CSE 421 Introduction to Algorithms

Lecture 16: Maxflow/MinCut

Ford-Fulkerson

Announcements

See EdStem Announcement/Email posted/sent on Sunday/Monday.

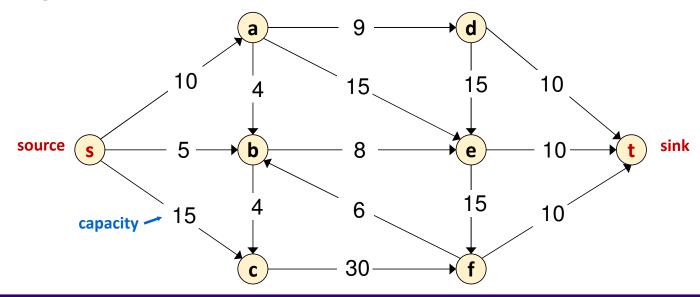
Midterm next Monday, November 4, 6:00 – 7:30 pm in this room

- Exam designed for a regular class time-slot but this includes extra time to finish.
- Coverage:
 - Up to the end of last Thursday's section on Dynamic Programming
- See important details in two Ed posts. Sample midterm for practice problems.
 - Includes 2-page "reference sheet" available to you on the midterm.
- Tomorrow's section will focus on review problems.
- Zoom review session for Q&A on Sunday Nov 3 at 4:45 pm.

Last time: Flow Network

Flow network:

- Abstraction for material *flowing* through the edges.
- G = (V, E) directed graph, no parallel edges.
- Two distinguished nodes: s = source, t = sink.
- c(e) = capacity of edge $e \ge 0$.

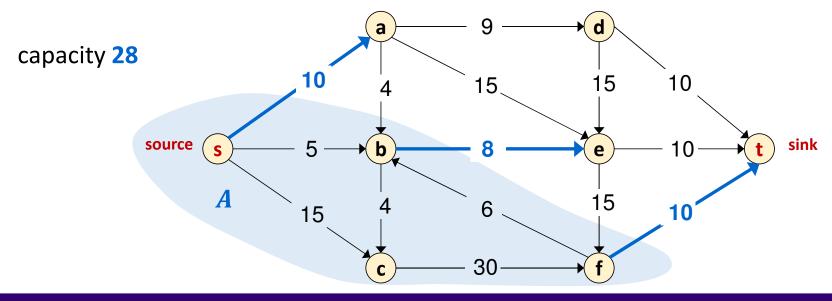


Last time: Minimum Cut Problem

Minimum s-t cut problem:

Given: a flow network

Find: an s-t cut (A, B) of minimum capacity $c(A, B) = \sum_{e \text{ out of } A} c(e)$



Last time: Flows

Defn: An s-t flow in a flow network is a function $f: E \to \mathbb{R}$ that satisfies:

• For each $e \in E$: $0 \le f(e) \le c(e)$

[capacity constraints]

• For each
$$v \in V - \{s, t\}$$
:
$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

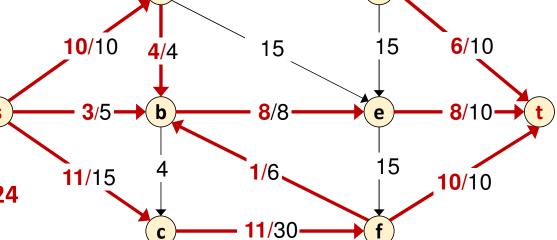
[flow conservation]

Defn: The value of flow f,

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

Only show non-zero values of **f**

value = 24

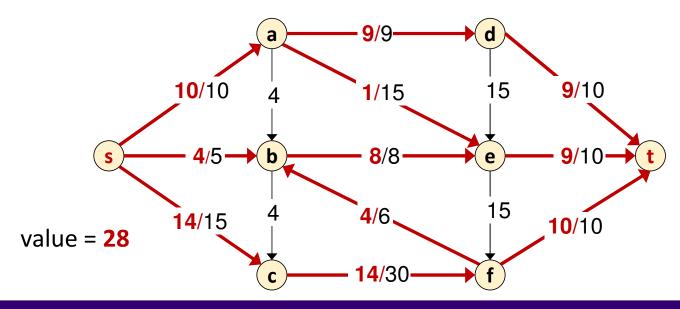


6/9-

Last time: Maximum Flow Problem

Given: a flow network

Find: an s-t flow of maximum value



Last time: Certificate of Optimality

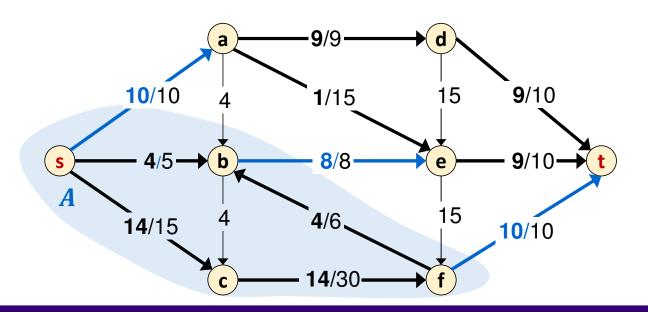
Corollary: Let f be any s-t flow and (A, B) be any s-t cut.

