
CSE 421

Introduction to Algorithms

Lecture 16: Maxflow/MinCut

Ford-Fulkerson

1

Announcements

See EdStem Announcement/Email posted/sent on Sunday/Monday.

Midterm next Monday, November 4, 6:00 – 7:30 pm in this room

• Exam designed for a regular class time-slot but this includes extra time to finish.

• Coverage:

• Up to the end of last Thursday’s section on Dynamic Programming

• See important details in two Ed posts. Sample midterm for practice problems.

• Includes 2-page “reference sheet” available to you on the midterm.

• Tomorrow’s section will focus on review problems.

• Zoom review session for Q&A on Sunday Nov 3 at 4:45 pm.

2

3

Flow network:

• Abstraction for material flowing through the edges.

• � = (�, �) directed graph, no parallel edges.

• Two distinguished nodes: � = source, 	 = sink.

• �(�) = capacity of edge � ≥ 0.

Last time: Flow Network

s

a

b

c

d

e

f

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

3

Minimum s-t cut problem:

Given: a flow network

Find: an �-	 cut (�, �) of minimum capacity

�

4

Last time: Minimum Cut Problem

s

a

b

c

d

e

f

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

source sink

capacity 28

� �, � = � �(�)
� ��� �� �

4

Defn: An �-	 flow in a flow network is a function �: � � ℝ that satisfies:

• For each � ∈ �: � ≤ � � ≤ �(�) [capacity constraints]

• For each � ∈ � − {�, 	} :

Defn: The value of flow �,

� � � = � �(�)
� ��� �� �� !�� �

5

Last time: Flows

s

a

b

c

d

e

f

t

11/15

3/5

11/30

15

10/10

8/8

15

6/9

1/6 10/10

8/10

6/10154/4

4

[flow conservation]

� � = � � �
� ��� �� �

value = 24

Only show non-zero values of �

5

Given: a flow network

Find: an �-	 flow of maximum value

6

Last time: Maximum Flow Problem

s

a

b

c

d

e

f

t

14/15

4/5

14/30

15

10/10

8/8

1/15

9/9

4/6 10/10

9/10

9/10154

4
value = 28

6

Corollary: Let � be any �-	 flow and (�, �) be any �-	 cut.

If � � = �(�, �) then � is a max flow and (�, �) is a min cut.

7

Last time: Certificate of Optimality

s

a

b

c

d

e

f

t

14/15

4/5

14/30

15

10/10

8/8

1/15

9/9

4/6 10/10

9/10

9/10154

4

Value of flow = 28

�

Capacity of cut = 28

Both are optimal!

7

8

Last time: Towards a Max Flow Algorithm

What about the following greedy algorithm?

• Start with �(�) = � for all edges � ∈ �.

• While there is an �-	 path " where each edge has � � < �(�).

• “Augment” flow along "; that is:

• Let $ = min�∈" (� � − � �)
• Add $ to flow on every edge � along path ". (Adds $ to �(�).)

But this can get stuck...

8

Flows and cuts so far

Let � be any �-	 flow and (�, �) be any �-	 cut:

Flow Value Lemma: The net value of the flow sent across (�, �) equals � � .

Weak Duality: The value of the flow is at most the capacity of the cut;

i.e., � � ≤ � �, � . “Maxflow ≤ Mincut”

Corollary: If � � = �(�, �) then � is a maximum flow and (�, �) is a minimum cut.

Augmenting along paths using a greedy algorithm can get stuck.

Today: Ford-Fulkerson Algorithm, which applies greedy ideas to a “residual graph”

that lets us reverse prior flow decisions from the basic greedy approach.

9

� � = ∑ � � − ∑ � �� !�� �� ��� �� �

Greed Revisited: Residual Graph & Augmenting Paths

10

s

u

v

t

20/20 10

10 20/20

20/30

s

u

v

t

20 10

10 20

2010

Suppose that we took this flow � as a baseline, what

changes could each edge handle?

• We could add up to 10 units along sv or ut or uv

• We could reduce by up to 20 units from su or uv or vt

This gives us a residual graph �� of possible changes

where we draw reducing as “sending back”.

