
CSE 421

Introduction to Algorithms

Lecture 19:  More Flow Applications
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Last time:  Circulation with Demands

• Single commodity, directed graph � = (�, �)
• Each node � has an associated demand 	(�)

• Needs to receive an amount of the commodity: demand 	 � >  �
• Supplies some amount of the commodity: “demand” 	 � < � (amount = |	(�)|)

• Each edge � has a capacity � � ≥  �.

• Nothing lost:  ∑ 	 � = �� .

Defn: A circulation for (�, �, 	) is a flow function �: � → ℝ meeting all the 

capacities, � ≤ � � ≤ �(�), and demands: 

∑ � � − ∑ � �� ��� �� � = 	(�)� ���� � .

Circulation with Demands: Given (�, �, 	), does it have a circulation? If so, find it.
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Last time: Circulation with Demands

Defn: Total supply � = ∑ 	 ��: 	 �  � = − ∑ 	(�)�: 	 �  � .

Necessary condition: ∑ 	 � = ��: 	 � !� (no supply is lost)
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Circulation with Demands using Network Flow

• Add new source " and sink #.

• Add edge (", �) for all supply nodes � with capacity |	(�)|.
• Add edge (�, #) for all demand nodes � with capacity 	(�). 

• Compute MaxFlow.
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Circulation with Demands using Network Flow

• MaxFlow ≤ � based on cuts out of " or into #.

• If MaxFlow = � then all supply/demands satisfied.

• If.

• Compute MaxFlow. Circulation iff value = �
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Circulation with Demands using Network Flow

Circulation = flow on original edges

Circulations only need integer flows
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Circulation with Demands using Network Flow

When does a circulation not exist?   MaxFlow < � iff MinCut < �.

• If.
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Circulation with Demands using Network Flow

When does a circulation not exist?   MaxFlow < � iff MinCut < �.

Equivalent to excess supply on “source” side of cut smaller than cut capacity. 

• If.
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Some general ideas for using MaxFlow/MinCut

• If no source/sink, add them with appropriate capacity depending on application

• Sometimes can have edges with no capacity limits

• Infinite capacity (or, equivalently, very large integer capacity)

• Convert undirected graphs to directed ones

• Can remove unnecessary flow cycles in answers

• Another idea: 

• To use them for vertex capacities ��
• Make two copies of each vertex � named �$%, �&'#
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Kinds of applications

• So far we mostly have focused on flow-like problems 

• Applications that involve cut problems are also important...
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Image Segmentation
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Image Segmentation

Image segmentation:

Given: an Image

• a grid of pixels with RGB values 

Divide image into coherent regions.

Example: Three people standing in front of complex background scene. 

Identify each person as a coherent object.
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Image Segmentation

Foreground / background segmentation:

Given: A grid � of pixels, � set of pairs of neighboring pixels.

• ($  � � is likelihood pixel $ is foreground.

• )$  � � is likelihood pixel $ is background. 

• For $, * ∈ �, ,$*  � � is separation penalty for labeling        

one of $ and * as foreground, and the other as background.

Label each pixel in image as belonging to foreground (in -) or background (in .)

Goals: Maximize

Accuracy: if ($ > )$ in isolation, prefer to label $ in foreground.

Smoothness: if many neighbors of $ are labeled foreground, we should be 

inclined not to label $ as background.

so… Find: partition (-, .) that maximizes ∑ ($ + ∑ )$ − ∑ ,$*$,* ∈�, - ∩ $,* 12$∈.$∈-
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Image Segmentation

Issues with formulating as min cut problem:

• Maximization.

• No source or sink.

• Undirected graph.

But maximizing  

is equivalent to maximizing  

or, alternatively, minimizing

3 ($ + 3 )$ − 3 ,$*
$,* ∈�

- ∩ $,* 12,$∈.$∈-

3 )$ + 3 ($ + 3 ,$*
$,* ∈�

- ∩ $,* 12,$∈.$∈-

3 ($ − 3 ($ + 3 )$
$∈�

− 3 )$
$∈($∈.

− 3 ,$*
$,* ∈�

- ∩ $,* 12,$∈�

The sum in red is a constant
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Image Segmentation

Formulate as min cut problem.

• Use two anti-parallel edges instead of undirected edge, capacity ,$*.

• �′ =  (�′, �′).

i j,$*
($

)$

(*
)*
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Image Segmentation

Formulate as min cut problem.

• Add source " to correspond to foreground, edges (", $) with capacity ($;
add sink # to correspond to background, edges (*, #) with capacity )*.

