CSE 421
Introduction to Algorithms

Lecture 16: Maxflow/MinCut
Ford-Fulkerson

Announcements

See EdStem Announcement/Email posted/sent on Sunday/Monday.

Midterm next Monday, November 4, 6:00 — 7:30 pm in this room

* Exam designed for a regular class time-slot but this includes extra time to finish.
* Coverage:
e Up to the end of last Thursday’s section on Dynamic Programming

* See important details in two Ed posts. Sample midterm for practice problems.

* Includes 2-page “reference sheet” available to you on the midterm.

* Tomorrow’s section will focus on review problems.

e Zoom review session for Q&A on Sunday Nov 3 at 4:45 pm.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Last time: Flow Network

Flow network:
» Abstraction for material flowing through the edges.
* G = (V,E) directed graph, no parallel edges.
* Two distinguished nodes: s =source, t = sink.
* c(e) = capacity of edge e > 0.

15 10
4 15 4o

capacity = 15
\é 30 Tt

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Last time: Minimum Cut Problem

Minimum s-t cut problem:
Given: a flow network
Find: an s-t cut (4, B) of minimum capacity c(4,B) = Z c(e)

eoutofA
source 4¢\

4

g
e

capacity 28

sink

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Last time: Flows

Defn: An s-t flow in a flow network is a function f: E — R that satisfies:
* Foreache € E:0 < f(e) < c(e) [capacity constraints]

* Foreachv eV — {s,t}: Z f(e) = Z f(e) [flow conservation]

eintov eoutofv

Defn: The value of flow f, a 6/9

v(f) = Z f(e) 10/10 4/4 6/10

eoutofs

8/10
Only show non-zero values of f

11/15
value = 24 10110
11/30

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Last time: Maximum Flow Problem

Given: a flow network
Find: an s-t flow of maximum value

a 9/9

10/1 1/15 9/10

9/10

14/1
value = 28 10110
14/30

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Last time: Certificate of Optimality

Corollary: Let f be any s-t flow and (A4, B) be any s-t cut.
If v(f) = c(A, B) then f is a max flow and (4, B) is a min cut.

a 9/9

Value of flow = 28
10/10 1/15 9/10

Capacity of cut = 28
9/10
Both are optimal! 14/1 10/10
14/30

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Last time: Towards a Max Flow Algorithm

What about the following greedy algorithm?

 Start with f(e) = 0 for all edges e € E.
« While there is an s-t path P where each edge has f(e) < c(e).
« “Augment” flow along P; that is:

e Lleta = reneilr)l(c(e) — f(e))
« Add a to flow on every edge e along path P. (Adds a to v(f).)

But this can get stuck...

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Flows and cuts so far

Let f be any s-t flow and (4, B) be any s-t cut:

Flow Value Lemma: The net value of the flow sent across (4, B) equals v(f).

V(f) - Ze out ofAf(e) o Ze intoAf(e)

Weak Duality: The value of the flow is at most the capacity of the cut;
i.e., v(f) < c(4,B). “Maxflow < Mincut”

Corollary: If v(f) = c(A, B) then f is a maximum flow and (4, B) is a minimum cut.

Augmenting along paths using a greedy algorithm can get stuck.

Today: Ford-Fulkerson Algorithm, which applies greedy ideas to a “residual graph”
that lets us reverse prior flow decisions from the basic greedy approach.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greed Revisited: Residual Graph & Augmenting Paths

The only way we could route more flow from s to t
20/20 10 would be to reduce the flow from u to v to make room
61 20/30 }@ for that amount of extra flow from s to v.

10 20/20 But to conserve flow we also would need to increase
the flow from u to t by that same amount.

