CSE 421
Introduction to Algorithms

Lecture 17: Polynomial-Time MaxFlow/MinCut
Algorithms (.. ..}

Ha//MQQM CAn 7

o} o frts

Announcements

Midterm next Monday, November 4, 6:00 — 7:30 pm in this room

* Use Monday'’s class time to study

* See post on Important Midterm Information

* Links to sample midterm, practice problems, and reference sheet posted earlier
this week

e Zoom review session for Q&A this Sunday Nov 3 at 4:45 pm.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Minimum Cut Problem

Minimum s-t cut problem:
Given: a flow network
Find: an s-t cut (4, B) of minimum capacity c(4,B) = Z c(e)

eoutofA
¥ d
capacity 28
15
source 4¢\ \}({g sink
4 15

et

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Maximum Flow Problem

Given: a flow network
Find: an s-t flow of maximum value

a 9/9

10/1 1/15 9/10

9/10

14/1
value = 28 10110
14/30

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Ford-Fulkerson Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c) {

foreach e € E f(e) « 0 Augment (£, c, P) {
@ G b « bottleneck (P)
foreach e € P {

while (G has an s-t path P) { if (e € E) f(e) <« f(e) + b
f < Augment (f, c, P) else f(eR)« f(eR) - b
update G; }

} return £

return £ }

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

MaxFlow/MinCut & Ford-Fulkerson Algorithm 4. ¢
W T Ce

Augmenting Path Theorem: Flow f is a max flow < there are no augmenting paths wrt f

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.
[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] “MaxFlow = MinCut”

Flow Integrality Theorem: If all capacities are integers then there is a maximum flow with

all-integer flow values. (/‘\\ (
A E

\
Ford-Fulkerson Algorithmé Q0 (m) per iteratigh. With integer capacities each at most C

need at most MaxFlow < n(iterations for a total of O (mnC) time. e

Av\/\%
e -
S

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Ford-Fulkerson Efficiency

Worst case runtime O (mnC) with integer capacities < C.
* 0(m) time per iteration.
* At most nC iterations.
* This is “pseudo-polynomial” running time.

* May take exponential time, even with integer capacities:

c =107, say

oD Gie-0

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Choosing Good Augmenting
Paths

Polynomial-Time Variants of Ford-Fulkerson

Use care when selecting augmenting paths.
* Some choices lead to exponential algorithms.
 Clever choices lead to polynomial algorithms.
* If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:
e Can find augmenting paths efficiently.
* Few iterations.
* Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
* Max bottleneck capacity.
« Sufficiently large bottleneck capacity.
* Fewest number of edges.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Polynomial-Time MaxFlow: Capacity Scaling

General idea:
* Choose augmenting paths P with ‘large’ capacity.

e Can augment flows along a path P by any amount < bottleneck(P)
e Ford-Fulkerson still works

e Choose that amount to be “nice round number” (i.e. a big power of 2.)

* Get a flow that is maximum for the high-order bits first and then add more bits
later

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Capacity Scaling

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Write Capacities in Binary

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Capacity Scaling 15t Bit
P Y 8 CBR ﬂymm@t ww(ﬂplﬁf

MY

Solve flow problem with capacities with just the high-order bit:

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Capacity Scaling 15t Bit

Min cut

0
T NO— 11

Solve flow problem with capacities with just the high-order bit:
* Each edge has “capacity” < 1 (equivalent to 4 here)
* Time O(mn)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Capacity Scaling 15t Bit

P %%

\@— 4/5>>‘@

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

. : nd Ri 2>
Capacity Scaling add 2 Bit w

Add 0 bit to the end of the flows @/f‘\
Add 2" bit to capacities (all viewed as multiples of 2) Old Min cut k*\é'\q L
LA Vo
- Z2B

/7\&& (
ok
/ W\A\’\,V.