If v(f) = c(A, B) then f is a max flow and (A, B) is a min cut.

Value of flow = 28

Capacity of cut = 28

Both are optimal!



Last time: Towards a Max Flow Algorithm

What about the following greedy algorithm?

- Start with f(e) = 0 for all edges $e \in E$.
- While there is an s-t path P where each edge has f(e) < c(e).
 - "Augment" flow along P; that is:
 - Let $\alpha = \min_{e \in P} (c(e) f(e))$
 - Add α to flow on every edge e along path P. (Adds α to v(f).)

But this can get stuck...

Flows and cuts so far

Let f be any s-t flow and (A, B) be any s-t cut:

Flow Value Lemma: The net value of the flow sent across (A, B) equals v(f).

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

Weak Duality: The value of the flow is at most the capacity of the cut;

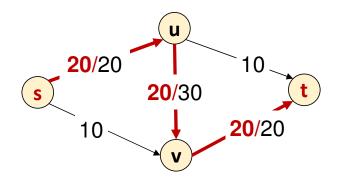
i.e.,
$$v(f) \le c(A, B)$$
. "Maxflow \le Mincut"

Corollary: If v(f) = c(A, B) then f is a maximum flow and (A, B) is a minimum cut.

Augmenting along paths using a greedy algorithm can get stuck.

Today: Ford-Fulkerson Algorithm, which applies greedy ideas to a "residual graph" that lets us reverse prior flow decisions from the basic greedy approach.

Greed Revisited: Residual Graph & Augmenting Paths

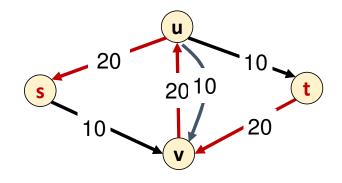


The only way we could route more flow from **s** to **t** would be to reduce the flow from **u** to **v** to make room for that amount of extra flow from **s** to **v**.

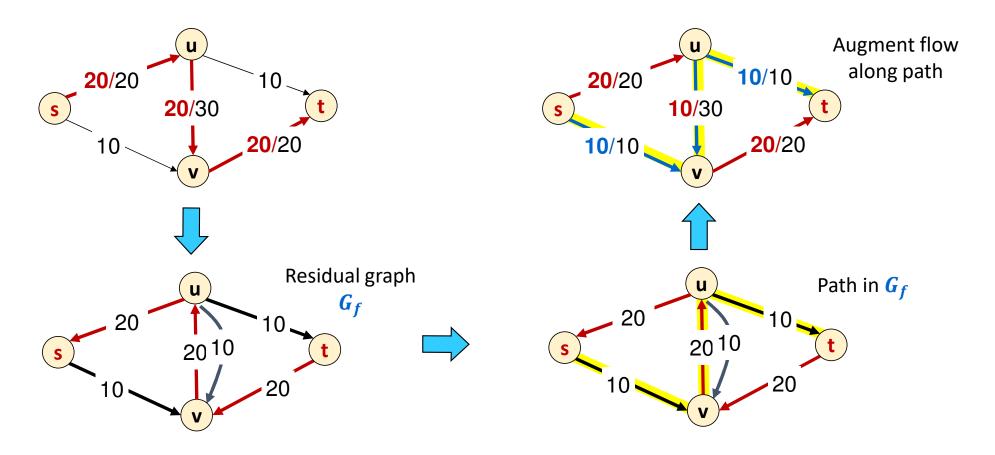
But to conserve flow we also would need to increase the flow from **u** to **t** by that same amount.

Suppose that we took this flow **f** as a baseline, what changes could each edge handle?

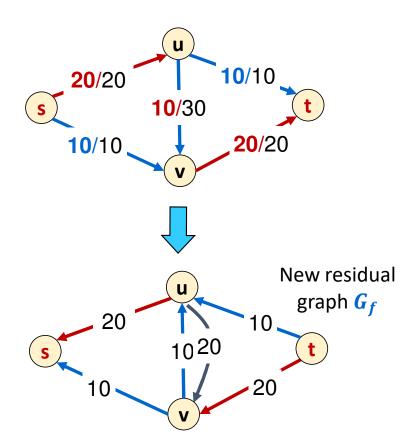
- We could add up to 10 units along sv or ut or uv
- We could reduce by up to 20 units from \mathbf{su} or \mathbf{uv} or \mathbf{vt} This gives us a residual graph G_f of possible changes where we draw reducing as "sending back".



