
CSE 421

Introduction to Algorithms

Lecture 15:  Network Flow
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Announcements

Midterm Reminder:  

• Date:

• Next Monday, November 4, 6:00 – 7:30 pm in this room

• Exam designed for a regular class time-slot but this includes extra time to finish.

• Coverage: 

• Up to the end of last Thursday’s section on Dynamic Programming

• Sample midterm for practice problems and length posted yesterday.

• Includes “summary sheet” available to you on the midterm. 

• This week’s section will focus on review problems.

• Zoom review session for Q&A on Sunday Nov 3 at 4:45 pm. (No conflict with the 

Seahawks game.)
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Maximum Flow and Minimum Cut

Max flow and min cut:

• Two very rich algorithmic problems.

• Cornerstone problems in combinatorial optimization.

• Beautiful mathematical duality.

Nontrivial applications / reductions:

• Data mining.

• Project selection.

• Airline scheduling.

• Bipartite matching.

• Baseball elimination.

• Image segmentation.

• Network connectivity. 

• Strip mining. 

• Network reliability.

• Distributed computing.

• Egalitarian stable matching.

• Security of statistical data.

• Network intrusion detection.

• Multi-camera scene reconstruction.

• many many more …
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Origins of Max Flow and Min Cut Problems

Max Flow problem formulation: 

• [Tolstoy 1930] Rail transportation 

planning for the Soviet Union

Min Cut problem formulation:

• Cold War:  US military planners 

want to find a way to cripple Soviet 

supply routes

• [Harris 1954] Secret RAND corp

report for US Air Force

[Ford-Fulkerson 1955] Problems are 

equivalent

Soviet Rail Network 1955
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Reference:  On the history of the transportation and maximum flow problems.

Alexander Schrijver in Math Programming, 91: 3, 2002.
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Flow network:

• Abstraction for material flowing through the edges.

• � = (�, �) directed graph, no parallel edges.

• Two distinguished nodes:  � = source, 	 = sink.

• �(�) = capacity of edge � ≥ 0.
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Defn:  An �-	 cut is a partition (�, �) of � with � ∈ � and 	 ∈ �.

The capacity of cut (�, �) is 

� �, � = � �(�)
� ��� �� �
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Defn:  An �-	 cut is a partition (�, �) of � with � ∈ � and 	 ∈ �.

The capacity of cut (�, �) is 

� �, � = � �(�)
� ��� �� �

�
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Cuts
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Minimum s-t cut problem:

Given: a flow network 

Find: an �-	 cut of minimum capacity 

�
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Minimum Cut Problem
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Defn: An �-	 flow in a flow network is a function �:  � � ℝ that satisfies:

• For each � ∈ �: � ≤  � � ≤  �(�) [capacity constraints]

• For each � ∈ � − {�, 	} :

Defn: The value of flow �,

� � � = � �(�)
� ��� �� ��  !�� �
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Defn: An �-	 flow in a flow network is a function �:  � � ℝ that satisfies:

• For each � ∈ �: � ≤  � � ≤  �(�) [capacity constraints]

• For each � ∈ � − {�, 	} :

Defn: The value of flow �,

� � � = � �(�)
� ��� �� ��  !�� �
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Defn: An �-	 flow in a flow network is a function �:  � � ℝ that satisfies:

• For each � ∈ �: � ≤  � � ≤  �(�) [capacity constraints]

• For each � ∈ � − {�, 	} :

Defn: The value of flow �,

� � � = � �(�)
� ��� �� ��  !�� �
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Given: a flow network 

Find: an �-	 flow of maximum value
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Maximum Flow Problem
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Flow Value Lemma: Let � be any �-	 flow and (�, �) be any �-	 cut.        

The net value of the flow sent across the cut equals �(�):
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Maximum Flow Problem
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Flow Value Lemma: Let � be any �-	 flow and (�, �) be any �-	 cut.        

The net value of the flow sent across the cut equals �(�):
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Maximum Flow Problem
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Flow Value Lemma: Let � be any �-	 flow and (�, �) be any �-	 cut.        

The net value of the flow sent across the cut equals �(�):

15

Maximum Flow Problem
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Why is it true?

• Add vertices to � side one by one.   

• By flow conservation, net value 

doesn’t change



Flow Value Lemma: Let � be any �-	 flow and (�, �) be any �-	 cut.        

The net value of the flow sent across the cut equals �(�):

Proof:
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Maximum Flow Problem

� � � − � � � = �(�)
�  !�� �� ��� �� �

� � = � � �                                                                                                              
� ��� �� �

= � � �
� ��� �� �
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�  !�� �

+ � � � � − � � �
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�  !�� �� ��� �� �

=  �.  No edges into � since it is a source

=  � by flow conservation. 

Contributions from internal edges of � cancel. 



Weak Duality: Let � be any �-	 flow and (�, �) be any �-	 cut.  The value 

of the flow is at most the capacity of the cut;  i.e., � � ≤ �(�, �):
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Flows and Cuts
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Weak Duality: Let � be any �-	 flow and (�, �) be any �-	 cut.  The value 

of the flow is at most the capacity of the cut;  i.e., � � ≤ � �, � .

Proof:     
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Flows and Cuts

� � = � � � − � � �            
�  !�� �� ��� �� �
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Corollary: Let � be any �-	 flow and (�, �) be any �-	 cut. 

If � � = �(�, �) then � is a max flow and (�, �) is a min cut.
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Certificate of Optimality
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Towards a Max Flow Algorithm

What about the following greedy algorithm?

• Start with �(�)  =  � for all edges � ∈ �.

• While there is an �-	 path % where each edge has � � < �(�).

• “Augment” flow along %; that is:

• Let ' = min�∈% (� � − � � )
• Add ' to flow on every edge � along path %.  (Adds ' to �(�).)
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Towards a Max Flow Algorithm

What about the following greedy algorithm?

• Start with �(�)  =  � for all edges � ∈ �.

• While there is an �-	 path % where each edge has � � < �(�).

• “Augment” flow along %; that is:

• Let ' = min�∈% (� � − � � )
• Add ' to flow on every edge � along path %.  (Adds ' to �(�).)

Can get stuck...
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On every �-	 path there is some edge with � � = �(�):
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Another Stuck Example
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Flows and cuts so far

Let � be any �-	 flow and (�, �) be any �-	 cut:

Flow Value Lemma: The net value of the flow sent across (�, �) equals � � .

Weak Duality: The value of the flow is at most the capacity of the cut;                        

i.e., � � ≤ � �, � .

Corollary: If � � = �(�, �) then � is a maximum flow and (�, �) is a minimum cut.

Augmenting along paths using a greedy algorithm can get stuck.

Next idea: Ford-Fulkerson Algorithm, which applies greedy ideas to a “residual graph” 

that lets us reverse prior flow decisions from the basic greedy approach to 

get optimal results!
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Greed Revisited: Residual Graph & Augmenting Paths
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Suppose that we took this flow � as a baseline, what 

changes could each edge handle?

• We could add up to 10 units along sv or ut or uv

• We could reduce by up to 20 units from su or uv or vt

This gives us a residual graph �� of possible changes 

where we draw reducing as “sending back”.

The only way we could route more flow from s to t

would be to reduce the flow from u to v to make room 

for that amount of extra flow from s to v.

But to conserve flow we also would need to increase 

the flow from u to t by that same amount.
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Greed Revisited: Residual Graph & Augmenting Paths
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