S~

)&
Solve flow problem with capacities with the 2 high-order bits:
» Capacity of old min cut goes up by < 1 per edge (equivalent to 2 here)
for a total residual capacity < m.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Capacity Scaling add 2" Bit

10/11 00 10 l 10/11
7

*(o)— 10110

Solve flow problem with capacities with the 2 high-order bits:

» Capacity of old min cut goes up by < 1 per edge (equivalent to 2 here)
for a total residual capacity < m.

* Time O(m?) for < m iterations.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Capacity Scaling 15t and 2"d Bits

@<w

?’W?

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Capacity Scaling add 3" Bit

Add 0 bit to the end of the flows
Add 3" bit to capacities (all now multiples of 1)

010/100

100/101

010/014)

< >110/111 z >

l el

100/110

Solve flow problem with capacities with all 3 bits:
e Capacity of old min cut goes up by < 1 per edge for a total residual
capacity < m.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Capacity Scaling add 3" Bit

010/100
10119 ~ 011/011 010/011
100/1&60<:©111/111 'O
101/110 00 1001 110/110

\
@—
Solve flow problem with capacities with all 3 bits:
e Capacity of old min cut goes up by < 1 per edge for a total residual
capacity < m.
* Time O(m?) for < m iterations.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Capacity Scaling All Bits

\@— 5/5>>‘@/

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Capacity Scaling All Bits

(a < 2/4 _>@\
3/3 2/3 Flow = 15

4
5/6 1/1 \ . 6/6 Cut Value =15

Flow is a MaxFlow

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Total time for capacity scaling

* Number of rounds = [log,C| where C is the largest capacity
* Time per round 0 (m?)

* At most m augmentations per round

* 0(m) time per augmentation

Total time O (m? log C)

Great! This is now polynomial time in the input size.

Can we get more?

* What about an algorithm with a number of arithmetic operations that doesn’t
depend on the size of the numbers?

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Polynomial-Time Variants of Ford-Fulkerson

Use care when selecting augmenting paths.
* Some choices lead to exponential algorithms.
 Clever choices lead to polynomial algorithms.
* If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:
e Can find augmenting paths efficiently.
* Few iterations.
* Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

* Max bottleneck capacity.
« Sufficiently large bottleneck capacity.
* Fewest number of edges. (i.e. just run BFS to find an augmenting path.)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Use Breadth First Search as the search algorithm to find an s-t path in Gy.

* Using any shortest augmenting path

Theorem: Ford-Fulkerson using BFS terminates in O (m?n) time. [Edmonds-Karp, Dinitz]

)

“One of the most obvious ways to implement Ford-Fulkerson is always polynomial time’

Why might this be good intuitively?

* Longer augmenting paths involve more edges so may be more likely to hit a low
residual capacity one which would limit the amount of flow improvement.

The proof uses a completely different idea...

PAUL G. ALLEN SCHOOL

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)
For any edge e that could be in the residual graph Gy, (either an edge in G or its reverse)

count # of iterations that e is the first bottleneck edge on the augmenting
— ——
path chosen by the algorlthm

Analysis Focus:

Claim: This can’t happen in more than n/2 iterations.

Proof: Write e = (u,v). -

Show that each time it happens, the distance from s to u in the residual graph G
is at least 2 more than it was the last time.

This would be enough since the distance is < n
(or infinite and hence u isn’t reachable) so this can happen at most n/2 times.

PAUL G. ALLEN SCHOOL

Distances in the Residual Graph

Key Lemma: Let f be a flow, G the residual graph, and P be a shortest augmenting
path. No vertex is closer to s in the residual graph after augmenting along P.

