
CSE 421

Introduction to Algorithms

Lecture 18: Applications/Extensions of

Network Flow

1

Announcements

The next week:

• Today: HW6 out, due Wed Nov 13.

• Thursday: Section covering Network Flow

• Friday: More Network Flow Applications

• Monday: Veteran’s Day Holiday

2

3

Recall: Bipartite Matching using Network Flow

Add new source s pointing to left set, new sink t pointed to by right set.

Direct all edges from left to right with capacity 1. Compute MaxFlow.

C

1

5

2

A

E

3

B

D 4

1

1

1
1

1
1

1
1

1

s t

1

1

1

1

1

1

1

1

1

1

4

More Bipartite Matching using Network Flow

It also works if we have no capacity limit on the edges of the input graph � since we

can never get more than 1 unit of flow to these edges and flows are integral w.l.o.g.

C

1

5

2

A

E

3

B

D 4

∞

∞

∞ ∞

∞
∞

∞
∞

∞

s t

1

1

1

1

1

1

1

1

1

1

5

Bipartite Matching using Network Flow

Add new source s pointing to left set, new sink t pointed to by right set.

Direct edges left to right; new edges have capacity 1. Compute MaxFlow.

C

1

5

2

A

E

3

B

D 4

s

1

t

1/1

1/1

1

1

1/1

1 1/1

1/1

1/1

1/1

1/1

1

1

Time �(��)
Correctness:

Integer flow just

gives a subset of

edges.

Source and sink

edges imply it is

a matching
Optimality

Vertices of � involved in Min Cut (one per edge crossing the cut) is a

minimum size set of vertices of � that blocks all flow from s to t.

6

Min Cut in Bipartite Flow Graph

C

1

5

2

A

E

3

B

D 4

s

1

t

1/1

1/1

1

1

1/1

1 1/1

1/1

1/1

1/1

1/1

1

1

The Minimum Vertex Cover Problem

Defn: A set of vertices � is a vertex cover of an undirected graph

� = (
, �) iff every edge is touched by some vertex in �.

The set
 is a vertex cover of �.

Problem: Given �, find as small a vertex cover of � as possible.

When � is bipartite the Min Cut in our flow graph will let us find one.

7

8

Vertex Covers Block Flows from s to t.

� is a vertex cover of � iff all flow from s to t must go through �.

C

1

5

2

A

E

3

B

D 4

s t

9

Minimum Vertex Cover for Bipartite Graphs

So… vertices of � involved in Min Cut (one per edge crossing the cut) form

a minimum vertex cover of �.

C

1

5

2

A

E

3

B

D 4

s t

10

Defn: A matching ⊆ � is perfect iff every vertex is in some edge.

Q: When does a bipartite graph have a perfect matching?

• Clearly we must have |�| = |�|.

• What other conditions are necessary?

• What conditions are sufficient?

Perfect Matching

10

11

Notation: For � be a set of vertices let �(�) be the set of vertices

adjacent to nodes in � (the “neighborhood of �”).

Observation: If a bipartite graph � = (� ∪ �, �) has a perfect

matching, then � � ≥ |�| for all subsets � ⊆ �.

Proof: Each node in � has to be matched to a different node in �(�).

Hall’s Theorem say this is the only condition we need: If there is no

perfect matching then there is some subset � ⊆ � with � � < |�|.

Perfect Matching

11

Hall’s Theorem Proof

12

�

C

1

5

2

A

E

3

B

D 4

s

1

t

1/1

1/1

1

1

1/1

1 1/1

1/1

1/1

1/1

1/1

1

1

�
No perfect matching

⇒ MaxFlow value < |�|

⇒ MinCut value < |�|.

Let (�, �) be cut with � �, � < �

Let � = � ∩ � and � = � ∩ �.

Must have � � ⊆ �

since �(�, �) is finite.

(no edges of � can cross cut)

Then |�| > �(�, �) = |�| − |�| + |�|

so � � ≤ |�| < |�|.