Greed Revisited: Residual Graph & Augmenting Paths



Greed Revisited: Residual Graph & Augmenting Paths



No *s-t* path

BTW: Flow is optimal

Residual Graphs

Original edge: $e = (u, v) \in E$.

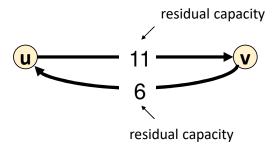
• Flow f(e), capacity c(e).

Residual edges of two kinds:

- Forward: e = (u, v) with capacity $c_f(e) = c(e) f(e)$
 - Amount of extra flow we can add along e
- Backward: $e^{R} = (v, u)$ with capacity $c_{f}(e) = f(e)$
 - Amount we can reduce/undo flow along e

Residual graph: $G_f = (V, E_f)$.

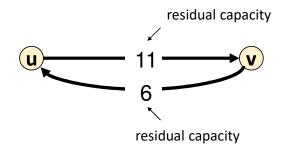
- Residual edges with residual capacity $c_f(e) > 0$.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$



Residual Graphs and Augmenting Paths

Residual edges of two kinds:

- Forward: e = (u, v) with capacity $c_f(e) = c(e) f(e)$
 - Amount of extra flow we can add along e
- Backward: $e^{R} = (v, u)$ with capacity $c_{f}(e) = f(e)$
 - Amount we can reduce/undo flow along e

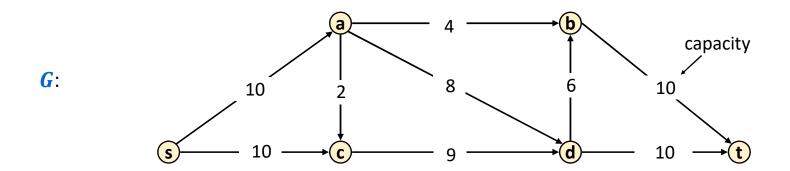


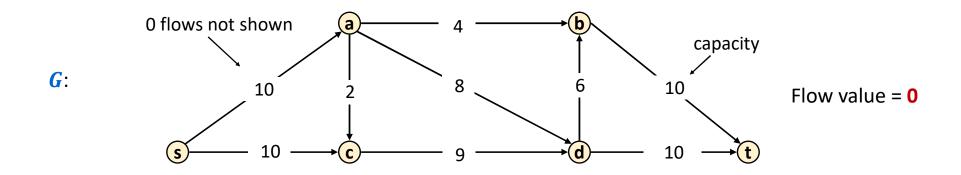
Residual graph: $G_f = (V, E_f)$.

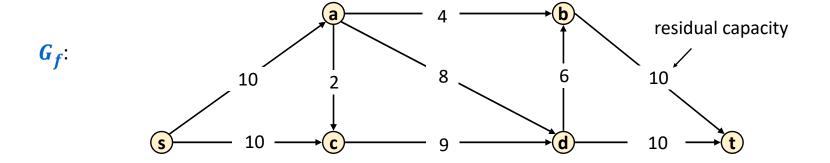
- Residual edges with residual capacity $c_f(e) > 0$.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$

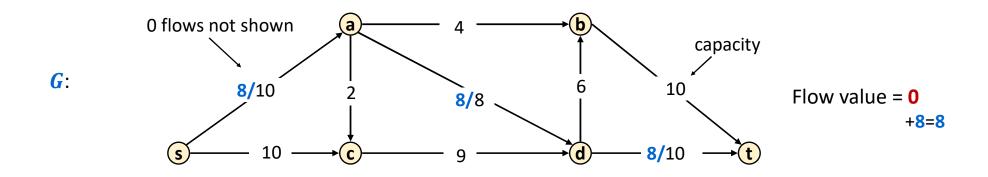
Augmenting Path: Any s-t path P in G_f . Let bottleneck(P)= $\min_{e \in P} c_f(e)$.

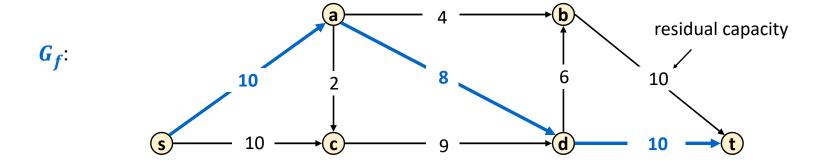
Ford-Fulkerson idea: Repeat "find an augmenting path P and increase flow by bottleneck(P)" until none left.

