CSE 421 Introduction to Algorithms

Lecture 17: Polynomial-Time MaxFlow/MinCut
Algorithms

The get

Come get Halloween coundy at the front

Announcements

Midterm next Monday, November 4, 6:00 – 7:30 pm in this room

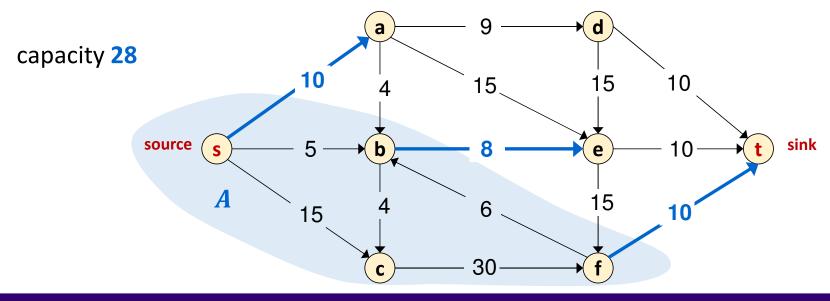
- Use Monday's class time to study
- See post on Important Midterm Information
- Links to sample midterm, practice problems, and reference sheet posted earlier this week
- Zoom review session for Q&A this Sunday Nov 3 at 4:45 pm.

Minimum Cut Problem

Minimum s-t cut problem:

Given: a flow network

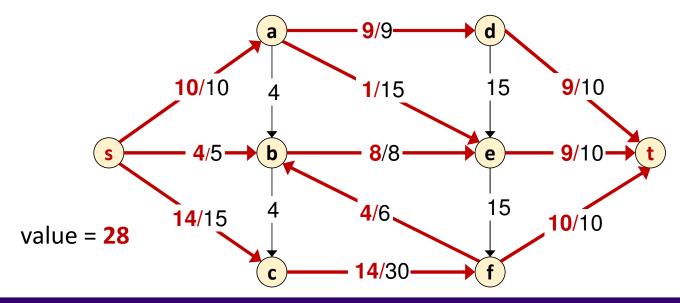
Find: an s-t cut (A, B) of minimum capacity $c(A, B) = \sum_{e \text{ out of } A} c(e)$



Maximum Flow Problem

Given: a flow network

Find: an *s-t* flow of maximum value



Ford-Fulkerson Augmenting Path Algorithm

```
\label{eq:ford-Fulkerson} \begin{aligned} &\text{Ford-Fulkerson}(G,\ s,\ t,\ c)\ \{\\ &\text{foreach}\ e\in E\ f(e)\leftarrow 0 \\ &G_f \leftarrow G \end{aligned} \label{eq:while} \begin{aligned} &\text{while}\ (G_f\ has\ an\ s-t\ path\ P)\ \{\\ &f\leftarrow Augment(f,\ c,\ P)\\ &\text{update}\ G_f \end{aligned} \label{eq:has-ham} \end{aligned} \label{eq:hamiltonian} \end{aligned} \label{eq:hamiltonian-return} \end{aligned}
```

```
Augment(f, c, P) {
   b \leftarrow bottleneck(P)
   foreach e \in P {
      if (e \in E) f(e) \leftarrow f(e) + b
      else      f(e^R) \leftarrow f(e^R) - b
   }
   return f
}
```

MaxFlow/MinCut & Ford-Fulkerson Algorithm

Augmenting Path Theorem: Flow f is a max flow \Leftrightarrow there are no augmenting paths wrt f

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.

[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] "MaxFlow = MinCut"

Flow Integrality Theorem: If all capacities are integers then there is a maximum flow with all-integer flow values.

Ford-Fulkerson Algorithms O(m) per iteration. With integer capacities each at most C need at most MaxFlow < nC iterations for a total of O(mnC) time.

Ford-Fulkerson Efficiency

Worst case runtime O(mnC) with integer capacities $\leq C$.