Matching in General Graphs?

13

14

Bipartite matching running times?

• Generic augmenting path: �(��).

• Shortest augmenting path: �(��"/$).

• Until very recently these were the best...

• Recent algorithms for maxflow give �(�"%& ") time with high probability.

General matching?

• Augmenting paths don’t work

• [Edmonds 1965] Added notion of “blossoms” for first polytime algorithm �(�')

• One of the most famous/important papers in the field: “Paths, Trees, and Flowers”

• [Micali-Vazirani 1980, 2020] Tricky data structures and analysis. �(��"/$)

Matching: Best Running Times

14

Disjoint Paths

15

16

Defn: Two paths in a graph are edge-disjoint iff they have no edge in common.

Disjoint path problem: Given: a directed graph � = (
, �) and two vertices (and).

Find: the maximum # of edge-disjoint (-) simple paths in �.

Application: Routing in communication networks.

Edge-Disjoint Paths

s

a

b

c

d

e

f

t

16

17

Defn: Two paths in a graph are edge-disjoint iff they have no edge in common.

Disjoint path problem: Given: a directed graph � = (
, �) and two vertices (and).

Find: the maximum # of edge-disjoint simple (-) paths in �.

Application: Routing in communication networks.

Edge-Disjoint Paths

s

a

b

c

d

e

f

t

17

Edge-Disjoint Paths

MaxFlow for edge-disjoint paths

• Delete edges into (or out of)

• Assign capacity " to every edge

• Compute MaxFlow

Theorem: MaxFlow = # edge-disjoint paths

18

s

a

b

c

d

e

f

t

1

1

1

1

1

1

1

1

1 1

1
1

1

1

MaxFlow for edge-disjoint paths

• Delete edges into (or out of)

• Assign capacity " to every edge

• Compute MaxFlow

Edge-Disjoint Paths

19

s

a

b

c

d

e

f

t

1/1

1/1

1

1

1

1/1

1/1

1/1

1/1 1/1

1
1

1/1

1/1

Theorem: MaxFlow = # edge-disjoint paths

Proof: ≥: Assign flow 1 to each edge in

the set of paths

MaxFlow for edge-disjoint paths

• Delete edges into (or out of)

• Assign capacity " to every edge

• Compute MaxFlow

Edge-Disjoint Paths

20

s

a

b

c

d

e

f

t

1/1

1/1

1

1

1

1/1

1/1

1/1

1/1 1/1

1
1

1/1

1/1

Theorem: MaxFlow = # edge-disjoint paths

Proof: ≥: Assign flow 1 to each edge in

the set of paths

≤: Consider any integral maximum

flow * on �

By integrality, each edge with flow

has flow 1.

Remove any directed cycles in *

with flow; still have a maxflow.

Greedily choose (-) paths, one by one,

removing candidate flow edge after using it.

Paths are simple since no directed cycles.

Network Connectivity

Defn: A set of edges + ⊆ � in � = (
, �) disconnects) from (iff every (-) path uses at

least one edge in +. (Equivalently, removing all edges in + makes) unreachable.)

Network Connectivity: Given: a directed graph � = (
, �) and two nodes (and),

Find: minimum # of edges whose removal disconnects) from (.

21

s

a

b

c

d

e

f

t

Min # of disconnecting edges: 2

No (-) path remains.

Edge-Disjoint Paths and Network Connectivity

Menger’s Theorem: Maximum # of edge-disjoint (-) paths

= Minimum # of edges whose removal disconnects) from (.

Proof: Choose maximum set of MaxFlow edge-disjoint (-) paths.

22

s

a

b

c

d

e

f

t

1/1

1/1

1

1

1

1/1

1/1

1/1

1/1 1/1

1
1

1/1

1/1

Disconnecting set needs

≥ " edge from each path

= MaxFlow = MinCut edges.

