CSE 421
Introduction to Algorithms

Lecture 15: Network Flow




Announcements

Midterm Reminder:
* Date:
* Next Monday, November 4, 6:00 — 7:30 pm in this room
* Exam designed for a regular class time-slot but this includes extra time to finish.
* Coverage:
e Up to the end of last Thursday’s section on Dynamic Programming

* Sample midterm for practice problems and length posted yesterday.

* Includes “summary sheet” available to you on the midterm.

* This week’s section will focus on review problems.

e Zoom review session for Q&A on Sunday Nov 3 at 4:45 pm. (No conflict with the
Seahawks game.)
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Maximum Flow and Minimum Cut

Max flow and min cut:
* Two very rich algorithmic problems.
* Cornerstone problems in combinatorial optimization.
* Beautiful mathematical duality.

Nontrivial applications / reductions:

* Data mining. * Network reliability.

* Project selection. * Distributed computing.

* Airline scheduling.  Egalitarian stable matching.
* Bipartite matching. » Security of statistical data.

* Network intrusion detection.
* Multi-camera scene reconstruction.
°* many many more ...

* Baseball elimination.

* Image segmentation.

* Network connectivity.
* Strip mining.
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Origins of Max Flow and Min Cut Problems

Max Flow problem formulation: Soviet Rail Network 1955
 [Tolstoy 1930] Rail transportation «
planning for the Soviet Union

Min Cut problem formulation:

e Cold War: US military planners
want to find a way to cripple Soviet
supply routes

* [Harris 1954] Secret RAND corp
report for US Air Force

R AN

[Ford-Fulkerson 1955] Problems are RN ,_ \W

R
T BRI R

equivalent

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.
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Flow Network

Flow network:
» Abstraction for material flowing through the edges.
* G = (V,E) directed graph, no parallel edges.
* Two distinguished nodes: s =source, t = sink.
* c(e) = capacity of edge e > 0.

15 10
4 15 4o

capacity = 15
\é 30 Tt
PAUL G. ALLEN SCHOOL




Cuts

Defn: An s-t cut is a partition (4, B) of V withs € Aand t € B.
The capacity of cut (4, B) is

c(4,B) = 2 c(e)

eoutofd
» d
capacity 30
15 10
source (g }#\ \\/ﬁg 10 sink
A 4 15 10

\é 30 » f
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Cuts

Defn: An s-t cut is a partition (4, B) of V withs € Aand t € B.
The capacity of cut (4, B) is

c(4,B) = z c(e)

eoutofA
» d
capacity 48
15
source 4¢\ \}({g sink
A 4 15
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Minimum Cut Problem

Minimum s-t cut problem:
Given: a flow network
Find: an s-t cut of minimum capacity

» d
capacity 28 /%\ ?\
15
source 4¢\ \}({g sink
4 15
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Flows

Defn: An s-t flow in a flow network is a function f: E — R that satisfies:

* Foreache € E:0 < f(e) < c(e) [capacity constraints]

* Foreachv eV —{s,t}: Z fle) = Z f(e) [flow conservation]

eintov eout of v
Defn: The value of flow f, a 0/9 ;QP\
v(f) = f(e) 4/1o 0/15 0/15  0/10
eoutofs
e 4/10
0/15 0/4 0”5 0/10
value =4
0/30
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Flows

Defn: An s-t flow in a flow network is a function f: E — R that satisfies:
* Foreache € E:0 < f(e) < c(e) [capacity constraints]

* Foreachv eV —{s,t}: Z fle) = Z f(e) [flow conservation]

eintov eoutofv
Defn: The value of flow f, a 9 ;QP\
v(f) = Z f(e) 4/1o 10
eoutofs
—(?\ 4/10
Only show non-zero values of f
value =4 \ : e
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Flows

Defn: An s-t flow in a flow network is a function f: E — R that satisfies:
* Foreache € E:0 < f(e) < c(e) [capacity constraints]

* Foreachv eV — {s,t}: Z f(e) = Z f(e) [flow conservation]

eintov eoutofv

Defn: The value of flow f, a 6/9

v(f) = Z f(e) 10/10 4/4 6/10

eoutofs

8/10
Only show non-zero values of f

11/15
value = 24 10110
11/30
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Maximum Flow Problem

Given: a flow network
Find: an s-t flow of maximum value

a 6/9

10/10 4/4 6/10

8/10

11/15
value = 24 10110
11/30
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Maximum Flow Problem

Flow Value Lemma: Let f be any s-t flow and (A4, B) be any s-t cut.
The net value of the flow sent across the cut equals v(f):

> f@- ) fle)=v(f)

eoutofA einto A
a TN
10/1 O 4/4 15 6/10

ek

11/15 10/10
value = 24
11/30
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Maximum Flow Problem

Flow Value Lemma: Let f be any s-t flow and (A4, B) be any s-t cut.
The net value of the flow sent across the cut equals v(f):

> f@- ) fle)=v(f)

eoutofA einto A
a TN
10/1 O 4/4 15 6/10

Lok i

11/15 10/10
value = 24
ot 11/3><5/
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Maximum Flow Problem