- O(m) time per iteration.
- At most **nC** iterations.
- This is "pseudo-polynomial" running time.
- May take exponential time, even with integer capacities:

$$c = 10^9$$
, say
$$c = 10^9$$
, s

Choosing Good Augmenting Paths

Polynomial-Time Variants of Ford-Fulkerson

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:

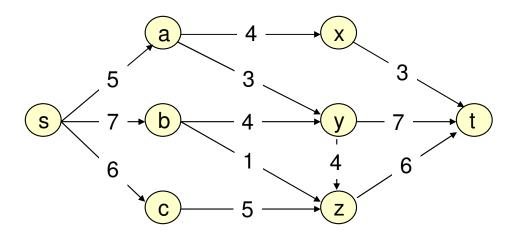
- Can find augmenting paths efficiently.
- Few iterations.
- Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
 - Max bottleneck capacity.
 - Sufficiently large bottleneck capacity.
 - Fewest number of edges.

Polynomial-Time MaxFlow: Capacity Scaling

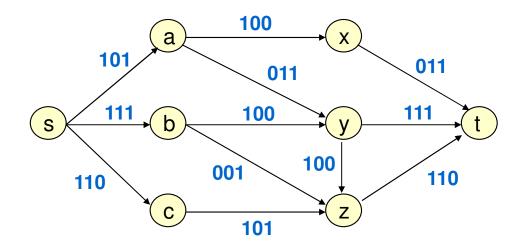
General idea:

- Choose augmenting paths P with 'large' capacity.
- Can augment flows along a path P by any amount \leq bottleneck(P)
 - Ford-Fulkerson still works
- Choose that amount to be "nice round number" (i.e. a big power of 2.)
- Get a flow that is maximum for the high-order bits first and then add more bits later

Capacity Scaling

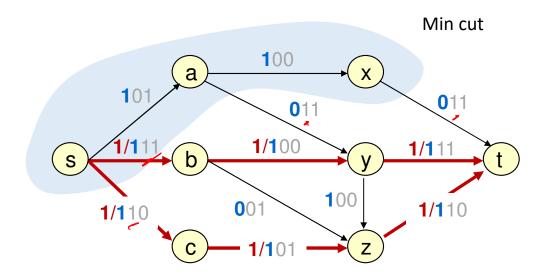


Write Capacities in Binary



Solve flow problem with capacities with just the high-order bit:

Capacity Scaling 1st Bit

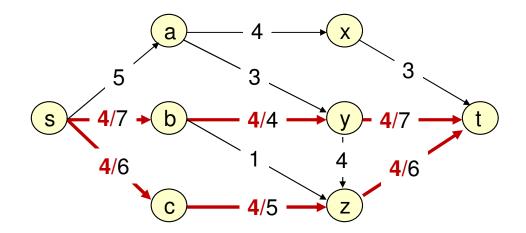


Solve flow problem with capacities with just the high-order bit:

- Each edge has "capacity"

 1 (equivalent to 4 here)
- Time O(mn)

Capacity Scaling 1st Bit

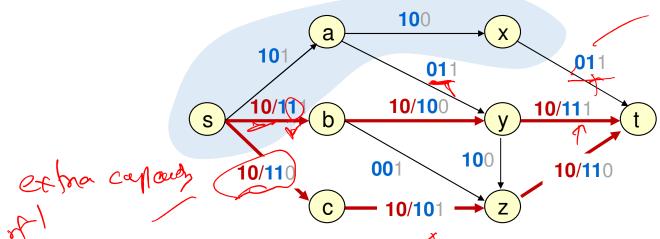


Capacity Scaling add 2nd Bit

ettra van

Add 0 bit to the end of the flows Add 2nd bit to capacities (all viewed as multiples of 2)

Old Min cut

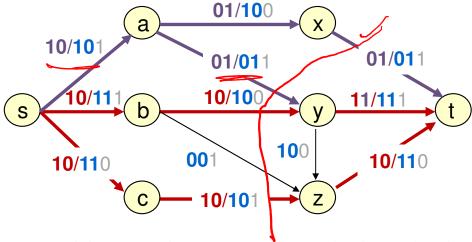


multiples of 2 glegora jeuge ont ont

Solve flow problem with capacities with the **2** high-order bits:

• Capacity of old min cut goes up by ≤ 1 per edge (equivalent to 2 here) for a total residual capacity $\leq m$.

