
CSE 421

Introduction to Algorithms

Lecture 16:  Maxflow/MinCut

Ford-Fulkerson
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Announcements

See EdStem Announcement/Email posted/sent on Sunday/Monday.

Midterm next Monday, November 4, 6:00 – 7:30 pm in this room

• Exam designed for a regular class time-slot but this includes extra time to finish.

• Coverage: 

• Up to the end of last Thursday’s section on Dynamic Programming

• See important details in two Ed posts.  Sample midterm for practice problems.

• Includes 2-page “reference sheet” available to you on the midterm. 

• Tomorrow’s section will focus on review problems.

• Zoom review session for Q&A on Sunday Nov 3 at 4:45 pm.
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Flow network:

• Abstraction for material flowing through the edges.

• � = (�, �) directed graph, no parallel edges.

• Two distinguished nodes:  � = source, 	 = sink.

• �(�) = capacity of edge � ≥ 0.

Last time: Flow Network
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Minimum s-t cut problem:

Given: a flow network 

Find: an �-	 cut (�, �) of minimum capacity 

�
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Last time: Minimum Cut Problem
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Defn: An �-	 flow in a flow network is a function �:  � � ℝ that satisfies:

• For each � ∈ �: � ≤  � � ≤  �(�) [capacity constraints]

• For each � ∈ � − {�, 	} :

Defn: The value of flow �,

� � � = � �(�)
� ��� �� ��  !�� �
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Last time: Flows
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Given: a flow network 

Find: an �-	 flow of maximum value
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Last time: Maximum Flow Problem
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Corollary: Let � be any �-	 flow and (�, �) be any �-	 cut. 

If � � = �(�, �) then � is a max flow and (�, �) is a min cut.
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Last time: Certificate of Optimality
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Last time: Towards a Max Flow Algorithm

What about the following greedy algorithm?

• Start with �(�)  =  � for all edges � ∈ �.

• While there is an �-	 path " where each edge has � � < �(�).

• “Augment” flow along "; that is:

• Let $ = min�∈" (� � − � � )
• Add $ to flow on every edge � along path ".  (Adds $ to �(�).)

But this can get stuck...
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Flows and cuts so far

Let � be any �-	 flow and (�, �) be any �-	 cut:

Flow Value Lemma: The net value of the flow sent across (�, �) equals � � .

Weak Duality: The value of the flow is at most the capacity of the cut;                        

i.e., � � ≤ � �, � .    “Maxflow ≤ Mincut”

Corollary: If � � = �(�, �) then � is a maximum flow and (�, �) is a minimum cut.

Augmenting along paths using a greedy algorithm can get stuck.

Today: Ford-Fulkerson Algorithm, which applies greedy ideas to a “residual graph” 

that lets us reverse prior flow decisions from the basic greedy approach.
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Greed Revisited: Residual Graph & Augmenting Paths
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Suppose that we took this flow � as a baseline, what 

changes could each edge handle?

• We could add up to 10 units along sv or ut or uv

• We could reduce by up to 20 units from su or uv or vt

This gives us a residual graph �� of possible changes 

where we draw reducing as “sending back”.

The only way we could route more flow from s to t

would be to reduce the flow from u to v to make room 

for that amount of extra flow from s to v.

But to conserve flow we also would need to increase 

the flow from u to t by that same amount.
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Residual Graphs

Original edge:  � = ), � ∈ �.

• Flow �(�), capacity �(�).

Residual edges of two kinds:

• Forward:  � = (), �) with capacity �� � = � � − � �
• Amount of extra flow we can add along �

• Backward: �*  = (�, )) with capacity �� � = � �
• Amount we can reduce/undo flow along �

Residual graph:  �� = (�, ��).

• Residual edges with residual capacity �� � > �.

• �� =  � ∶  � � < � � ∪ {�*:  � � >  �}.

u v6/17
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residual capacity
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Residual Graphs and Augmenting Paths

Residual edges of two kinds:

• Forward:  � = (), �) with capacity �� � = � � − � �
• Amount of extra flow we can add along �

• Backward: �*  = (�, )) with capacity �� � = � �
• Amount we can reduce/undo flow along �

Residual graph:  �� = (�, ��).

• Residual edges with residual capacity �� � > �.

• �� =  � ∶  � � < � � ∪ {�*:  � � >  �}.

Augmenting Path: Any �-	 path " in ��.         Let bottleneck(")= min�∈"  ��(�).

Ford-Fulkerson idea: Repeat “find an augmenting path " and increase flow by bottleneck(")” until 

none left.
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Augmenting Path Algorithm

Augment(f, c, P) {

b ←←←← bottleneck(P) 

foreach e ∈∈∈∈ P {

if (e ∈∈∈∈ E) f(e) ←←←← f(e) + b

else f(eR)←←←← f(eR) - b

}

return f

}

Ford-Fulkerson(G, s, t, c) {

foreach e ∈∈∈∈ E  f(e) ←←←← 0

Gf ←←←← G

while (Gf has an s-t path P) {

f ←←←← Augment(f, c, P)

update Gf
}

return f

}
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Max-Flow Min-Cut Theorem

Augmenting Path Theorem: Flow � is a max flow ⇔ there are no augmenting paths wrt �
Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.