The only way we could route more flow from s to t

would be to reduce the flow from u to v to make room

for that amount of extra flow from s to v.

But to conserve flow we also would need to increase

the flow from u to t by that same amount.

s

u

v

t

20 10

10 20

2010

Greed Revisited: Residual Graph & Augmenting Paths

11

s

u

v

t

20/20 10

10 20/20

20/30

s

u

v

t

20 10

10 20

2010

Residual graph

��
Path in ��

s

u

v

t

20/20 10/10

10/10 20/20

10/30

Augment flow

along path

s

u

v

t

20/20 10/10

10/10 20/20

10/30

Greed Revisited: Residual Graph & Augmenting Paths

12

s

u

v

t

20 10

10 20

1020

New residual

graph ��
No �-	 path

BTW: Flow is optimal

13

Residual Graphs

Original edge: � =), � ∈ �.

• Flow �(�), capacity �(�).

Residual edges of two kinds:

• Forward: � = (), �) with capacity �� � = � � − � �
• Amount of extra flow we can add along �

• Backward: �* = (�,)) with capacity �� � = � �
• Amount we can reduce/undo flow along �

Residual graph: �� = (�, ��).

• Residual edges with residual capacity �� � > �.

• �� = � ∶ � � < � � ∪ {�*: � � > �}.

u v6/17

u v11

residual capacity

6

residual capacity

13

14

Residual Graphs and Augmenting Paths

Residual edges of two kinds:

• Forward: � = (), �) with capacity �� � = � � − � �
• Amount of extra flow we can add along �

• Backward: �* = (�,)) with capacity �� � = � �
• Amount we can reduce/undo flow along �

Residual graph: �� = (�, ��).

• Residual edges with residual capacity �� � > �.

• �� = � ∶ � � < � � ∪ {�*: � � > �}.

Augmenting Path: Any �-	 path " in ��. Let bottleneck(")= min�∈" ��(�).

Ford-Fulkerson idea: Repeat “find an augmenting path " and increase flow by bottleneck(")” until

none left.

u v11

residual capacity

6

residual capacity

14

15

Ford-Fulkerson Algorithm

�:

s

a

c

b

d t10

10

9

8

4

10

1062

capacity

15

16

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t10

10

9

8

4

10

1062 Flow value = 0

s

a

c

b

d t10

10

9

8

4

10

1062

residual capacity

capacity
0 flows not shown

16

17

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t10

10

9

8

4

10

1062 Flow value = 0

s

a

c

b

d t10

10

9

8

4

10

1062

residual capacity

capacity
0 flows not shown

8/
8/

8/

+8=8

17

18

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t10

8/10

9

8/8

4

8/10

1062

s

a

c

b

d t10 9

4

1062

2

82

8

8

Flow value = 8

18

19

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t10

8/10

9

8/8

4

8/10

1062

s

a

c

b

d t10 9

4

1062

2

82

8

8

Flow value = 8

2/

2/

+2=10

+2=10

+2=10

19

20

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t10

10/10

2/9

8/8

4

10/10

1062/2 Flow value = 10

s

a

c

b

d t10 7

4

1062

10

810

2

20

21

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t10

10/10

2/9

8/8

4

10/10

1062/2 Flow value = 10

s

a

c

b

d t10 7

4

1062

10

810

2

+6=8

+6=16

6/

6/ 6/

21

22

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t6/10

10/10

8/9

8/8

4

10/10

6/106/62/2 Flow value = 16

s

a

c

b

d t4 1

4

462

10

810

86

6

22

23

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t6/10

10/10

8/9

8/8

4

10/10

6/106/6
Flow value = 16

s

a

c

b

d t4 1

4

462

10

810

86

6

+2=18

+2=8

-2=0 +2=8
2/2

2/

23

24

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t8/10

10/10

8/9

8/8

2/4

10/10

8/106/62

s

a

c

b

d t2 1

2

262

10

810

8

8

2

8

Flow value = 18

24

25

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t8/10

10/10

8/9

8/8

2/4

10/10

8/106/62

s

a

c

b

d t2 1

2

262

10

810

8

8

2

8

Flow value = 18

+1=9 +1=9

-1=7

+1=3

+1=9
+1=19

25

26

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t9/10

10/10

9/9

7/8

3/4

10/10

9/106/62

s

a

c

b

d t1 9

1

162

10

710

9

9

3

1

Flow value = 19

26

27

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t9/10

10/10

9/9

7/8

3/4

10/10

9/106/62

s

a

c

b

d t1 9

1

162

10

710

9

9

3

1

Flow value = 19

Cut capacity = 19

27

28

Augmenting Path Algorithm

Augment(f, c, P) {

b ←←←← bottleneck(P)

foreach e ∈∈∈∈ P {

if (e ∈∈∈∈ E) f(e) ←←←← f(e) + b

else f(eR)←←←← f(eR) - b

}

return f

}

Ford-Fulkerson(G, s, t, c) {

foreach e ∈∈∈∈ E f(e) ←←←← 0

Gf ←←←← G

while (Gf has an s-t path P) {

f ←←←← Augment(f, c, P)

update Gf
}

return f

}

28

29

Max-Flow Min-Cut Theorem

Augmenting Path Theorem: Flow � is a max flow ⇔ there are no augmenting paths wrt �
Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.

[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] “Maxflow = Mincut”

Proof: We prove both together by showing that all of these are equivalent:

(i) There is a cut (�, �) such that �(�) = �(�, �).

(ii) Flow � is a max flow.

(iii) There is no augmenting path w.r.t. �.

(i) ⇒ (ii): We already know this by the corollary to weak duality lemma.

(ii) ⇒ (iii): (by contradiction)

If there is an augmenting path w.r.t. flow � then we can improve �. Therefore � is not a max flow.

Only (iii) ⇒ (i) remaining

29

30

Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. �, there is a cut (�, �) s.t. �(�) = �(�, �).

Proof of Claim: Let � be a flow with no augmenting paths.

Let � be the set of vertices reachable from � in residual graph ��.

• By definition of �, � ∈ �.

• Since no augmenting path (�-	 path in ��), 	 ∉ �.

residual graph

s

t

A B

30

s

t

A B

�*

31

Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. �, there is a cut (�, �) s.t. �(�) = �(�, �).

Proof of Claim: Let � be a flow with no augmenting paths.

Let � be the set of vertices reachable from � in residual graph ��.

• By definition of �, � ∈ �.

• Since no augmenting path (�-	 path in ��), 	 ∉ �.

Then

original network

s

t

A B

� � = � � � − � � �
� !�� �� ��� �� �

31

32

Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. �, there is a cut (�, �� s.t. �(�) = �(�, ��.

Proof of Claim: Let � be a flow with no augmenting paths.

Let � be the set of vertices reachable from � in residual graph ��.

• By definition of �, � ∈ �.

• Since no augmenting path (�-	 path in ��), 	 ∉ �.

Then

original network

s

t

A B

� � = � � � − � � �
� !�� �� ��� �� �

 � � � �
� ��� �� �

���� � �� �* � �

�

So no flow on �

32

�*

No edge �* in

residual graph

33

Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. �, there is a cut (�, �� s.t. �(�) = �(�, ��.

Proof of Claim: Let � be a flow with no augmenting paths.

Let � be the set of vertices reachable from � in residual graph ��.

• By definition of �, � ∈ �.

• Since no augmenting path (�-	 path in ��), 	 ∉ �.

Then

original network

s

t

A B

� � = � � � − � � �
� !�� �� ��� �� �

 � � � �
� ��� �� �

� � � �
� ��� �� �

� � �� � � � � � ����

�

“� is saturated”

33

No edge � in

residual graph

�

� � = �(�)

No unused capacity on �

34

Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. �, there is a cut (�, �) s.t. �(�) = �(�, �).

Proof of Claim: Let � be a flow with no augmenting paths.

Let � be the set of vertices reachable from � in residual graph ��.

• By definition of �, � ∈ �.

