
CSE 421

Introduction to Algorithms

Lecture 18:  Applications/Extensions of 

Network Flow
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Announcements

The next week:

• Today: HW6 out, due Wed Nov 13.

• Thursday:  Section covering Network Flow 

• Friday: More Network Flow Applications

• Monday:  Veteran’s Day Holiday
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Recall: Bipartite Matching using Network Flow

Add new source s pointing to left set, new sink t pointed to by right set. 

Direct all edges from left to right with capacity 1.  Compute MaxFlow.
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More Bipartite Matching using Network Flow

It also works if we have no capacity limit on the edges of the input graph � since we 

can never get more than 1 unit of flow to these edges and flows are integral w.l.o.g.  
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Bipartite Matching using Network Flow

Add new source s pointing to left set, new sink t pointed to by right set. 

Direct edges left to right; new edges have capacity 1.  Compute MaxFlow.

C

1

5

2

A

E

3

B

D 4

s

1

t

1/1

1/1

1

1

1/1

1 1/1

1/1

1/1

1/1

1/1

1

1

Time �(��)
Correctness:

Integer flow just 

gives a subset of 

edges.

Source and sink 

edges imply it is 

a matching
Optimality



Vertices of � involved in Min Cut (one per edge crossing the cut) is a 

minimum size set of vertices of � that blocks all flow from s to t.
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Min Cut in Bipartite Flow Graph

C

1

5

2

A

E

3

B

D 4

s

1

t

1/1

1/1

1

1

1/1

1 1/1

1/1

1/1

1/1

1/1

1

1



The Minimum Vertex Cover Problem

Defn:  A set of vertices � is a vertex cover of an undirected graph 

� = (
, �) iff every edge is touched by some vertex in �.

The set 
 is a vertex cover of �.

Problem: Given �, find as small a vertex cover of � as possible. 

When � is bipartite the Min Cut in our flow graph will let us find one.
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Vertex Covers Block Flows from s to t.

� is a vertex cover of � iff all flow from s to t must go through �.
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Minimum Vertex Cover for Bipartite Graphs

So… vertices of � involved in Min Cut (one per edge crossing the cut) form 

a minimum vertex cover of �.
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Defn: A matching  ⊆ � is perfect iff every vertex is in some edge.

Q: When does a bipartite graph have a perfect matching?

• Clearly we must have |�| = |�|.

• What other conditions are necessary?

• What conditions are sufficient?

Perfect Matching
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Notation: For � be a set of vertices let �(�) be the set of vertices 

adjacent to nodes in � (the “neighborhood of �”).

Observation: If a bipartite graph � = (� ∪ �, �) has a perfect 

matching, then � � ≥ |�| for all subsets � ⊆ �.

Proof: Each node in � has to be matched to a different node in �(�).

Hall’s Theorem say this is the only condition we need:  If there is no 

perfect matching then there is some subset � ⊆ � with � � < |�|.

Perfect Matching
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Hall’s Theorem Proof
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No perfect matching 

⇒ MaxFlow value < |�|

⇒ MinCut value <  |�|.

Let (�, �) be cut with � �, � < �

Let � = � ∩ � and � = � ∩ �.

Must have � � ⊆ �

since �(�, �) is finite.

(no edges of � can cross cut)

Then |�| >  �(�, �)  =  |�| − |�| + |�|

so � � ≤ |�| < |�|.



Matching in General Graphs?
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Bipartite matching running times?

• Generic augmenting path:  �(��).

• Shortest augmenting path:  �(��"/$).

• Until very recently these were the best...

• Recent algorithms for maxflow give �(�"%& " ) time with high probability.

General matching?

• Augmenting paths don’t work

• [Edmonds 1965] Added notion of  “blossoms” for first polytime algorithm  �(�')

• One of the most famous/important papers in the field: “Paths, Trees, and Flowers”

• [Micali-Vazirani 1980, 2020] Tricky data structures and analysis.  �(��"/$)

Matching:  Best Running Times

14



Disjoint Paths
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Defn: Two paths in a graph are edge-disjoint iff they have no edge in common.

Disjoint path problem: Given: a directed graph � = (
, �) and two vertices ( and ). 

Find: the maximum # of edge-disjoint (-) simple paths in �.

Application: Routing in communication networks.

Edge-Disjoint Paths
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Defn: Two paths in a graph are edge-disjoint iff they have no edge in common.

Disjoint path problem: Given: a directed graph � = (
, �) and two vertices ( and ). 

Find: the maximum # of edge-disjoint simple (-) paths in �.

Application: Routing in communication networks.