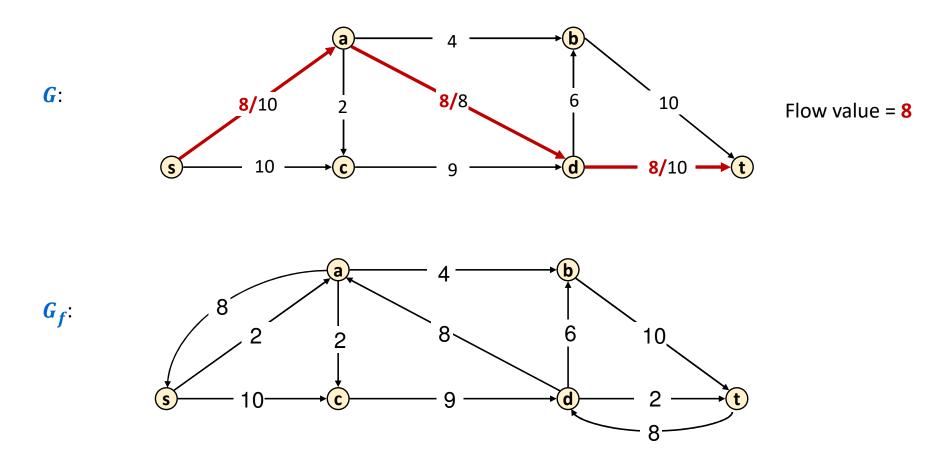


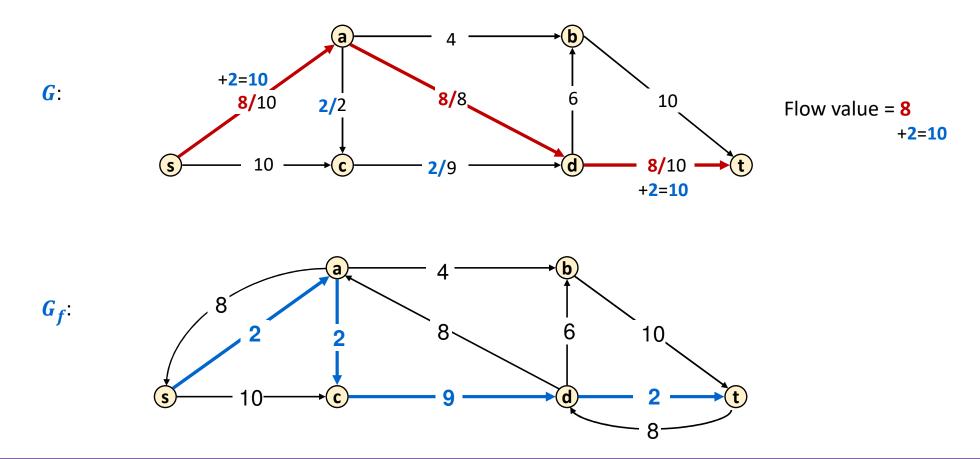


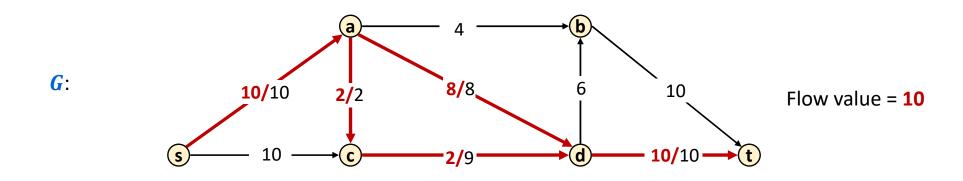


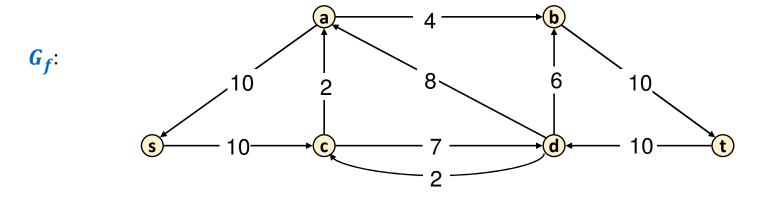


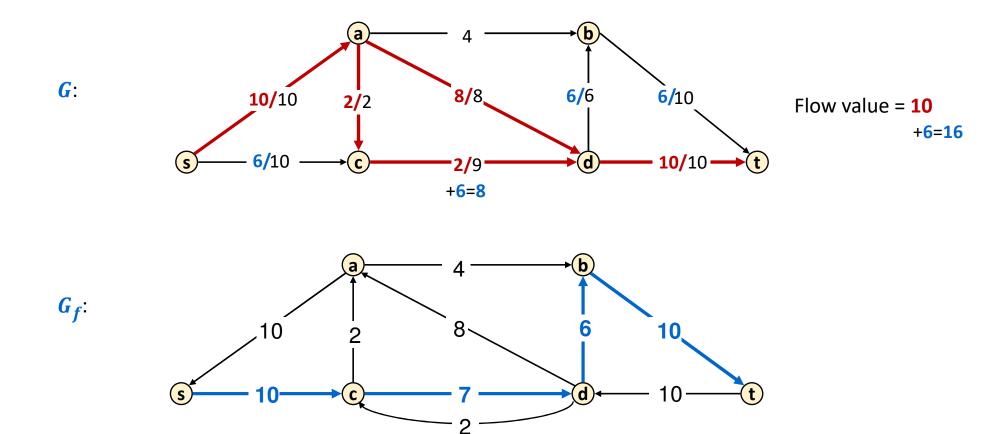


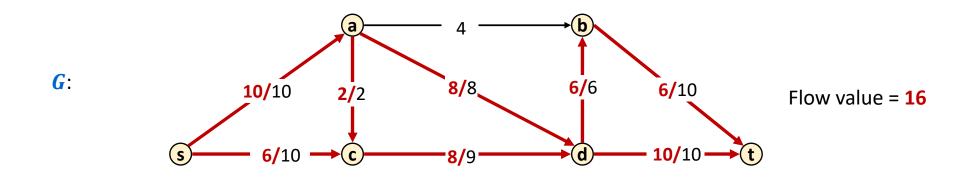


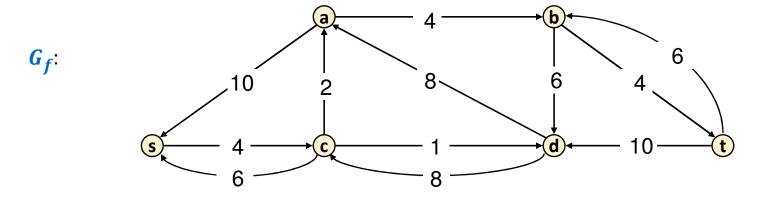


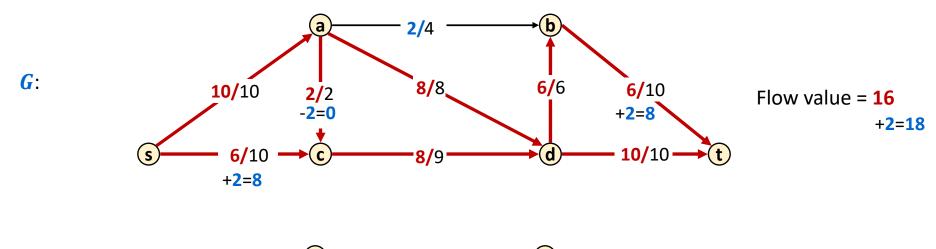


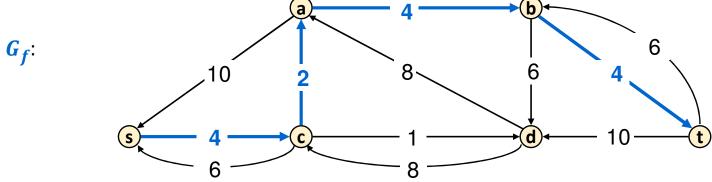




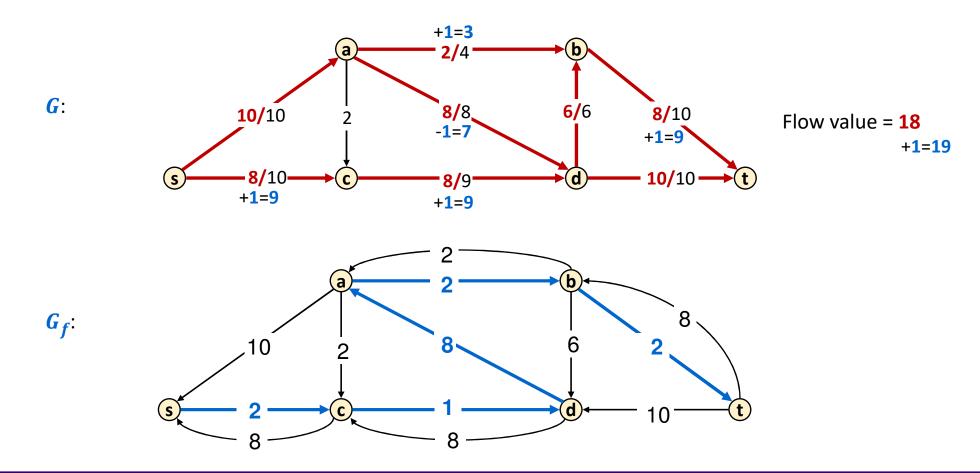


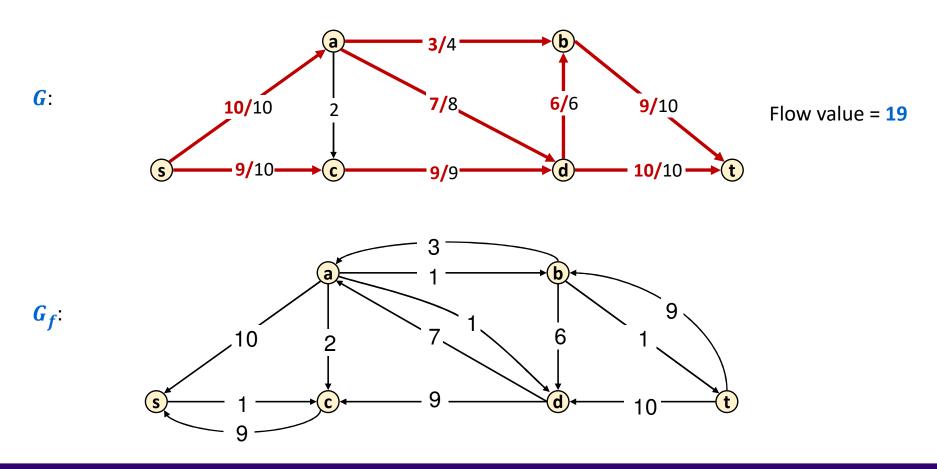


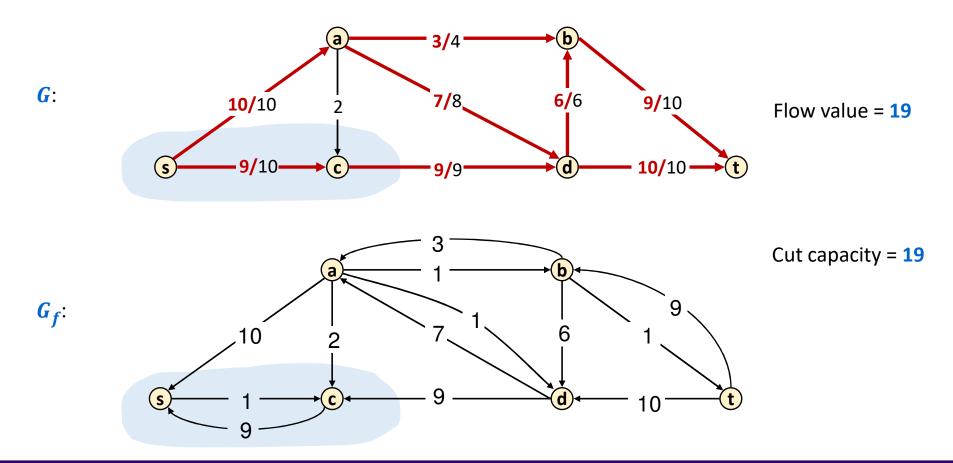












Augmenting Path Algorithm

```