Suppose that we took this flow f as a baseline, what /@\

20~ T\ 10
changes could each edge handle? Qf 2010 E
 We could add up to 10 units along sv or ut or uv

 We could reduce by up to 20 units from su or uv or vt 1O\<‘¥/20

This gives us a residual graph G of possible changes
where we draw reducing as “sending back”.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greed Revisited: Residual Graph & Augmenting Paths

Augment flow
20/20 20/20 10/1 0 along path

20/30 10/30

\é/ 20/20 10/1 0 \é/ 20/20

Re5|dual graph Path in Gf
N N\
2010 }@ > @f 2010

\5/ \5/

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greed Revisited: Residual Graph & Augmenting Paths

20/20 /vﬁg\m/m

10/30

10/1 0\6/20/20
New residual
graph G
20 @\\10 /
@Z\/ 1020 }@ No s-t path
10 \C\%/ZO BTW: Flow is optimal

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Residual Graphs

Original edge: e = (u,v) € E.
* Flow f(e), capacity c(e).

Residual edges of two kinds:
* Forward: e = (u, v) with capacity cs(e) = c(e) — f(e)
* Amount of extra flow we can add along e
* Backward: e® = (v, u) with capacity cr(e) = f(e)

* Amount we can reduce/undo flow along e

Residual graph: Gy = (V, Ey).
* Residual edges with residual capacity cf(e) > 0.

* Ef={e: f(e) <c(e)}u {e*: f(e) > 0}.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

(W———6/17—()

residual capacity

v

@,\ 161
AN

residual capacity

Residual Graphs and Augmenting Paths

Residual edges of two kinds:

e Forward: e = (u, v) with capacity cf(e) — c(e) — f(e) p residual capacity
* Amount of extra flow we can add along e @ 11 j
* Backward: e® = (v, u) with capacity cr(e) = f(e) ~—— 6

N

* Amount we can reduce/undo flow along e
residual capacity

Residual graph: Gy = (V, Ey).
* Residual edges with residual capacity cf(e) > 0.

* Ef={e: f(e) <c(e)}u {e*: f(e) > 0}.

Augmenting Path: Any s-t path P in G. Let bottleneck(P)= rneilgl cr(e).
e

Ford-Fulkerson idea: Repeat “find an augmenting path P and increase flow by bottleneck(P)” until
none left.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Ford-Fulkerson Algorithm

G il :\b
\ t capacity
/

G: 10 2 8 6 10

@410 © 9\@ 103@

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Ford-Fulkerson Algorithm

0 flows not shown a 4 (b
\ \ t capacity
/
8 \6 10
@4 10 —© ; @ 103@

a b
/f\ 4 <>\ residual capacity
Gf: /
10 2 ’ \6)
. C) 10&)

Flow value =0

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Ford-Fulkerson Algorithm

0 flows not shown a 4
\ \ 3 capauty

G:
8/10 2 Flow value =0

e \
+8=8
@4 10— . 6 8/103@

a
/‘?\ 4 /3\ residual capacity
Gf:
10 ‘ ° \
@/ 10 {CL/ 9 @) &)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Ford-Fulkerson Algorithm

/C\ 4 \
G 8/10 2 \ Flow value = 8
64 (0 ~(d) 8/10 >>?:>
4
\6
\K\ 8

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Ford-Fulkerson Algorithm

a 4 @\
+2=10 \
6

G:
8/10 2/2 8/8 Flow value = 8

10
\ +2=10
10 »(©) 2/9 »(d) 8/10
+2=10
ﬁ\ 4 :@D\
Gf: 8

2 2 8 6 10
s 10 é 9 d) 2 —»
8-/

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Ford-Fulkerson Algorithm

///)ﬁl\\\\\4 :@%\\\\
6

G: 10/10 2/2 8/8 10

Flow value = 10
4

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Ford-Fulkerson Algorithm

/GD\ 4 :@\
G:
10/10 2/2 8/8 6/6 6/10 Flow value =10
! +6=16
6/10 »(0) 2/9 d) 10/10
+6=8

Gf: \
10) 8 6 10
@/10 »@2\7\@: 10&)