Flow Value Lemma: Let f be any s-t flow and (A4, B) be any s-t cut.
The net value of the flow sent across the cut equals v(f):

> f@- ) fle)=v(f)

eoutofA einto 4
Why is it true? a 6/9
* Add vertices to s side one by one. »@\
* By flow conservation, net value 10/10 4/4 15 6/10

doesn’t change
8/10

11/15 10/10
value = 24
254 mhé/
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Maximum Flow Problem

Flow Value Lemma: Let f be any s-t flow and (A4, B) be any s-t cut.
The net value of the flow sent across the cut equals v(f):

> f@- ) fle)=v(f)

eoutofA einto 4
Proof: v(f) = 2 f(e) = 0. No edges into s since it is a source
eoutofs
> f@- ) fe+ ) I fe- f(e)‘
eoutofs eintos veA—{s} Le out of v eintov
= > f@- ) f@© I
e out of 4 einto 4 = 0 by flow conservation. H

Contributions from internal edges of A4 cancel.
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Flows and Cuts

Weak Duality: Let f be any s-t flow and (A4, B) be any s-t cut. The value
of the flow is at most the capacity of the cut; i.e., v(f) < c(4, B):

a 6/9

Value of flow=24=28-4
10/10 4/4 1 6/10

Capacity of cut = 28
8/10

11/15 10/10
mhé/
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Flows and Cuts

Weak Duality: Let f be any s-t flow and (A4, B) be any s-t cut. The value
of the flow is at most the capacity of the cut; i.e., v(f) < c(4, B).

Proof: v(f) = z f(e) — z f(e)

eoutofA einto A

< Z f(e) since f(e) = 0

eoutof A
< Z c(e) since f(e) < c(e)

eoutof4

= c(4, B)
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Certificate of Optimality

Corollary: Let f be any s-t flow and (A4, B) be any s-t cut.
If v(f) = c(A, B) then f is a max flow and (4, B) is a min cut.

9/9

Value of flow = 28
10/1 1/15 9/10

d
Capacity of cut = 28
9/10

Both are optimal! 14/1 10/10
14/30
PAUL G. ALLEN SCHOOL




Towards a Max Flow Algorithm

What about the following greedy algorithm?

 Start with f(e) = 0 for all edges e € E.
« While there is an s-t path P where each edge has f(e) < c(e).
« “Augment” flow along P; that is:

e Lleta = reneilr)l(c(e) — f(e))
« Add a to flow on every edge e along path P. (Adds a to v(f).)
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Towards a Max Flow Algorithm

What about the following greedy algorithm?

 Start with f(e) = 0 for all edges e € E.
« While there is an s-t path P where each edge has f(e) < c(e).
« “Augment” flow along P; that is:

e Lleta = reneilr)l(c(e) — f(e))
« Add a to flow on every edge e along path P. (Adds a to v(f).)

Can get stuczlg--- Has flow value20 - } ~10/10
/20 10
and no path P
2030 :3@ p (51 10/30

10\6/20/20 but 30 is possible 10/10\(\5/20/20
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Another Stuck Example

On every s-t path there is some edge with f(e) = c(e):

a 6/9
Value of flow=24=28-4
10/10 4/4 1 6/10

Capacity of cut = 28

8/10

11/15 10/10
mhé/
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Flows and cuts so far

Let f be any s-t flow and (4, B) be any s-t cut:

Flow Value Lemma: The net value of the flow sent across (A4, B) equals v(f).

Weak Duality: The value of the flow is at most the capacity of the cut;
i.e., v(f) < c(4,B).

Corollary: If v(f) = c(A, B) then f is a maximum flow and (A4, B) is a minimum cut.

Augmenting along paths using a greedy algorithm can get stuck.

Next idea: Ford-Fulkerson Algorithm, which applies greedy ideas to a “residual graph”
that lets us reverse prior flow decisions from the basic greedy approach to

get optimal results!
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Greed Revisited: Residual Graph & Augmenting Paths

The only way we could route more flow from s to t
20/20 10 would be to reduce the flow from u to v to make room
61 20/30 }@ for that amount of extra flow from s to v.

10 20/20 But to conserve flow we also would need to increase
the flow from u to t by that same amount.

Suppose that we took this flow f as a baseline, what /@\

20~ T\ 10
changes could each edge handle? Qf 2010 E
 We could add up to 10 units along sv or ut or uv

 We could reduce by up to 20 units from su or uv or vt 1O\<‘¥/20

This gives us a residual graph G of possible changes
where we draw reducing as “sending back”.
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Greed Revisited: Residual Graph & Augmenting Paths

Augment flow
20/20 20/20 10/1 0 along path

20/30 10/30

\é/ 20/20 10/1 0 \é/ 20/20

Re5|dual graph Path in Gf
N N\
2010 }@ > @f 2010

\5/ \5/
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Greed Revisited: Residual Graph & Augmenting Paths

20/20 /vﬁg\m/m

10/30

10/10 \Cg/zo/zo

New residual
graph G
@2\/ 1020 }@ No path can even leave s!
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