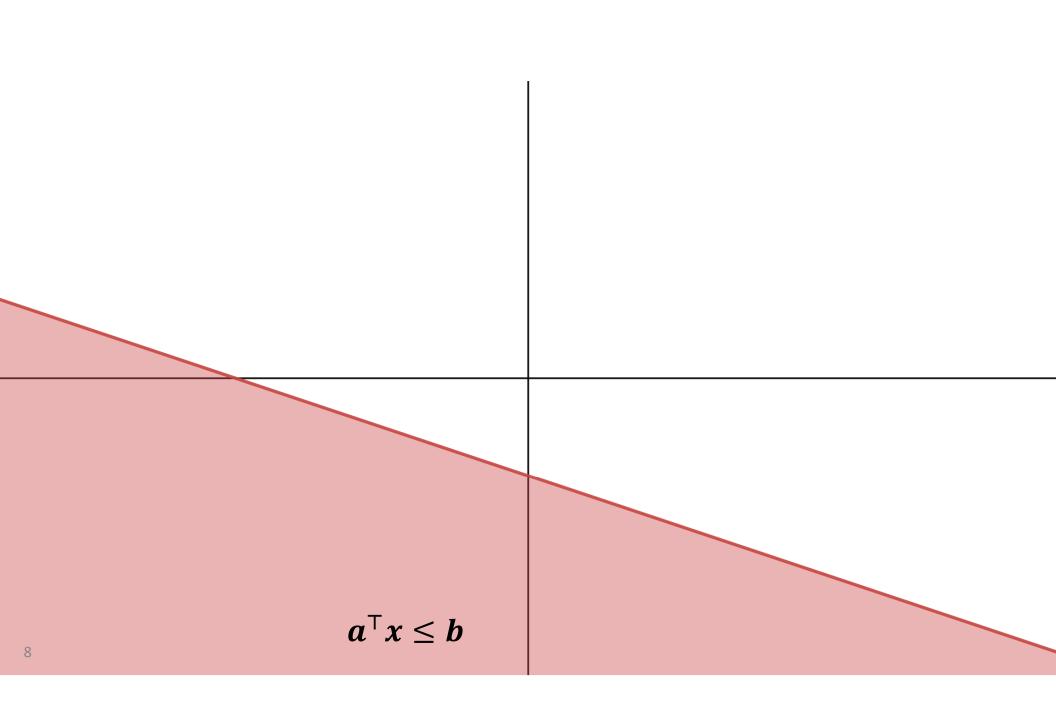
For $a, x \in \mathbb{R}^n$ we think of a and x as column vectors

