
CSE 421

Introduction to Algorithms

Lecture 17:  Polynomial-Time MaxFlow/MinCut

Algorithms
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Announcements

Midterm next Monday, November 4, 6:00 – 7:30 pm in this room

• Use Monday’s class time to study

• See post on Important Midterm Information

• Links to sample midterm, practice problems, and reference sheet posted earlier 

this week

• Zoom review session for Q&A this Sunday Nov 3 at 4:45 pm.
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Minimum s-t cut problem:

Given: a flow network 

Find: an �-� cut (�, �) of minimum capacity 

�
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Minimum Cut Problem
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Given: a flow network 

Find: an �-� flow of maximum value
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Maximum Flow Problem
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Ford-Fulkerson Augmenting Path Algorithm

Augment(f, c, P) {

b ←←←← bottleneck(P) 

foreach e ∈∈∈∈ P {

if (e ∈∈∈∈ E) f(e) ←←←← f(e) + b

else f(eR)←←←← f(eR) - b

}

return f

}

Ford-Fulkerson(G, s, t, c) {

foreach e ∈∈∈∈ E  f(e) ←←←← 0

Gf ←←←← G

while (Gf has an s-t path P) {

f ←←←← Augment(f, c, P)

update Gf
}

return f

}
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MaxFlow/MinCut & Ford-Fulkerson Algorithm

Augmenting Path Theorem: Flow � is a max flow ⇔ there are no augmenting paths wrt �

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.

[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] “MaxFlow = MinCut”

Flow Integrality Theorem: If all capacities are integers then there is a maximum flow with 

all-integer flow values.

Ford-Fulkerson Algorithm: �(�) per iteration.  With integer capacities each at most �
need at most MaxFlow < �� iterations for a total of � ��� time.
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Worst case runtime � ��� with integer capacities ≤ �.

• �(�) time per iteration.

• At most �� iterations.

• This is “pseudo-polynomial” running time.

• May take exponential time, even with integer capacities:
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Ford-Fulkerson Efficiency
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Choosing Good Augmenting 
Paths
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Polynomial-Time Variants of Ford-Fulkerson

Use care when selecting augmenting paths.

• Some choices lead to exponential algorithms.

• Clever choices lead to polynomial algorithms.

• If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:

• Can find augmenting paths efficiently.

• Few iterations.

• Choose augmenting paths with:  [Edmonds-Karp 1972, Dinitz 1970]

• Max bottleneck capacity.

• Sufficiently large bottleneck capacity.

• Fewest number of edges.
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Polynomial-Time MaxFlow:  Capacity Scaling

General idea:

• Choose augmenting paths P with ‘large’ capacity.

• Can augment flows along a path P by any amount ≤ bottleneck(�)
• Ford-Fulkerson still works

• Choose that amount to be “nice round number”  (i.e. a big power of 2.)

• Get a flow that is maximum for the high-order bits first and then add more bits 

later



Capacity Scaling
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Write Capacities in Binary
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Capacity Scaling 1st Bit
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Solve flow problem with capacities with just the high-order bit:



Capacity Scaling 1st Bit

14

s

a

b

c

x

y

z

t

101

1/110

1/111

100

011

1/100

001

1/101

011

1/111

1/110
100

Solve flow problem with capacities with just the high-order bit:

• Each edge has “capacity” ≤ � (equivalent to � here)

• Time �(��)

Min cut



Capacity Scaling 1st Bit
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Capacity Scaling add 2nd Bit
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Solve flow problem with capacities with the 2 high-order bits:

• Capacity of old min cut goes up by ≤ � per edge (equivalent to � here) 

for a total residual capacity ≤ �.

Old Min cut

Add 0 bit to the end of the flows 

Add 2nd bit to capacities (all viewed as multiples of 2)



Capacity Scaling add 2nd Bit
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Solve flow problem with capacities with the 2 high-order bits:

• Capacity of old min cut goes up by ≤ � per edge (equivalent to � here) 

for a total residual capacity ≤ �.

• Time �(��) for ≤ � iterations.



Capacity Scaling 1st and 2nd Bits

18

4/6

4/7 4/4

1

4/5

s

a

b

c

x

y

z

t

4/5

2/4

2/32/3

6/7

4/64



Capacity Scaling add 3rd Bit
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Solve flow problem with capacities with all 3 bits:

• Capacity of old min cut goes up by ≤ � per edge for a total residual 

capacity ≤ �.

Add 0 bit to the end of the flows 

Add 3rd bit to capacities (all now multiples of 1)



Capacity Scaling add 3rd Bit
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Solve flow problem with capacities with all 3 bits:

• Capacity of old min cut goes up by ≤ � per edge for a total residual 

capacity ≤ �.