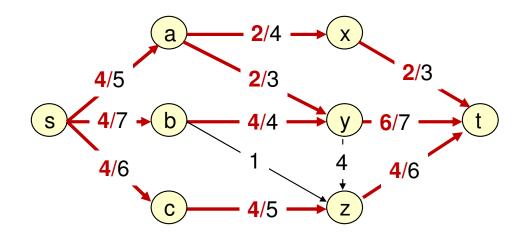
Capacity Scaling add 2nd Bit



Solve flow problem with capacities with the 2 high-order bits:

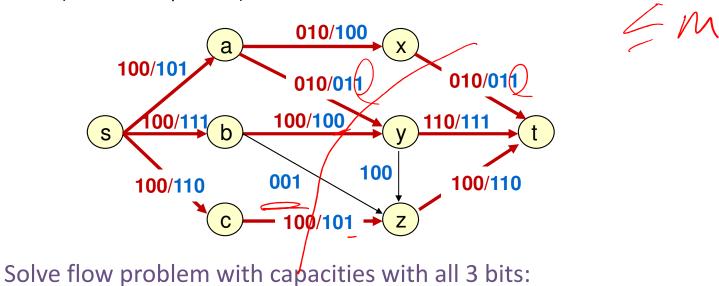
- Capacity of old min cut goes up by ≤ 1 per edge (equivalent to 2 here) for a total residual capacity $\leq m$.
- Time $O(m^2)$ for $\leq m$ iterations.

Capacity Scaling 1st and 2nd Bits



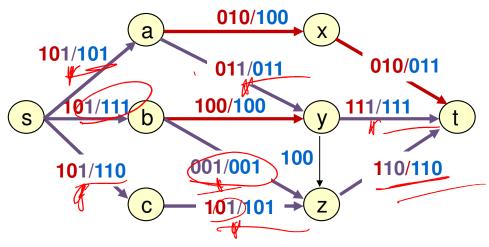
Capacity Scaling add 3rd Bit

Add 0 bit to the end of the flows Add 3rd bit to capacities (all now multiples of 1)



• Capacity of old min cut goes up by ≤ 1 per edge for a total residual capacity $\leq m$.

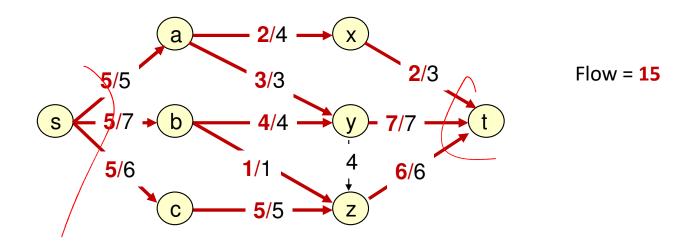
Capacity Scaling add 3rd Bit



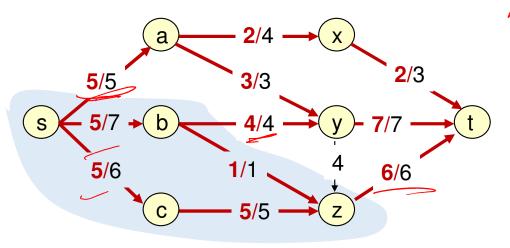
Solve flow problem with capacities with all 3 bits:

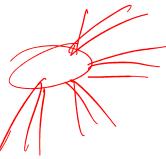
- Capacity of old min cut goes up by ≤ 1 per edge for a total residual capacity ≤ m.
- Time $O(m^2)$ for $\leq m$ iterations.