Edges out of minimum cut is a

disconnecting set of size MinCut

Both # of edge-disjoint paths and disconnecting sets make sense for an undirected graph

� =
, � , too. Same ideas work:

• Replace each undirected edge {-, .} with directed edges (-, .) and ., - to get

directed graph �’ = (
, �’) and run directed graph algorithm on �’.

• After removing directed flow cycles, flow can use only one of (-, .) or (., -).

• Include edge {-, .} on a path if either one is used in directed version.

The same idea works in general for Network Flow on undirected graphs:

• Remove flow cycles:

Edge-Disjoint Paths in Undirected Graphs

23

u v

u v
7/9

3/9
u v9 u v

4/9

9

u v
9

9

u v

Circulation with Demands

24

Circulation with Demands

• Single commodity, directed graph � = (
, �)

• Each node . has an associated demand 1(.)

• Needs to receive an amount of the commodity: demand 1 . > 2

• Supplies some amount of the commodity: “demand” 1 . < 2 (amount = |1(.)|)

• Each edge 3 has a capacity � 3 ≥ 2.

• Nothing lost: ∑ 1 . = 2. .

Defn: A circulation for (�, �, 1) is a flow function *: � → ℝ meeting all the

capacities, 2 ≤ * 3 ≤ �(3), and demands:

∑ * 3 − ∑ * 33 89: 8; . = 1(.)3 <=:8 . .

Circulation with Demands: Given (�, �, 1), does it have a circulation? If so, find it.

25

Circulation with Demands

Defn: Total supply > = ∑ 1 ..: 1 . ?2 = − ∑ 1(.).: 1 . ?2 .

Necessary condition: ∑ 1 . = >.: 1 . @2 (no supply is lost)

26

3

10 6

-7

-8

11

-6

9

10 0

7

4

7

4

demand

supply

Circulation with Demands using Network Flow

• Add new source (and sink).

• Add edge ((, .) for all supply nodes . with capacity |1(.)|.

• Add edge (.,)) for all demand nodes . with capacity 1(.).

• Compute MaxFlow.

27

3

10 6

-7

-8

11

-6

9

10 0

7

4

7

4

s t11

10

6

8

7

Circulation with Demands using Network Flow

• MaxFlow ≤ > based on cuts out of (or into).

• If MaxFlow = > then all supply/demands satisfied.

• If.

• Compute MaxFlow. Circulation iff value = >

28

3/3

4/10 6/6
-7

-8

11

-6

7/9

10 0

6/7

4/4

1/7

2/4

s t11/11

10/10

6/6

8/8

7/7

Circulation with Demands using Network Flow

Circulation = flow on original edges

Circulations only need integer flows

29

3/3

4/10 6/6
-7

-8

11

-6

7/9

10 0

6/7

4/4

1/7

2/4

Circulation with Demands using Network Flow

When does a circulation not exist? MaxFlow < > iff MinCut < >.

• If.

30

4/4

3/10 6/7
-7

-8

11

-6

6/9

10 0

4/4

4

4/4

7

4

s t10/11

10/10

6/6

7/8

7/7

Circulation with Demands using Network Flow

When does a circulation not exist? MaxFlow < > iff MinCut < >.

Equivalent to excess supply on “source” side of cut smaller than cut capacity.

• If.

31

4

10 7

-7

-8

11

-6

9

10 0

4

4

7

4

Excess supply

15 – 10 = 5

Cut capacity = 4 < 5 = Excess supply

Some general ideas for using MaxFlow/MinCut

• If no source/sink, add them with appropriate capacity depending on application

• Sometimes can have edges with no capacity limits

• Infinite capacity (or, equivalently, very large integer capacity)

• Convert undirected graphs to directed ones

• Can remove unnecessary flow cycles in answers

• Another idea:

• To use them for vertex capacities �.

• Make two copies of each vertex . named .A�, .&-)

32

v vin vout

�.