• Time �(��) for ≤ � iterations.



Capacity Scaling All Bits
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Capacity Scaling All Bits
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Total time for capacity scaling

• Number of rounds = log2� where � is the largest capacity

• Time per round �(��)
• At most � augmentations per round

• �(�) time per augmentation

Total time �(�� log �)
Great!   This is now polynomial time in the input size.

Can we get more?   

• What about an algorithm with a number of arithmetic operations that doesn’t 

depend on the size of the numbers?



Polynomial-Time Variants of Ford-Fulkerson

Use care when selecting augmenting paths.

• Some choices lead to exponential algorithms.

• Clever choices lead to polynomial algorithms.

• If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:

• Can find augmenting paths efficiently.

• Few iterations.

• Choose augmenting paths with:  [Edmonds-Karp 1972, Dinitz 1970]

• Max bottleneck capacity.

• Sufficiently large bottleneck capacity.

• Fewest number of edges.  (i.e. just run BFS to find an augmenting path.)
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Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Use Breadth First Search as the search algorithm to find an �-� path in ��.

• Using any shortest augmenting path 

Theorem: Ford-Fulkerson using BFS terminates in $(���) time. [Edmonds-Karp, Dinitz]

“One of the most obvious ways to implement Ford-Fulkerson is always polynomial time”

Why might this be good intuitively? 

• Longer augmenting paths involve more edges so may be more likely to hit a low 

residual capacity one which would limit the amount of flow improvement.

The proof uses a completely different idea…
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Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Analysis Focus: 

For any edge � that could be in the residual graph ��, (either an edge in � or its reverse)  

count # of iterations that � is the first bottleneck edge on the augmenting 

path chosen by the algorithm. 

Claim: This can’t happen in more than �/� iterations. 

Proof:   Write � = (&, ').   

Show that each time it happens, the distance from � to & in the residual graph ��
is at least � more than it was the last time. 

This would be enough since the distance is < �
(or infinite and hence & isn’t reachable) so this can happen at most �/� times.
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Distances in the Residual Graph

Key Lemma: Let � be a flow, �� the residual graph, and � be a shortest augmenting 

path.  No vertex is closer to � in the residual graph after augmenting along �.

Proof: Augmenting along � can only change the edges in �� by either:

1. Deleting a forward edge

• Deleting any edge can never reduce distances

2. Add a backward edge (', &) that is the reverse of an edge (&, ') of �
• Since � was a shortest path in ��, the distance from � to ' in �� is 

already more than the distance from � to &.   Using the new backward 

edge (', &) to get to & would be an even longer path to & so it is never 

on a shortest path to any node in the new residual graph.
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Augmentation vs BFS
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First Bottleneck Edges in *�
Shortest �-� path � in ��

vus x tw
��> �� > �� ��

,�(�, ') = ,�(�, &) + � since � is a shortest path.

After augmenting along �, edge (&, ') disappears; but will have edge (', &)

For (&, ') to be a first bottleneck edge later, it must get added back to the residual 

graph by augmenting along a shortest path �′ containing (', &) in ��) for some flow �’
Since �′ is shortest ,�0 �, & = ,�0 �, ' + � ≥ ,� �, ' + � = ,�(�, &) + �

Write �� = bottleneck(�)

vus x tw

The next time that (&, ') is first bottleneck edge is even later so distance is at least as large!

distance is ≥ �
larger than before
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Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Analysis Focus: 

For any edge � that could be in the residual graph ��, (either an edge in � or its reverse)  

count # of iterations that � is the first bottleneck edge on the augmenting 

path chosen by the algorithm. 

Claim: This can’t happen in more than �/� iterations 

Claim ⇒⇒⇒⇒ Theorem:

Only �� edges and �(�) time per iteration so �(���) time overall.

Which is better in practice � ��� vs. �(�� log �)?   



bound
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History & State of the Art for MaxFlow Algorithms

Source: Goldberg & Rao, FOCS ‘97

2012     Orlin + King et al.           O(nm)

21 2013 Orlin � ��

22 2014 Lee & Sidford � � log3 4 � log 5
23 2016 Madry ���/65�/6 log3 4 �
24 2021 Gao, Liu, & Peng �7/�8�/7�9 log3 4 � log 5
25 2022 van den Brand et al. �7/�8�/:9 log3 4 � log 5
26 2022 Chen et al. ��;< � log 5

Tables use 5 instead of � for the upper bound on capacities

Methods: 

Augmenting Paths – increase flow to capacity

Preflow-Push – decrease flow to get flow conservation

Linear Programming – randomized, high probability of optimality


