
CSE 421

Introduction to Algorithms

Lecture 17: Polynomial-Time MaxFlow/MinCut

Algorithms

1

Announcements

Midterm next Monday, November 4, 6:00 – 7:30 pm in this room

• Use Monday’s class time to study

• See post on Important Midterm Information

• Links to sample midterm, practice problems, and reference sheet posted earlier

this week

• Zoom review session for Q&A this Sunday Nov 3 at 4:45 pm.

2

Minimum s-t cut problem:

Given: a flow network

Find: an �-� cut (�, �) of minimum capacity

�

3

Minimum Cut Problem

s

a

b

c

d

e

f

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

source sink

capacity 28

� �, � =
 �(�)
� �� � �

3

Given: a flow network

Find: an �-� flow of maximum value

4

Maximum Flow Problem

s

a

b

c

d

e

f

t

14/15

4/5

14/30

15

10/10

8/8

1/15

9/9

4/6 10/10

9/10

9/10154

4
value = 28

4

5

Ford-Fulkerson Augmenting Path Algorithm

Augment(f, c, P) {

b ←←←← bottleneck(P)

foreach e ∈∈∈∈ P {

if (e ∈∈∈∈ E) f(e) ←←←← f(e) + b

else f(eR)←←←← f(eR) - b

}

return f

}

Ford-Fulkerson(G, s, t, c) {

foreach e ∈∈∈∈ E f(e) ←←←← 0

Gf ←←←← G

while (Gf has an s-t path P) {

f ←←←← Augment(f, c, P)

update Gf
}

return f

}

5

6

MaxFlow/MinCut & Ford-Fulkerson Algorithm

Augmenting Path Theorem: Flow � is a max flow ⇔ there are no augmenting paths wrt �

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.

[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] “MaxFlow = MinCut”

Flow Integrality Theorem: If all capacities are integers then there is a maximum flow with

all-integer flow values.

Ford-Fulkerson Algorithm: �(�) per iteration. With integer capacities each at most �
need at most MaxFlow < �� iterations for a total of � ��� time.

6

Worst case runtime � ��� with integer capacities ≤ �.

• �(�) time per iteration.

• At most �� iterations.

• This is “pseudo-polynomial” running time.

• May take exponential time, even with integer capacities:

s
c

a

t

b

c-1

c
1

c-1

1

1

7

Ford-Fulkerson Efficiency

s
c

a

t

b

c

c
1

c

c = ���, say

�� = �

s
c-1

a

t

b

c-1

c-1
1

c-1

1

1
1

1

etc.

Choosing Good Augmenting
Paths

8

Polynomial-Time Variants of Ford-Fulkerson

Use care when selecting augmenting paths.

• Some choices lead to exponential algorithms.

• Clever choices lead to polynomial algorithms.

• If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:

• Can find augmenting paths efficiently.

• Few iterations.

• Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

• Max bottleneck capacity.

• Sufficiently large bottleneck capacity.

• Fewest number of edges.

9

10

Polynomial-Time MaxFlow: Capacity Scaling

General idea:

• Choose augmenting paths P with ‘large’ capacity.

• Can augment flows along a path P by any amount ≤ bottleneck(�)
• Ford-Fulkerson still works

• Choose that amount to be “nice round number” (i.e. a big power of 2.)

• Get a flow that is maximum for the high-order bits first and then add more bits

later

Capacity Scaling

11

6

7 4

1

5

s

a

b

c

x

y

z

t

5

4

33

7

64

Write Capacities in Binary

12

s

a

b

c

x

y

z

t

101

110

111

100

011

100

001

101

011

111

110
100

Capacity Scaling 1st Bit

13

s

a

b

c

x

y

z

t

101

110

111

100

011

100

001

101

011

111

110
100

Solve flow problem with capacities with just the high-order bit:

Capacity Scaling 1st Bit

14

s

a

b

c

x

y

z

t

101

1/110

1/111

100

011

1/100

001

1/101

011

1/111

1/110
100

Solve flow problem with capacities with just the high-order bit:

• Each edge has “capacity” ≤ � (equivalent to � here)

• Time �(��)

Min cut

Capacity Scaling 1st Bit

15

4/6

4/7 4/4

1

4/5

s

a

b

c

x

y

z

t

5

4

33

4/7

4/64

Capacity Scaling add 2nd Bit

16

s

a

b

c

x

y

z

t

101

10/110

10/111

100

011

10/100

001

10/101

011

10/111

10/110
100

Solve flow problem with capacities with the 2 high-order bits:

• Capacity of old min cut goes up by ≤ � per edge (equivalent to � here)

for a total residual capacity ≤ �.

Old Min cut

Add 0 bit to the end of the flows

Add 2nd bit to capacities (all viewed as multiples of 2)

Capacity Scaling add 2nd Bit

17

s

a

b

c

x

y

z

t

10/101

10/110

10/111

01/100

01/011

10/100

001

10/101

01/011

11/111

10/110
100

Solve flow problem with capacities with the 2 high-order bits:

• Capacity of old min cut goes up by ≤ � per edge (equivalent to � here)

for a total residual capacity ≤ �.

• Time �(��) for ≤ � iterations.

Capacity Scaling 1st and 2nd Bits

18

4/6

4/7 4/4

1

4/5

s

a

b

c

x

y

z

t

4/5

2/4

2/32/3

6/7

4/64

Capacity Scaling add 3rd Bit

19

s

a

b

c

x

y

z

t

100/101

100/110

100/111

010/100

010/011

100/100

001

100/101

010/011

110/111

100/110
100

Solve flow problem with capacities with all 3 bits:

• Capacity of old min cut goes up by ≤ � per edge for a total residual

capacity ≤ �.