O 5/
Proof: Augmenting along P can only change the edges in G by either: @JVL
1. Deleting a forward edge - =
* Deleting any edge can never reduce distances N W
2. Add a backward edge (v, u) that is the reverse of an edge (u, v) of P ¢ A

* Since P was a shortest path in G, the distance from sto v in G is
already more than the distance from s to u. Using the new backward
edge (v, u) to get to u would be an even longer path to u so it is never
on a shortest path to any node in the new residual graph. L]

PAUL G. ALLEN SCHOOL

Augmentation vs BFS

/ /5/9\

3/10
R
/le edge
3/3
/5 deleted
2/5

PAUL G. ALLEN SCHOOL

First Bottleneck Edges in G

Shortest s-t path P in ?7) Write cp = bottleneck(P)

>Cp > C c
@—»- j@ P () W GO _,®_P>®—> ----- —»@
=

ds(s,v) = ds(s,u) + 1 since P is a shortest path. r
After augmenting along P, edge (u, V) disappears; but will have edge (v, u) @ }WH’f
- distanceyig 2 2
&
-------- m larger thaem bi}gr\e

For (u, v) to be a first bott ck edge later, it must get added back to the residual
graph by augmenting along a shortest path P’ containing (v, u) in Gy, for some floﬁ

=

P
Since P’ is shortest\dfr (s,u) %r (s, v))—k 1=>ds(s,v)+1=ds(s,u)+2

— ¥
The next time that (u, v) is first bottleneck edge is even later so distance is at least as large! W

PAUL G. ALLEN SCHOOL

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Analysis Focus:

For any edge e that could be in the residual graph Gy, (either an edge in G or its reverse)
count # of iterations that e is the first bottleneck edge on the augmenting
path chosen by the algorithm.

Claim: This can’t happen in more than n/2 iterations

Claim = Theorem:

Only 2m edges and 0 (m) time per iteration so O(m?n) time overall. =

Which is better in practice 0(m?n) vs. 0(m? log C)?

PAUL G. ALLEN SCHOOL

History & State of the Art for MaxFlow Algorithms

| year | discoverer(s) bound
1 [1951 | Dantzig O(n*ml)
== 2 | 1955 | Ford & Fulkerson O(nmU)
3 | 1970 | Dinitz O(nm?)
Edmonds & Karp
1| 1970 | Dinitz OmZm)
5 | 1972 | Edmonds & Karp O(m?logl)
Dinitz
3 6 | 1973 | Dinitz O(nmlogU)
Gabow
7 | 1974 | Karzanov on®
8 | 1977 | Cherkassky O(n 2\/—)
9 | 1980 | Galil & Naamad O(nmlog” n)
10 | 1983 | Sleator & Tarjan O(nmlogn)
= 11 | 1986 Goldberg & Tarjan O(nmlog(nZ/m))
12 | 1987 | Ahuja & Orlin O(nm +n’logU)
13 | 1987 | Ahuja et al. O(nm log(n\/log U/(m +2))
14 | 1989 | Cheriyan & Hagerup | E(nm + n?log® n)
== |15 | 1990 | Cheriyan et al. O(n®/logn)
16 | 1990 | Alon O(nm + n¥3logn)
17 | 1992 | King et al. O(nm + n*T¢)
18 | 1993 [Phillips & Westbrook [O(nm(log,,,, n + log™ ¢ n))
—={ 19 | 1994 | King et al. O(nm 108, /¢ 10g) ™)
20 | 1997 | Goldberg & Rao O(m32 log(n®[m) logU)

O(n?*3mlog(n?/m)logU)

Source: Goldberg & Rao, FOCS ‘97

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

21 2013 Orlin 0(mn)

22 2014 Lee & Sidford mynlog?nlog U

23 2016 | Madry mi0/7yL/7 g0y

24 2021 Gao, Liu, & Peng m3/271/328 |50 n Jog U
25 2022 van den Brand et al. m3/271/58 10g0MW nlog U
26 2022 Chen et al. m'+°MWogU

Tables use U instead of C for the upper bound on capacities

Methods:

Augmenting Paths — increase flow to capacity

Preflow-Push — decrease flow to get flow conservati
Linear Programming — randomized, high praob