[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] “Maxflow = Mincut”

Proof: We prove both together by showing that all of these are equivalent:

(i) There is a cut (�, �) such that �(�) = �(�, �).

(ii) Flow � is a max flow.

(iii) There is no augmenting path w.r.t. �.

(i) ⇒ (ii): We already know this by the corollary to weak duality lemma.

(ii) ⇒ (iii): (by contradiction)

If there is an augmenting path w.r.t. flow � then we can improve �. Therefore � is not a max flow.

Only (iii) ⇒ (i) remaining
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Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. �, there is a cut (�, �) s.t. �(�) = �(�, �).

Proof of Claim: Let � be a flow with no augmenting paths.

Let � be the set of vertices reachable from � in residual graph ��.

• By definition of �, � ∈ �.

• Since no augmenting path (�-	 path in ��), 	 ∉ �.

residual graph

s

t

A B

30

s

t

A B

�*



31

Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. �, there is a cut (�, �) s.t. �(�) = �(�, �).

Proof of Claim: Let � be a flow with no augmenting paths.

Let � be the set of vertices reachable from � in residual graph ��.

• By definition of �, � ∈ �.

• Since no augmenting path (�-	 path in ��), 	 ∉ �.

Then

original network
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� � = � � � − � � �                     
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Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. �, there is a cut (�, �� s.t. �(�) = �(�, ��.

Proof of Claim: Let � be a flow with no augmenting paths.

Let � be the set of vertices reachable from � in residual graph ��.

• By definition of �, � ∈ �.

• Since no augmenting path (�-	 path in ��), 	 ∉ �.

Then

original network
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���� � �� �* � �
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Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. �, there is a cut (�, �� s.t. �(�) = �(�, ��.

Proof of Claim: Let � be a flow with no augmenting paths.

Let � be the set of vertices reachable from � in residual graph ��.

• By definition of �, � ∈ �.

• Since no augmenting path (�-	 path in ��), 	 ∉ �.

Then

original network
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� � = � � � − � � �                     
�  !�� �� ��� �� �

    � � � �                             
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“� is saturated”
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Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. �, there is a cut (�, �) s.t. �(�) = �(�, �).

Proof of Claim: Let � be a flow with no augmenting paths.

Let � be the set of vertices reachable from � in residual graph ��.

• By definition of �, � ∈ �.

• Since no augmenting path (�-	 path in ��), 	 ∉ �.

Then

original network

s

t

A B

� � = � � � − � � �                     
�  !�� �� ��� �� �

    = � � �                             
� ��� �� �

= � � �     = �(�, �) 
� ��� �� �
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Running Time

• Computing first �� takes 1(2 + 4) time.  (Can ignore disconnected bits so 4 ≥ 2 − 5.)

• Finding each augmenting path (graph search in ��) takes 1(4) time. 

• Updating � and �� takes 1(2) time.

Total 1(4) per iteration.

Assumption: All capacities are integers between 5 and 6.

Ford-Fulkerson Invariant: Every flow value �(�) and every residual capacity ��(�) remains an integer 

throughout the algorithm.   So there is a maximum flow with only integer flows.

Theorem: The Ford-Fulkerson algorithm terminates in ≤ Maxflow < 26 iterations.

Proof: Capacity of cut with � = {�} is ≤ (2 − 5)6. Each augmentation increases flow value by at least 5. 

Corollary: If 6 = 5, Ford-Fulkerson runs in 1(42) time.
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Bipartite Matching

A graph � = �, �  is bipartite iff

• Set � of vertices has two disjoint parts 7 and 8
• Every edge in � joins a vertex from 7 and a vertex from 8

Set 9 ⊆ � is a matching in � iff no two edges in 9 share a vertex

Goal: Find a matching 9 in � of maximum size.

Differences from stable matching 

• limited set of possible partners for each vertex

• sides may not be the same size

• no notion of stability; matching everything may be impossible.
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Bipartite Matching

• Models assignment problems

• 7 represents customers, 8 represents salespeople

• 7 represents professors, 8 represents courses

• If |7| = |8| = 2 
• � has perfect matching iff maximum matching has size 2
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Bipartite Matching

Input:  Bipartite graph

Goal: Find maximum size matching.
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Bipartite Matching as a special case of Flow

Input:  Bipartite graph
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Bipartite Matching as a special case of Flow

Add new source s pointing to left set, new sink t pointed to by right set. 

Direct all edges from left to right with capacity 1.  Compute MaxFlow.
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Bipartite Matching as a special case of Flow

Add new source s pointing to left set, new sink t pointed to by right set. 

Direct all edges from left to right with capacity 1.  Compute MaxFlow.
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Bipartite Matching

Input:  Bipartite graph

Goal: Find maximum size matching.
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Bipartite Matching as a special case of Flow

Add new source s pointing to left set, new sink t pointed to by right set. 

Direct all edges from left to right with capacity 1.  Compute MaxFlow.
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Worst case runtime 1 426 with integer capacities ≤ 6.

• 1(4) time per iteration.

• At most 26 iterations.

• This is “pseudo-polynomial” running time.

• May take exponential time, even with integer capacities:
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Ford-Fulkerson Efficiency
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