Capacity Scaling All Bits



Capacity Scaling All Bits





Flow = **15**

Cut Value = 15

Flow is a MaxFlow

Total time for capacity scaling

- Number of rounds = $\lceil \log_2 C \rceil$ where C is the largest capacity
- Time per round $O(m^2)$
 - At most m augmentations per round
 - O(m) time per augmentation

Total time $O(m^2 \log C)$

Great! This is now polynomial time in the input size.

Can we get more?

 What about an algorithm with a number of arithmetic operations that doesn't depend on the size of the numbers?

Polynomial-Time Variants of Ford-Fulkerson

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.
- Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
 - Max bottleneck capacity.
 - Sufficiently large bottleneck capacity.
 - Fewest number of edges. (i.e. just run BFS to find an augmenting path.)

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Use Breadth First Search as the search algorithm to find an s-t path in G_f .

Using any shortest augmenting path

Theorem: Ford-Fulkerson using BFS terminates in $O(m^2n)$ time. [Edmonds-Karp, Dinitz]

"One of the most obvious ways to implement Ford-Fulkerson is always polynomial time"

Why might this be good intuitively?

• Longer augmenting paths involve more edges so may be more likely to hit a low residual capacity one which would limit the amount of flow improvement.

The proof uses a completely different idea...

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Analysis Focus:

For any edge e that could be in the residual graph G_f , (either an edge in G or its reverse) count # of iterations that e is the first bottleneck edge on the augmenting path chosen by the algorithm.

Claim: This can't happen in more than n/2 iterations.

Proof: Write e = (u, v).

Show that each time it happens, the distance from s to u in the residual graph G_f is at least 2 more than it was the last time.

This would be enough since the distance is < n (or infinite and hence u isn't reachable) so this can happen at most n/2 times.

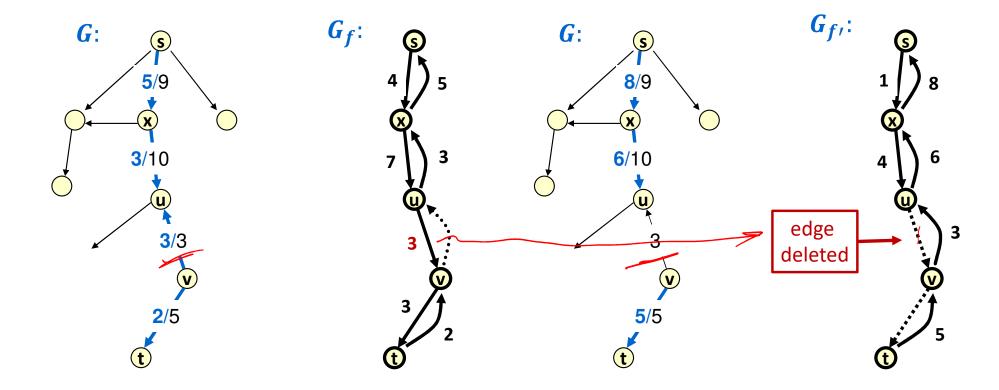
Distances in the Residual Graph

Key Lemma: Let f be a flow, G_f the residual graph, and P be a shortest augmenting path. No vertex is closer to s in the residual graph after augmenting along P.

Proof: Augmenting along P can only change the edges in G_f by either:

- 1. Deleting a forward edge
 - Deleting any edge can never reduce distances
- 2. Add a backward edge (v, u) that is the reverse of an edge (u, v) of P
 - Since P was a shortest path in G_f , the distance from S to V in G_f is already more than the distance from S to U. Using the new backward edge (V, U) to get to U would be an even longer path to U so it is never on a shortest path to any node in the new residual graph.