Edge-Disjoint Paths
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Edge-Disjoint Paths

MaxFlow for edge-disjoint paths

• Delete edges into ( or out of )

• Assign capacity " to every edge

• Compute MaxFlow

Theorem: MaxFlow = # edge-disjoint paths

18

s

a

b

c

d

e

f

t

1

1

1

1

1

1

1

1

1 1

1
1

1

1



MaxFlow for edge-disjoint paths

• Delete edges into ( or out of )

• Assign capacity " to every edge

• Compute MaxFlow

Edge-Disjoint Paths
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MaxFlow for edge-disjoint paths

• Delete edges into ( or out of )

• Assign capacity " to every edge

• Compute MaxFlow

Edge-Disjoint Paths
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Theorem: MaxFlow = # edge-disjoint paths

Proof:  ≥: Assign flow 1 to each edge in 

the set of paths

≤:  Consider any integral maximum 

flow * on �

By integrality, each edge with flow 

has flow 1.

Remove any directed cycles in *

with flow; still have a maxflow.

Greedily choose (-) paths, one by one,     

removing candidate flow edge after using it.

Paths are simple since no directed cycles.



Network Connectivity

Defn: A set of edges + ⊆ � in � = (
, �) disconnects ) from ( iff every (-) path uses at 

least one edge in +.  (Equivalently, removing all edges in + makes ) unreachable.)

Network Connectivity: Given: a directed graph � = (
, �) and two nodes ( and ),  

Find: minimum # of edges whose removal disconnects ) from (.
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Edge-Disjoint Paths and Network Connectivity

Menger’s Theorem: Maximum # of edge-disjoint (-) paths 

= Minimum # of edges whose removal disconnects ) from (.

Proof:  Choose maximum set of MaxFlow edge-disjoint (-) paths.
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= MaxFlow = MinCut edges.

Edges out of minimum cut is a 

disconnecting set of size MinCut



Both # of edge-disjoint paths and disconnecting sets make sense for an undirected graph 

� = 
, � , too.   Same ideas work:

• Replace each undirected edge {-, .} with directed edges (-, .) and ., - to get 

directed graph �’ = (
, �’) and run directed graph algorithm on �’.

• After removing directed flow cycles, flow can use only one of (-, .) or (., -).

• Include edge {-, .} on a path if either one is used in directed version.

The same idea works in general for Network Flow on undirected graphs:

• Remove flow cycles:  

Edge-Disjoint Paths in Undirected Graphs
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Circulation with Demands
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Circulation with Demands

• Single commodity, directed graph � = (
, �)

• Each node . has an associated demand 1(.)

• Needs to receive an amount of the commodity: demand 1 . >  2

• Supplies some amount of the commodity: “demand” 1 . < 2 (amount = |1(.)|)

• Each edge 3 has a capacity � 3 ≥  2.

• Nothing lost:  ∑ 1 . = 2. .

Defn: A circulation for (�, �, 1) is a flow function *: � → ℝ meeting all the 

capacities, 2 ≤ * 3 ≤ �(3), and demands: 

∑ * 3 − ∑ * 33 89: 8; . = 1(.)3 <=:8 . .

Circulation with Demands: Given (�, �, 1), does it have a circulation? If so, find it.
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Circulation with Demands

Defn: Total supply > = ∑ 1 ..: 1 . ?2 = − ∑ 1(.).: 1 . ?2 .

Necessary condition: ∑ 1 . = >.: 1 . @2 (no supply is lost)
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Circulation with Demands using Network Flow

• Add new source ( and sink ).

• Add edge ((, .) for all supply nodes . with capacity |1(.)|.

• Add edge (., )) for all demand nodes . with capacity 1(.). 

• Compute MaxFlow.
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Circulation with Demands using Network Flow

• MaxFlow ≤ > based on cuts out of ( or into ).

• If MaxFlow = > then all supply/demands satisfied.

• If.

• Compute MaxFlow. Circulation iff value = >
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Circulation with Demands using Network Flow

Circulation = flow on original edges

Circulations only need integer flows
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Circulation with Demands using Network Flow

When does a circulation not exist?   MaxFlow < > iff MinCut < >.

• If.
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Circulation with Demands using Network Flow

When does a circulation not exist?   MaxFlow < > iff MinCut < >.

Equivalent to excess supply on “source” side of cut smaller than cut capacity. 

• If.
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Some general ideas for using MaxFlow/MinCut

• If no source/sink, add them with appropriate capacity depending on application

• Sometimes can have edges with no capacity limits

• Infinite capacity (or, equivalently, very large integer capacity)

• Convert undirected graphs to directed ones

• Can remove unnecessary flow cycles in answers

• Another idea: 

• To use them for vertex capacities �.

• Make two copies of each vertex . named .A�, .&-)
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