• �′ =  (�′, �′).

s ti j,$*

($
(*

)$

)*
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Formulate as min cut problem.

• Add source " to correspond to foreground, edges (", $) with capacity ($;
add sink # to correspond to background, edges (*, #) with capacity )*.

• Use two anti-parallel edges instead of undirected edge, capacity ,$*.

• �′ =  (�′, �′).

Image Segmentation

s ti j

($
(*

)*,$*
)$

,$*
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Image Segmentation

Formulate as min cut problem.

• Add source " to correspond to foreground, edges (", $) with capacity ($;
add sink # to correspond to background, edges (*, #) with capacity )*.

• Use two anti-parallel edges instead of undirected edge, capacity ,$*.

• �′ =  (�′, �′).

s ti j

($
(*

)*,$*
)$

,$*

-

Edges cut: from " leaving -
from - to #
one direction for ,$*

Min cut is exactly the quantity 

we want to minimize!

18

Minimize ∑ )$ + ∑ ($ + ∑ ,$*$,* ∈�
- ∩ $,* 12,$∈.$∈-



Project Selection
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Project Selection

Project Selection:

Input: Set 5 of possible projects; each project � ∈ 5 has an associated revenue 

,� which can be negative.

• Some projects generate money so ,� > �; e.g., create interactive e-commerce interface, 

redesign web page

• others cost money so ,� < � ; e.g., upgrade computers, get site license

Set � of “prerequisites”:  If �, 6 ∈ �, can't do project � and unless also do 

project 6.   

Defn: A subset of projects  is feasible iff the prerequisite of every project in - also      

belongs to -.

Find: A feasible subset of projects - ⊆ 5 that maximizes total revenue.

Note: “prerequisites” may have nothing to do with time.  � may include cycles.
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Project Selection:  Prerequisite Graph

Prerequisite graph:

• Include an edge from � to 6 if can't do � without also doing 6.

• {�, 6, 9} is feasible subset of projects.

• {�, 9} is infeasible subset of projects.
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Min cut formulation:

• Assign capacity ∞ to all prerequisite edges.

• Add edge (", �) with capacity ,� if  ,� > �.

• Add edge (�, #) with capacity |,�| = −,� if  ,� < �.

• For notational convenience, define ," = ,# = �.

Project Selection:  Min Cut Formulation
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Claim: (-, .) is min cut iff - − {"} is optimal set of projects.

• Infinite capacity edges ensure - − {"} is feasible.  (No original edges leave -.)

• Max revenue because: 

Project Selection:  Min Cut Formulation
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Open-pit mining.  (studied since early 1960s)

• Blocks of earth are extracted from surface to retrieve ore.

• Each block � has net value ,� = value of ore − processing cost.

• Can't remove block � without removing 6 and 9.

Also known as Strip Mining problem
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Baseball Elimination?

"See that thing in the paper last week about Einstein? . . . 

Some reporter asked him to figure out the mathematics of the 

pennant race.  You know, one team wins so many of their 

remaining games, the other teams win this number or that 

number.  What are the myriad possibilities? Who's got the 

edge?"

"The hell does he know?"

"Apparently not much.  He picked the Dodgers

to eliminate the Giants last Friday."

- Don DeLillo,  Underworld
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Baseball Elimination

• Though you probably don’t care at all about baseball or sports in general, the way 

that the solution works is interesting.

• This particular problem is a bit old style since baseball scheduling doesn’t work 

this way any more…

• Near the end of a season

• Sportswriters use simple notions to tell which teams can be eliminated from 

getting a top place finish:

• “magic number”, “elimination number”, etc. 

• These are not accurate

• We can do better with network flow
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Baseball Elimination: Scenario

• Which teams have a chance of finishing the season with most wins? 

• Oakland eliminated since it can finish with at most 80 wins, but Texas already has 83.

• If 6$ + =$ < 6*  team $ eliminated.

• Only reason sports broadcasters appear to be aware of.

• Sufficient, but not necessary!

Team

$
Against = =$*Wins

6$
To play

=$
Losses

>$ Tex Hou Sea Oak

Oakland 77 382 1 2 0 -

Seattle 78 678 6 0 - 0

Houston 80 379 1 - 0 2

Texas 83 871 - 1 6 1
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Baseball Elimination: Scenario

• Which teams have a chance of finishing the season with most wins? 

• Houston can win 83 games, but is still eliminated . . .

• If Texas doesn’t get to 84 wins then Seattle will get 6 more wins and finish with 84 wins.

• The answer depends on more than current wins and # of remaining games

• It also depends on all the games that are being played.