\label{eq:ford-Fulkerson} \begin{split} &\text{Ford-Fulkerson}(G,\ s,\ t,\ c)\ \{\\ &\text{foreach}\ e\in E\ f(e)\leftarrow 0\\ &G_f\leftarrow G \end{split} \label{eq:while} \begin{aligned} &\text{while}\ (G_f\ has\ an\ s-t\ path\ P)\ \{\\ &f\leftarrow Augment(f,\ c,\ P)\\ &update\ G_f \end{aligned} \label{eq:has-ham} \\ &\text{return}\ f \end{split}
```

```
Augment(f, c, P) {
   b \leftarrow bottleneck(P)
   foreach e \in P {
      if (e \in E) f(e) \leftarrow f(e) + b
      else      f(e^R) \leftarrow f(e^R) - b
   }
  return f
}
```

Max-Flow Min-Cut Theorem

Augmenting Path Theorem: Flow f is a max flow \Leftrightarrow there are no augmenting paths wrt f

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.

[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] "Maxflow = Mincut"

- (i) There is a cut (A, B) such that v(f) = c(A, B).
 - (ii) Flow f is a max flow.
- (iii) There is no augmenting path w.r.t. f.
- $(i) \Rightarrow (ii)$: We already know this by the corollary to weak duality lemma.

Proof: We prove both together by showing that all of these are equivalent:

Only $\underline{\text{(iii)}} \Rightarrow \underline{\text{(i)}}$ remaining

 $(ii) \Rightarrow (iii)$: (by contradiction)

If there is an augmenting path w.r.t. flow f then we can improve f. Therefore f is not a max flow.