 $a^{\top}x = a_1x_1 + \dots + a_nx_n$

The set of x satisfying $a^{\top}x = 0$ is hyperplane

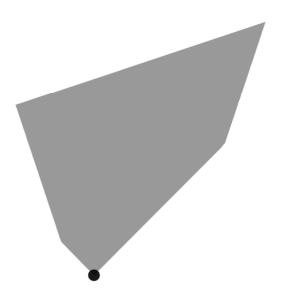


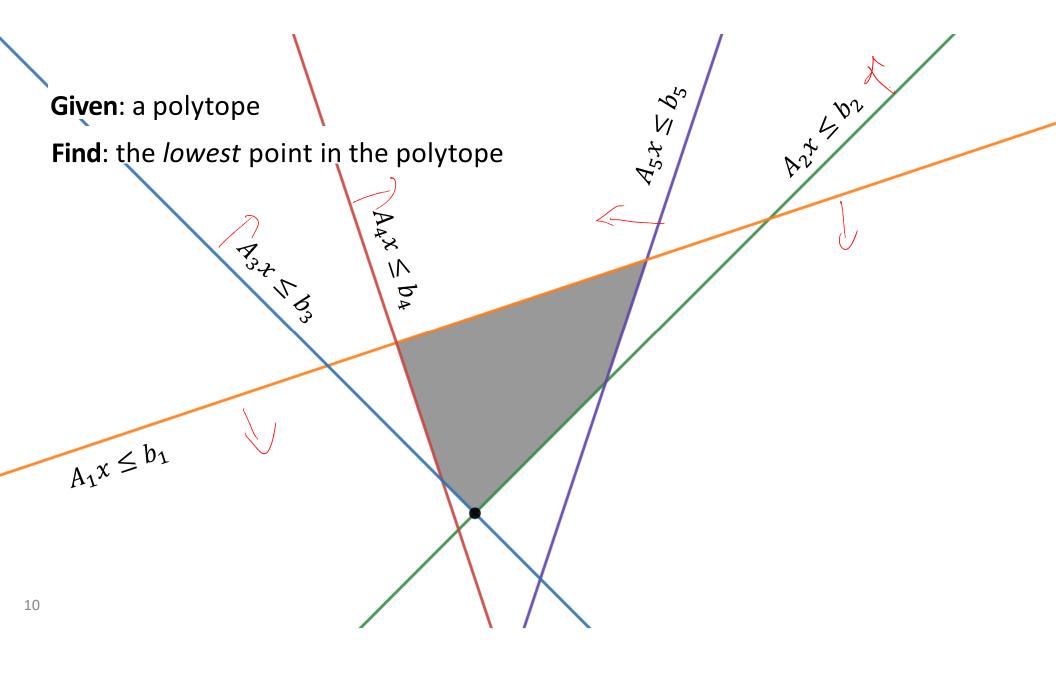




Given: a polytope

Find: the *lowest* point in the polytope



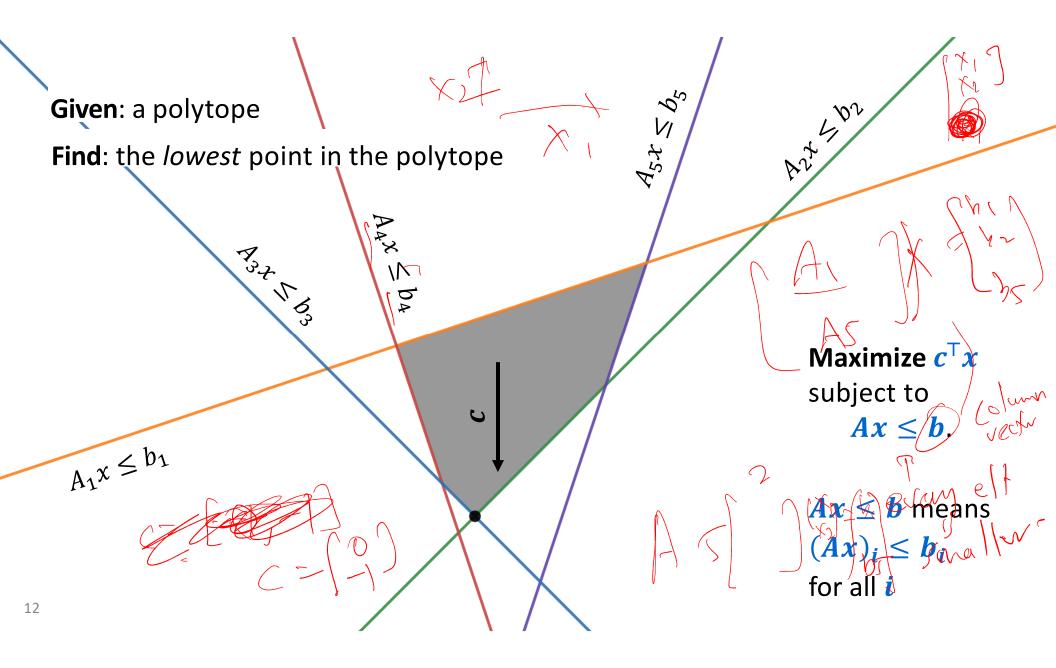


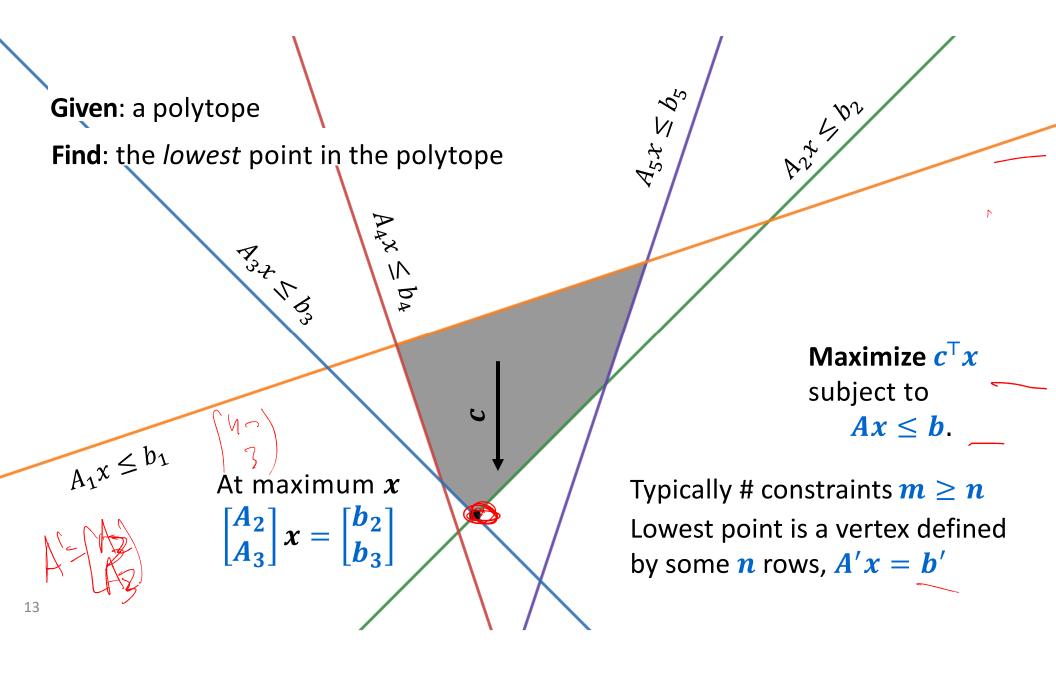
Linear Algebra primer

For $a, x \in \mathbb{R}^n$ we think of a and x as column vectors

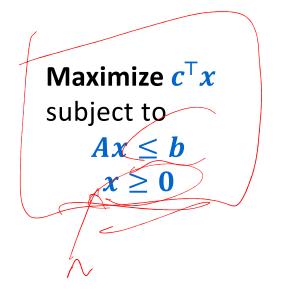
 $a^{\top}x = a_1x_1 + \dots + a_nx_n$

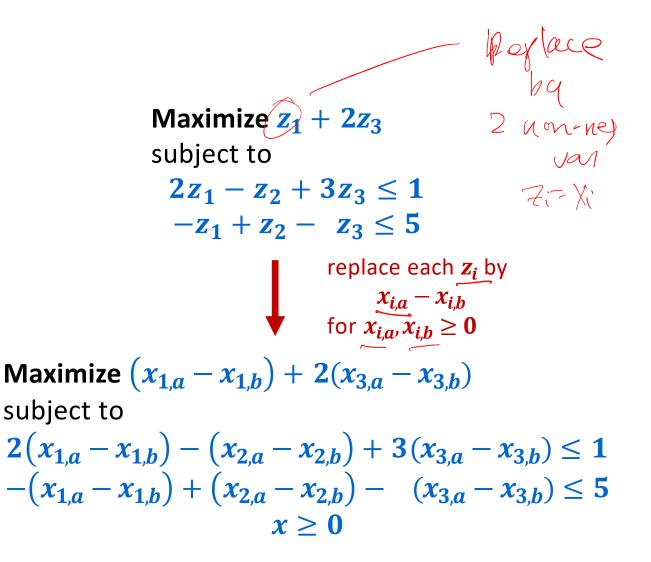
Write
$$m \times n$$
 matrix A , for $Ax = \begin{bmatrix} A_1 x \\ A_2 x \\ A_3 x \\ \dots \\ A_m x \end{bmatrix}$ where A_1, \dots, A_n are rows of A .





Standard Form





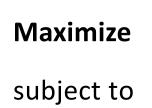
Max Flow

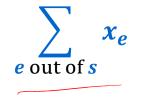
Given: A Flow Network G = (V, E) with source *s*, sink *t*, and $c: E \to \mathbb{R}^{\geq 0}$

subject to

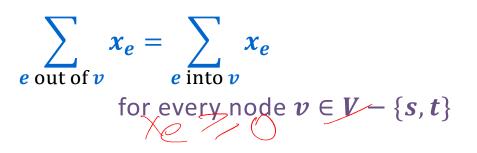
LP Variables:

 x_e for each $e \in E$ representing flow on edge e





- respecting capacities
- flow conservation at internal nodes



Max Flow

Maximize

subject to

 $0 \le x_e \le c(e)$ for every $e \in E$

 $\sum_{e \text{ out of } v} x_e = \sum_{e \text{ into } v} x_e$

for every node $v \in V - \{s, t\}$

Replace equality constraints by a pair of inequalities