I

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Ford-Fulkerson

Algorithm

8/8

6/6 6/10

G: 10/10 2/2
v
@/ 6/10 —(0) 8/9\@ 10/&@

10

OF COMPUTER SCIENCE & ENGINEERING

Gy////4 1 1\\\\\\¥E: 1;i::¥3
N~ 6/4\8__/

PAUL G. ALLEN SCHOOL

Flow value = 16

Ford-Fulkerson Algorithm

/@'\2/4

" 10 272 8/8\

C)////’ 20
6/10 —»Q

+2=8

D
\h
n:::>§9
N

\

i,

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

d\
u
___/

Q\

6/10

+2=8
10/10

N

Flow value = 16
+2=18

Ford-Fulkerson Algorithm

AARTTIN

G: 10/10 8/8 6/6 8/10

Flow value = 18
8/10 »@ 3/9\@ 10/1()&()
2
8

10

S
<J >

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Ford-Fulkerson Algorithm

+1=3
/GD\ZM ><?\
G: 10/10 5 8/8 6/6 8/10 Flow value = 18
-1=7 +1=9 +1=19
s 8/10—>(c) 8/9 d) 10/10
+1=9 +1=9

. R

10

-

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Ford-Fulkerson Algorithm

AT

G: 10/10 2 7/8 6/6 9/10

@/ 9/10—>(c) 9/9\@ 10/&(}

Cziiii —’//)J 9 <>‘ 10

Flow value = 19

Q.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Ford-Fulkerson Algorithm

AT

G: 10/10 2 7/8 6/6 9/10

O/ 9/10—>(c) 9/9\@ 10/10 h:)
Cut capacity =19
G 9

9 @: 10

Flow value = 19

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c) {

foreach e € E f(e) « 0 Augment (£, c, P) {
G < G b < bottleneck (P)
foreach e € P {

while (G has an s-t path P) { if (e € E) f(e) <« f(e) + b
f < Augment (f, c, P) else f(eR)« f(eR) - b
update G; }

} return £

return £ }

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Max-Flow Min-Cut Theorem

Augmenting Path Theorem: Flow f is a max flow < there are no augmenting paths wrt f

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.

[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] “Maxflow = Mincut”

Proof: We prove both together by showing that all of these are equivalent:
(i) Thereis a cut (A, B) such that v(f) = c(4, B).
(ii) Flow f is a max flow.

(iii) There is no augmenting path w.r.t. f.

(i) = (ii): We already know this by the corollary to weak duality lemma.

(ii) = (iii): (by contradiction)

Only (iii) = (i) remaining

If there is an augmenting path w.r.t. flow f then we can improve f. Therefore f is not a max flow.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

29

Proof of Max-Flow Min-Cut Theorem

iii) = (i):
Claim: If there is no augmenting path w.r.t. f, thereisa cut (4, B) s.t. v(f) = c(4, B).
Proof of Claim: Let f be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G.

* By definitionof 4, s € A.
* Since no augmenting path (s-t pathin G¢), t & A.

residual graph

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Proof of Max-Flow Min-Cut Theorem

iii) = (i):

Claim: If there is no augmenting path w.r.t. f, thereisa cut (4, B) s.t. v(f) = c(4, B).
Proof of Claim: Let f be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G.
* By definitionof 4, s € A.

* Since no augmenting path (s-t pathin G¢), t & A.

Then v(f) = z f(e) — Z f(e)

eoutofd einto 4

original network

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Proof of Max-Flow Min-Cut Theorem s

(iii) = (i):
Claim: If there is no augmenting path w.r.t. f, thereis a cut (4, B) s.t. v(f) = c(A, B). r”;;giif;i;;
Proof of Claim: Let f be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G. So no flow on e

« By definition of 4, s € A. fle)=cs(e?)=0

* Since no augmenting path (s-t pathin Gy), t & A.

Then v(f) = Z f(e) — Z f(e)

eoutof4 einto A

= > f@

eoutofA

original network

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Proof of Max-Flow Min-Cut Theorem

(iii) = (i):
Claim: If there is no augmenting path w.r.t. f, thereisa cut (4, B) s.t. v(f) = c(A, B). NO'ngf e ‘”h
residual grap
Proof of Claim: Let f be a flow with no augmenting paths.
Let A be the set of vertices reachable from s in residual graph G. No unused capacity on e
. 0 =cs(e) =c(e) — f(e)
* By definitionof 4, s € A.