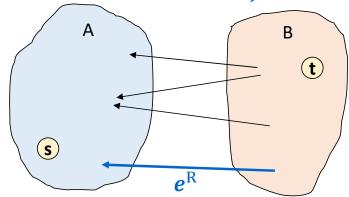
 $(iii) \Rightarrow (i)$:

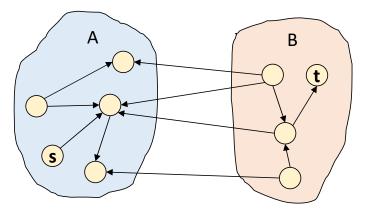
Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let **f** be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of A, $s \in A$.
- Since no augmenting path (s-t path in G_f), $t \notin A$.





residual graph

 $(iii) \Rightarrow (i)$:

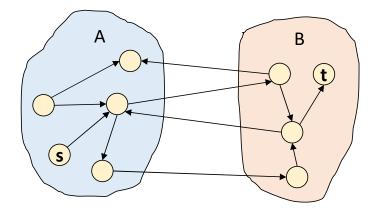
Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let **f** be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of A, $s \in A$.
- Since no augmenting path (s-t path in G_f), $t \notin A$.

Then
$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$



original network

No edge e^R in

 $(iii) \Rightarrow (i)$:

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

No edge e^{R} in residual graph

Proof of Claim: Let **f** be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

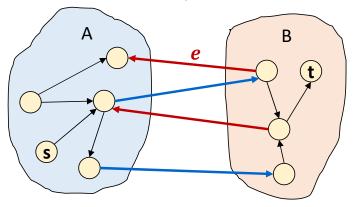
So no flow on $oldsymbol{e}$

- By definition of A, $s \in A$.
- Since no augmenting path (s-t path in G_f), $t \notin A$.

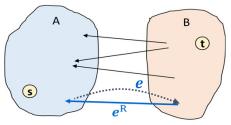
Then
$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e)$$

$$f(e) = c_f(e^{R}) = 0$$



original network



 $(iii) \Rightarrow (i)$:

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

No edge *e* in residual graph

Proof of Claim: Let **f** be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

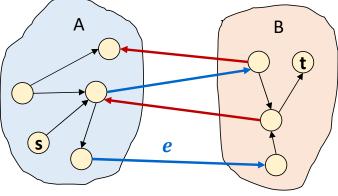
- By definition of A, $s \in A$.
- Since no augmenting path (s-t path in G_f), $t \notin A$.

Then
$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e)$$

$$= \sum_{e \text{ out of } A} c(e)$$

No unused capacity on $oldsymbol{e}$ $oldsymbol{0} = oldsymbol{c}_f(oldsymbol{e}) = oldsymbol{c}(oldsymbol{e}) - oldsymbol{f}(oldsymbol{e})$



f(e) = c(e) original network

 $(iii) \Rightarrow (i)$:

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let **f** be a flow with no augmenting paths.

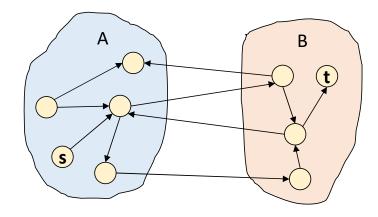
Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of A, $s \in A$.
- Since no augmenting path (s-t path in G_f), $t \notin A$.

Then
$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e)$$

$$= \sum_{e \text{ out of } A} c(e) = c(A, B)$$



original network

Running Time

- Computing first G_f takes O(n+m) time. (Can ignore disconnected bits so $m \ge n-1$.)
- Finding each augmenting path (graph search in G_f) takes O(m) time.
- Updating f and G_f takes O(n) time.

Total O(m) per iteration.

Assumption: All capacities are integers between 1 and C.

Ford-Fulkerson Invariant: Every flow value f(e) and every residual capacity $c_f(e)$ remains an integer throughout the algorithm. So there is a maximum flow with only integer flows.

Theorem: The Ford-Fulkerson algorithm terminates in \leq Maxflow < nC iterations.

Proof: Capacity of cut with $A = \{s\}$ is $\leq (n-1)C$. Each augmentation increases flow value by at least 1.

Corollary: If C = 1, Ford-Fulkerson runs in O(mn) time.

A graph G = (V, E) is bipartite iff

- Set V of vertices has two disjoint parts X and Y
- Every edge in E joins a vertex from X and a vertex from Y

Set $M \subseteq E$ is a matching in G iff no two edges in M share a vertex

Goal: Find a matching M in G of maximum size.

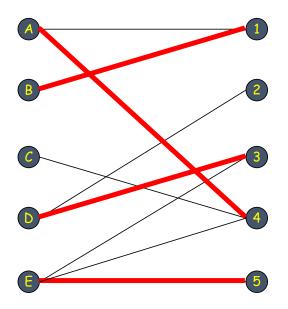
Differences from stable matching

- limited set of possible partners for each vertex
- sides may not be the same size
- no notion of stability; matching everything may be impossible.