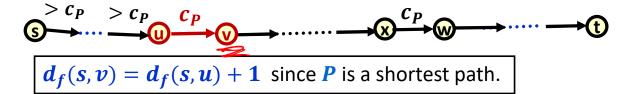
Augmentation vs BFS



First Bottleneck Edges in G_f

Shortest s-t path P in G

Write $c_P = \mathsf{bottleneck}(P)$



After augmenting along P, edge (u, v) disappears; but will have edge (v, u)

larger thah béfo

For (u, v) to be a first bottleneck edge later, it must get added back to the residual graph by augmenting along a shortest path P' containing (v, u) in $G_{f'}$ for some flow f'

Since
$$P'$$
 is shortest $d_{f'}(s,u) = d_{f'}(s,v) + 1 \ge d_f(s,v) + 1 = d_f(s,u) + 2$

The next time that (u, v) is first bottleneck edge is even later so distance is at least as large!

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Analysis Focus:

For any edge e that could be in the residual graph G_f , (either an edge in G or its reverse) count # of iterations that e is the first bottleneck edge on the augmenting path chosen by the algorithm.

Claim: This can't happen in more than n/2 iterations

Claim ⇒ Theorem:

Only 2m edges and O(m) time per iteration so $O(m^2n)$ time overall.

Which is better in practice $O(m^2n)$ vs. $O(m^2 \log C)$?

History & State of the Art for MaxFlow Algorithms

I	#	year	discoverer(s)	bound
Ì	1	1951	Dantzig	$O(n^2mU)$
-	2	1955	Ford & Fulkerson	O(nmU)
Ī	3	1970	Dinitz	$O(nm^2)$
			Edmonds & Karp	·
Ī	4	1970	Dinitz	$O(n^2m)$
	5	1972	Edmonds & Karp	$O(m^2 \log U)$
			Dinitz	
Ī	6	1973	Dinitz	$O(nm \log U)$
			Gabow	
Ī	7	1974	Karzanov	$O(n^3)$
ſ	8	1977	Cherkassky	$O(n^2\sqrt{m})$
ſ	9	1980	Galil & Naamad	$O(nm\log^2 n)$
_[10	1983	Sleator & Tarjan	$O(nm \log n)$
	11	1986	Goldberg & Tarjan	$O(nm\log(n^2/m))$
ſ	12	1987	Ahuja & Orlin	$O(nm + n^2 \log U)$
[13	1987	Ahuja et al.	$O(nm\log(n\sqrt{\log U}/(m+2))$
ſ	14	1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$
ſ	15	1990	Cheriyan et al.	$O(n^3/\log n)$
	16	1990	Alon	$O(nm + n^{8/3}\log n)$
Ī	17	1992	King et al.	$O(nm + n^{2+\epsilon})$
	18	1993	Phillips & Westbrook	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$
-	19	1994	King et al.	$O(nm\log_{m/(n\log n)} n)$
ĺ	20	1997	Goldberg & Rao	$O(m^{3/2}\log(n^2/m)\log U)$
l				$O(n^{2/3}m\log(n^2/m)\log U)$

	21	2013	Orlin	0(mn)
	22	2014	Lee & Sidford	$m\sqrt{n}\log^{O(1)}n\log U$
	23	2016	Madry	$m^{10/7}U^{1/7}\log^{O(1)}n$
┨	24	2021	Gao, Liu, & Peng	$m^{3/2-1/328} \log^{O(1)} n \log U$
	25	2022	van den Brand et al.	$m^{3/2-1/58} \log^{O(1)} n \log U$
	26	2022	Chen et al.	$m^{1+o(1)}\log U$

Tables use *U* instead of *C* for the upper bound on capacities

Methods:

Augmenting Paths – increase flow to capacity

Preflow-Push – decrease flow to get flow conservation

Linear Programming – randomized, high probability of optimality

Source: Goldberg & Rao, FOCS '97