Team

$
Against = =$*Wins

6$
To play

=$
Losses

>$ Tex Hou Sea Oak

Oakland 77 382 1 2 0 -

Seattle 78 678 6 0 - 0

Houston 80 379 1 - 0 2

Texas 83 871 - 1 6 1
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Baseball Elimination

Baseball elimination problem:

• Set of teams ?.

• Distinguished team ; ∈ ?.

• Team 9 has won 69 games already.

• Teams 9 and < play each other =9< additional times.

• Is there any outcome of the remaining games in which team ; finishes 

with the most (or tied for the most) wins?
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Can team 3 finish with most wins?

• Assume team 3 wins all remaining games   6@ + =@ wins.

• Divide up remaining games so that all teams have ≤ 6@ +=@ wins.

Baseball Elimination:  Max Flow Formulation
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Theorem: Team 3 is not eliminated iff max flow equals capacity leaving source.

• Integrality theorem implies that each remaining 9-< game counts as a win for 9 or <.

• Capacity on (9, #) edge ensures no team wins too many games.

Baseball Elimination:  Max Flow Formulation
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Baseball Elimination:  Explanation for Sports Writers

Which teams have a chance of finishing the season with most wins? 

• Detroit could finish season with 49 + 27 = 76 wins.

Certificate of elimination.  E = {NY, Bal, Bos, Tor}

• Have already won 6 E =75+71+69+63=278 games.

• Must win at least =(E)  = 3+8+7+2+7=27 more among themselves.

• Average team in E wins at least 305/4 > 76 games.

Team

$
Against = =$*Wins

6$
To play

=$
Losses

>$ NY Bal Bos Tor

Toronto 63 2772 7 7 0 -

Boston 69 2766 8 2 - 0

Baltimore 71 2863 3 - 2 7

NY 75 2859 - 3 8 7

Detroit 49 2786 3 4 0 0

Det

-

0

4

3

-

AL East:  August 30, 1996
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Baseball Elimination:  Explanation for Sports Writers

Defn: Given a set E of teams define

• 6 E = ∑ 699∈E total number of wins for teams in E
• = E = ∑ =9<9,< ⊆E total remaining games between teams in E

We say that E eliminates team ; iff
6 E F=(E)

|E| > 6; + =; since an average  

team in E will win more than 6; + =; games.

Theorem [Hoffman-Rivlin 1967]: Team ; is eliminated 

⇔⇔⇔⇔ there is some set E of teams that eliminates ; (as defined above).

Proof:   ⇐⇐⇐⇐ Shown above

⇒⇒⇒⇒ Choose E to be the set of teams on the source side of the min cut...
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Baseball Elimination:  Explanation for Sports Writers

Proof of ⇒: Assume that ; is eliminated

Let E = team nodes in - for minimum cut (-, .) with capacity < ∑ =9<9< .

Claim: 9−< ∈ - ⇔⇔⇔⇔ both 9 ∈ - and < ∈ - (equivalently 9 ∈ E and < ∈ E).

• infinite capacity edges ensure that if 9−< ∈ - then 9 ∈ - and < ∈ -
• if 9 ∈ - and < ∈ - but 9−< ∉ - , then adding 9−< to - decreases cut capacity 

by =9<.

s

y

x tx-y ∞

∞

team 9 can still win this 

many more games
games left

=AB = C 6@ + =@ − 69

34



Baseball Elimination:  Explanation for Sports Writers

Proof of ⇒: Assume that ; is eliminated.

Let E = team nodes in - for minimum cut (-, .) with capacity < ∑ =9<9< .

Claim: 9−< ∈ - ⇔⇔⇔⇔ both 9 ∈ - and < ∈ - (equivalently 9 ∈ E and < ∈ E).

Then �(-, .)  = ∑ =9<9< − = E + E 6; + =; − 6(E)

s

y
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∞

team 9 can still win this 

many more games
games left

=AB = C 6@ + =@ − 69

35



Baseball Elimination:  Explanation for Sports Writers

Proof of ⇒: Assume that ; is eliminated.

Let E = team nodes in - for minimum cut (-, .) with capacity < ∑ =9<9< .

Claim: 9−< ∈ - ⇔⇔⇔⇔ both 9 ∈ - and < ∈ - (equivalently 9 ∈ E and < ∈ E).

Then �(-, .)  = ∑ =9<9< − = E + E 6; + =; − 6(E)

Now � -, . < ∑ =9<9< implies that = E − E 6; + =; + 6 E > �.

Rearranging, we have = E + 6 E > E 6; + =; so 
6 E F=(E)

|E| > 6; + =; which 

means that E eliminates ;.   
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