* Since no augmenting path (s-t pathin Gy), t & A.

Then v(f) = Z f(e) — Z f(e)

eoutof4 einto A

= > f@

eoutofA

= z c(e)

eout of A f(e) =c(e)

L ; original network
e is saturated

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Proof of Max-Flow Min-Cut Theorem

iii) = (i):
Claim: If there is no augmenting path w.r.t. f, thereisa cut (4, B) s.t. v(f) = c(4, B).

Proof of Claim: Let f be a flow with no augmenting paths.
Let A be the set of vertices reachable from s in residual graph G.

* By definitionof 4, s € A.

* Since no augmenting path (s-t pathin G¢), t & A. A 5
Then v(= > fl)—) f(e
eoutofA einto A
= > f@
eoutofA
=) @ =cAB) = ‘
original network

eoutof4

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Running Time

* Computing first G takes O(n + m) time. (Can ignore disconnected bitssom = n — 1.)
* Finding each augmenting path (graph search in G) takes O (m) time.
* Updating f and G takes O (n) time.

Total O (m) per iteration.
Assumption: All capacities are integers between 1 and C.

Ford-Fulkerson Invariant: Every flow value f(e) and every residual capacity c(e) remains an integer
throughout the algorithm. So there is a maximum flow with only integer flows.

Theorem: The Ford-Fulkerson algorithm terminates in < Maxflow < n(iterations.

Proof: Capacity of cut with A = {s} is < (n — 1)C. Each augmentation increases flow value by at least 1. =

Corollary: If C = 1, Ford-Fulkerson runs in O(mn) time.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bipartite Matching

A graph G = (V, E) is bipartite iff
» Set V of vertices has two disjoint parts X and Y
* Every edge in E joins a vertex from X and a vertex from Y

Set M € E is a matching in G iff no two edges in M share a vertex
Goal: Find a matching M in G of maximum size.

Differences from stable matching
* limited set of possible partners for each vertex
* sides may not be the same size
* no notion of stability; matching everything may be impossible.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bipartite Matching

* Models assignment problems
* X represents customers, Y represents salespeople
e X represents professors, Y represents courses

e If| X|=|Y|=n
* (7 has perfect matching iff maximum matching has size n

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bipartite Matching

Input: Bipartite graph

Goal: Find maximum size matching.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bipartite Matching as a special case of Flow

Input: Bipartite graph

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bipartite Matching as a special case of Flow

Add new source S pointing to left set, new sink t pointed to by right set.

Direct all edges from left to right with capacity 1. Compute MaxFlow.

e
1 1 O

1 1

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bipartite Matching as a special case of Flow

Add new source S pointing to left set, new sink t pointed to by right set.

Direct all edges from left to right with capacity 1. Compute MaxFlow.

Correctness: 1 >
Integer flow just 1/1 11 1/1 Time O(mn)
gives a subset of 1 A~ 1

1/1 1/1
edges.
Source and sink 11 11 1/1
edges imply it is »

’
- 1
a matching 11 N /:
1/1 —>9/

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bipartite Matching

Input: Bipartite graph

Goal: Find maximum size matching.

Optimality

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bipartite Matching as a special case of Flow

Add new source s pointing to left set, new sink t pointed to by right set.

Direct all edges from left to right with capacity 1. Compute MaxFlow.

Correctness: 1 >
Integer flow just 1/1 11 1/1 Time O(mn)
gives a subset of 1 A~ 1

1/1
edges. LA

Source and sink
edges imply it is

a matching Optimality

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Ford-Fulkerson Efficiency

Worst case runtime O (mnC) with integer capacities < C.
* 0(m) time per iteration.
* At most nC iterations.
* This is “pseudo-polynomial” running time.

* May take exponential time, even with integer capacities:

c =107, say

oD Gie-0

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