Add 0 bit to the end of the flows

Add 3rd bit to capacities (all now multiples of 1)

Capacity Scaling add 3rd Bit

20

101/111
s

a

b

c

x

y

z

t

101/101

101/110

010/100

011/011

100/100

001/001

101/101

010/011

111/111

110/110
100

Solve flow problem with capacities with all 3 bits:

• Capacity of old min cut goes up by ≤ � per edge for a total residual

capacity ≤ �.

• Time �(��) for ≤ � iterations.

Capacity Scaling All Bits

21

5/6

5/7 4/4

1/1

5/5

s

a

b

c

x

y

z

t

5/5

2/4

2/33/3

7/7

6/64

Flow = 15

Capacity Scaling All Bits

22

5/6

5/7 4/4

1/1

5/5

s

a

b

c

x

y

z

t

5/5

2/4

2/33/3

7/7

6/64

Flow = 15

Cut Value = 15

Flow is a MaxFlow

23

Total time for capacity scaling

• Number of rounds = log2� where � is the largest capacity

• Time per round �(��)
• At most � augmentations per round

• �(�) time per augmentation

Total time �(�� log �)
Great! This is now polynomial time in the input size.

Can we get more?

• What about an algorithm with a number of arithmetic operations that doesn’t

depend on the size of the numbers?

Polynomial-Time Variants of Ford-Fulkerson

Use care when selecting augmenting paths.

• Some choices lead to exponential algorithms.

• Clever choices lead to polynomial algorithms.

• If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:

• Can find augmenting paths efficiently.

• Few iterations.

• Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

• Max bottleneck capacity.

• Sufficiently large bottleneck capacity.

• Fewest number of edges. (i.e. just run BFS to find an augmenting path.)

24

25

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Use Breadth First Search as the search algorithm to find an �-� path in ��.

• Using any shortest augmenting path

Theorem: Ford-Fulkerson using BFS terminates in $(���) time. [Edmonds-Karp, Dinitz]

“One of the most obvious ways to implement Ford-Fulkerson is always polynomial time”

Why might this be good intuitively?

• Longer augmenting paths involve more edges so may be more likely to hit a low

residual capacity one which would limit the amount of flow improvement.

The proof uses a completely different idea…

26

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Analysis Focus:

For any edge � that could be in the residual graph ��, (either an edge in � or its reverse)

count # of iterations that � is the first bottleneck edge on the augmenting

path chosen by the algorithm.

Claim: This can’t happen in more than �/� iterations.

Proof: Write � = (&, ').

Show that each time it happens, the distance from � to & in the residual graph ��
is at least � more than it was the last time.

This would be enough since the distance is < �
(or infinite and hence & isn’t reachable) so this can happen at most �/� times.

27

Distances in the Residual Graph

Key Lemma: Let � be a flow, �� the residual graph, and � be a shortest augmenting

path. No vertex is closer to � in the residual graph after augmenting along �.

Proof: Augmenting along � can only change the edges in �� by either:

1. Deleting a forward edge

• Deleting any edge can never reduce distances

2. Add a backward edge (', &) that is the reverse of an edge (&, ') of �
• Since � was a shortest path in ��, the distance from � to ' in �� is

already more than the distance from � to &. Using the new backward

edge (', &) to get to & would be an even longer path to & so it is never

on a shortest path to any node in the new residual graph.

28

Augmentation vs BFS

t

v

u

x

s

5/9

3/10

3/3

2/5

�: ��:

t

v

u

x

s

4 5

7 3

3

3

2

t

v

u

x

s

8/9

6/10

3

5/5

�: ��):

t

v

u

x

s

1 8

4 6

5

3edge

deleted

29

First Bottleneck Edges in *�
Shortest �-� path � in ��

vus x tw
��> �� > �� ��

,�(�, ') = ,�(�, &) + � since � is a shortest path.

After augmenting along �, edge (&, ') disappears; but will have edge (', &)

For (&, ') to be a first bottleneck edge later, it must get added back to the residual

graph by augmenting along a shortest path �′ containing (', &) in ��) for some flow �’
Since �′ is shortest ,�0 �, & = ,�0 �, ' + � ≥ ,� �, ' + � = ,�(�, &) + �

Write �� = bottleneck(�)

vus x tw

The next time that (&, ') is first bottleneck edge is even later so distance is at least as large!

distance is ≥ �
larger than before

30

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Analysis Focus:

For any edge � that could be in the residual graph ��, (either an edge in � or its reverse)

count # of iterations that � is the first bottleneck edge on the augmenting

path chosen by the algorithm.

Claim: This can’t happen in more than �/� iterations

Claim ⇒⇒⇒⇒ Theorem:

Only �� edges and �(�) time per iteration so �(���) time overall.

Which is better in practice � ��� vs. �(�� log �)?

bound

31

History & State of the Art for MaxFlow Algorithms

Source: Goldberg & Rao, FOCS ‘97

2012 Orlin + King et al. O(nm)

21 2013 Orlin � ��

22 2014 Lee & Sidford � � log3 4 � log 5
23 2016 Madry ���/65�/6 log3 4 �
24 2021 Gao, Liu, & Peng �7/�8�/7�9 log3 4 � log 5
25 2022 van den Brand et al. �7/�8�/:9 log3 4 � log 5
26 2022 Chen et al. ��;< � log 5

Tables use 5 instead of � for the upper bound on capacities

Methods:

Augmenting Paths – increase flow to capacity

Preflow-Push – decrease flow to get flow conservation

Linear Programming – randomized, high probability of optimality