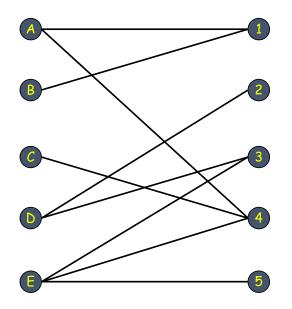
- Models assignment problems
 - X represents customers, Y represents salespeople
 - X represents professors, Y represents courses
- If |X| = |Y| = n
 - G has perfect matching iff maximum matching has size n

Input: Bipartite graph

Goal: Find maximum size matching.

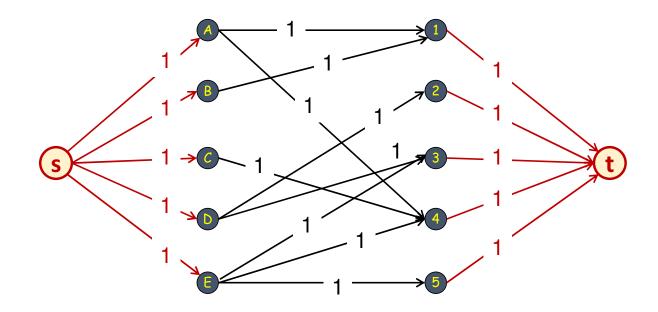


Input: Bipartite graph



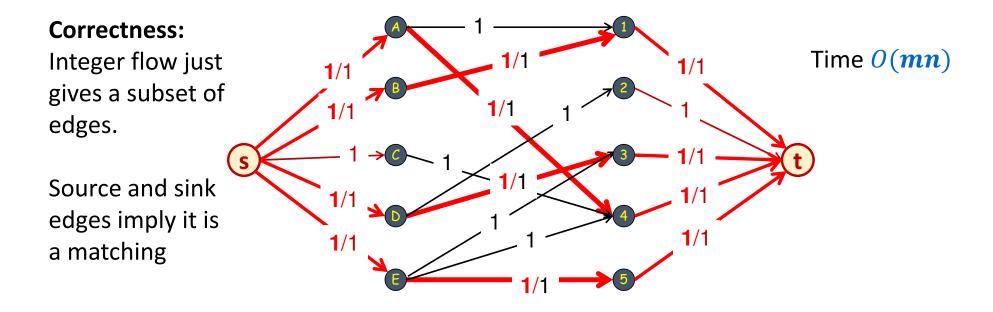
Add new source **s** pointing to left set, new sink **t** pointed to by right set.

Direct all edges from left to right with capacity 1. Compute MaxFlow.



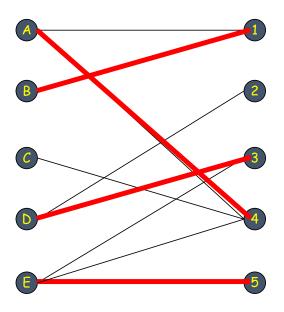
Add new source **s** pointing to left set, new sink **t** pointed to by right set.

Direct all edges from left to right with capacity 1. Compute MaxFlow.



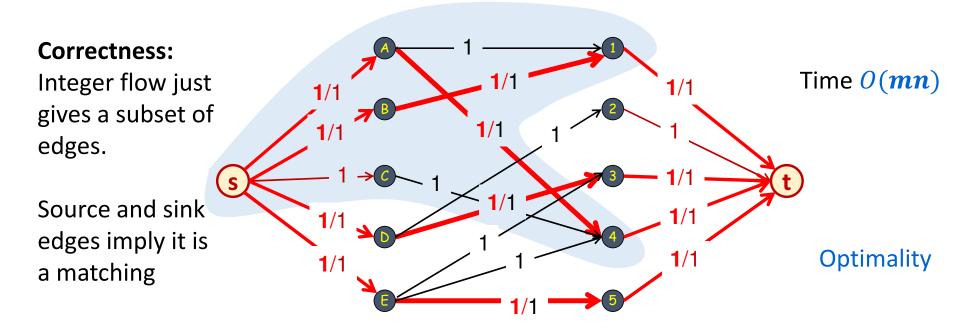
Input: Bipartite graph

Goal: Find maximum size matching.



Optimality

Add new source s pointing to left set, new sink t pointed to by right set. Direct all edges from left to right with capacity 1. Compute MaxFlow.



Ford-Fulkerson Efficiency

Worst case runtime O(mnC) with integer capacities $\leq C$.

- O(m) time per iteration.
- At most **nC** iterations.
- This is "pseudo-polynomial" running time.
- May take exponential time, even with integer capacities:

$$c = 10^9$$
, say
$$c = 10^9$$
, say