• Since no augmenting path (�-	 path in ��), 	 ∉ �.

Then

original network

s

t

A B

� � = � � � − � � �
� !�� �� ��� �� �

 = � � �
� ��� �� �

= � � � = �(�, �)
� ��� �� �

34

35

Running Time

• Computing first �� takes 1(2 + 4) time. (Can ignore disconnected bits so 4 ≥ 2 − 5.)

• Finding each augmenting path (graph search in ��) takes 1(4) time.

• Updating � and �� takes 1(2) time.

Total 1(4) per iteration.

Assumption: All capacities are integers between 5 and 6.

Ford-Fulkerson Invariant: Every flow value �(�) and every residual capacity ��(�) remains an integer

throughout the algorithm. So there is a maximum flow with only integer flows.

Theorem: The Ford-Fulkerson algorithm terminates in ≤ Maxflow < 26 iterations.

Proof: Capacity of cut with � = {�} is ≤ (2 − 5)6. Each augmentation increases flow value by at least 5.

Corollary: If 6 = 5, Ford-Fulkerson runs in 1(42) time.

35

36

Bipartite Matching

A graph � = �, � is bipartite iff

• Set � of vertices has two disjoint parts 7 and 8
• Every edge in � joins a vertex from 7 and a vertex from 8

Set 9 ⊆ � is a matching in � iff no two edges in 9 share a vertex

Goal: Find a matching 9 in � of maximum size.

Differences from stable matching

• limited set of possible partners for each vertex

• sides may not be the same size

• no notion of stability; matching everything may be impossible.

37

Bipartite Matching

• Models assignment problems

• 7 represents customers, 8 represents salespeople

• 7 represents professors, 8 represents courses

• If |7| = |8| = 2
• � has perfect matching iff maximum matching has size 2

38

Bipartite Matching

Input: Bipartite graph

Goal: Find maximum size matching.

C

1

5

2

A

E

3

B

D 4

39

Bipartite Matching as a special case of Flow

Input: Bipartite graph

C

1

5

2

A

E

3

B

D 4

40

Bipartite Matching as a special case of Flow

Add new source s pointing to left set, new sink t pointed to by right set.

Direct all edges from left to right with capacity 1. Compute MaxFlow.

C

1

5

2

A

E

3

B

D 4

s

1

1

1
1

1
1

1
1

1

t

1

1

1

1

1

1

1

1

1

1

41

Bipartite Matching as a special case of Flow

Add new source s pointing to left set, new sink t pointed to by right set.

Direct all edges from left to right with capacity 1. Compute MaxFlow.

C

1

5

2

A

E

3

B

D 4

s

1

1/1 1

1

1

t

1/1

1/1

1

1

1/1

1/1 1/1

1/1

1/1

1/1

1/1
1/1

1

1/1

Time 1(42)
Correctness:

Integer flow just

gives a subset of

edges.

Source and sink

edges imply it is

a matching

42

Bipartite Matching

Input: Bipartite graph

Goal: Find maximum size matching.

C

1

5

2

A

E

3

B

D 4

Optimality

43

Bipartite Matching as a special case of Flow

Add new source s pointing to left set, new sink t pointed to by right set.

Direct all edges from left to right with capacity 1. Compute MaxFlow.

C

1

5

2

A

E

3

B

D 4

s

1

1/1 1

1

1

t

1/1

1/1

1

1

1/1

1/1 1/1

1/1

1/1

1/1

1/1
1/1

1

1/1

Time 1(42)
Correctness:

Integer flow just

gives a subset of

edges.

Source and sink

edges imply it is

a matching
Optimality

Worst case runtime 1 426 with integer capacities ≤ 6.

• 1(4) time per iteration.

• At most 26 iterations.

• This is “pseudo-polynomial” running time.

• May take exponential time, even with integer capacities:

s
c

a

t

b

c-1

c
1

c-1

1

1

44

Ford-Fulkerson Efficiency

s
c

a

t

b

c

c
1

c

c = 5�<, say

�� = �

s
c-1

a

t

b

c-1

c-1
1

c-1

1

1
1

1

etc.

