CSE 421Introduction to Algorithms

Lecture 14: Dynamic ProgrammingBellman-Ford

I EN SCHOOL

Shortest Paths allowing negative-cost edges

Shortest path problem:

Given: a directed graph $G = (V, E)$ with edge weights c_{vw} (possibly negative) and vertices $s, t \in V$.

Find: a shortest path in \boldsymbol{G} from \boldsymbol{s} to node \boldsymbol{t} .

Sample Application: Nodes represent agents in a financial setting and \boldsymbol{c}_{vw} is cost of a three contexts of the set of a three contexts of the set of transaction in which we buy from agent $\boldsymbol{\nu}$ and sell immediately to $\boldsymbol{w}.$

Shortest Paths: Failed Attempts

Why not Dijkstra's Algorithm? Can fail if negative edge costs.

Dijkstra begins with $S = \{s\}$ and $d(s) = 0$. Next step would add \boldsymbol{t} to \boldsymbol{s} at distance $\boldsymbol{1}$, though actual minimum distance from \bm{s} to \bm{t} is $-\bm{1}.$

Adding a constant to every edge cost to make them ≥ 0 ? Also fails.

Problem: Paths can have different lengths so adding a fixed amount per edge changes relative costs.

Original shortest path is **s-v-w-t** with cost **3**.

After adjustment, shortest path is **s-u-t**.

Shortest Paths: Negative Cost Cycles

Negative cost cycle:

Observation: (1) If some path from *s* to *t* contains a negative cost cycle, there does not exist a shortest $\boldsymbol{s\text{-}t}$ path.

The path can go around the cycle *more times and get even lower
cost, the limit of nath costs is* $-\infty$ cost, the limit of path costs is $-\infty$.

Shortest Paths: Negative Cost Cycles

Observation: (1) If some path from **s** to **t** contains a negative cost cycle, there does not exist a shortest $\boldsymbol{s\text{-}t}$ path.

(2) If the graph \bm{G} has no negative cycles then a shortest $\bm{s}\text{-}\bm{t}$ path must
. have at most $n-1$ edges.

If not, there would be a repeated vertex which would create a cycle that could be removed without decreasing the cost.

Shortest Paths: Dynamic Programming

Defn: OPT (i, v) = length of shortest v - t path P using at most i edges.

Case 1: P uses at most $i-1$ edges.

• In this case $\mathsf{OPT}(\bm{i},\bm{\nu}) = \mathsf{OPT}(\bm{i-1},\bm{\nu})$

Case 2: P uses exactly i edges.

• if (v, w) is first edge, then **OPT** uses (v, w) , and then selects the best w - t path using at most $i-1$ edges

$$
\text{OPT}(i, v) = \begin{cases} 0 & \text{if } i = 0 \text{ and } v = t \\ \min(\text{OPT}(i - 1, v), \min_{(v, w) \in E} c_{vw} + \text{OPT}(i - 1, w) & \text{otherwise} \end{cases}
$$

By observation: if no negative cost cycles, $\mathsf{OPT}(n-1,\nu)$ = length of shortest $\nu\text{-}t$ path.

Shortest Paths: Implementation

```
Shortest-Path(G, t) {
foreach node v ∈V
OPT[0, v] ← ∞OPT[0, t] ←0for i = 1 to n-1
    foreach node v ∈V

OPT[i, v] ← OPT[i-1, v]
       foreach edge (v, w) ∈E

OPT[i, v] ← min { OPT[i, v], cvw + OPT[i-1, w] }
} Total:
```
 $n-1$ iterations of outer loop

Two inner loops together touch each directed edge once

> : $O(\bm{n}\bm{m})$ time $\mathit{O}(\mathit{\mathbf{n}}^{2})$ space

To find the shortest paths, maintain a "successor" pointer for each vertex that gives the next vertex on the current shortest path to t .

Shortest Paths: Practical Improvements

Practical improvements:

- Maintain only one array $\mathsf{OPT}[v]$ = shortest $v\text{-}t$ path that we have found so far.
- No need to check edges of the form (v, w) unless **OPT**[w] changed in previous iteration.

Theorem: Throughout the algorithm, $\mathsf{OPT}[v]$ is length of some v - t path, and after i rounds of updates, the value $\mathsf{OPT}[v]$ is no larger than the length of shortest $\boldsymbol{v\text{-}t}$ path using at most \boldsymbol{i} edges.

Overall impact.

```
Space: O(m + n).
```
Running time: Still $\bm{o}(\bm{mn})$ worst case, but substantially faster in practice.

Bellman-Ford: Efficient Implementation

```
Push-Based-Shortest-Path(G, s, t) {foreach node v ∈ V {
      OPT[v] ← ∞
successor[v] ← φ}
OPT[t] = 0; oldupdated ← {t} 
   for i = 1 to n-1 {
      updated ← φ
foreach node w ∈ V {
       if (w is in oldupdated) {
          foreach node v such that (v, w) ∈ E {
             \texttt{if} \quad (\texttt{OPT}[v] > c_{vw} + \texttt{OPT}[w])OPT[v] ← cvw + OPT[w]
                successor[v] ← w
updated ← updated ∪ {v}
             }}}
if updated = φ, stop.
      else oldupdated ← updated
   }}
```


Shortest paths with negative costs on a DAG

Edges only go from lower to higher-numbered vertices

- Update distances in reverse order of topological sort
- Only one pass through vertices required
- $\bm O(n + \bm m)$ time

Distance Vector Protocol

PAUL G. ALLEN SCHOOL **SCIENCE & ENGINEERING**

Bellman-Ford Application: Distance Vector Protocol

Application domain: Communication networks

- Node [≈] router
- Edge ≈ direct communication link
- Cost of $edge \approx$ delay on link.

Edge costs are non-negative, why not use Dijkstra's algorithm?

• Dijkstra's algorithm requires global information in the network

Advantages of Bellman-Ford approach:

- It only uses only local knowledge of neighboring nodes.
- No need for synchronization: We don't expect routers to run in lockstep. The order in which each **foreach** loop executes in not important. Moreover, the Bellman-Ford algorithm still converges even if updates are asynchronous!

Distance Vector Protocol

Distance vector protocol:

- Each router maintains a vector of shortest path lengths to every other node (distances) and the first hop on each path (directions).
- Algorithm: each router performs *n* separate computations, one for each potential destination node.
- "Routing by rumor."

Examples: RIP, Xerox XNS RIP, Novell's IPX RIP, Cisco's IGRP, DEC's DNA Phase IV, AppleTalk's RTMP.

Caveat: Edge costs may *change* during algorithm (or fail completely).

"counting to infinity" problem

Path Vector Protocols

Link state routing:

- Each router also stores the entire path.
- Based on Dijkstra's algorithm.
- Avoids "counting-to-infinity" problem and related difficulties.
- Requires significantly more storage.

Examples: Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).

Negative Cycles in a Graph

PAUL G. ALLEN SCHOOL *RISCIENCE & ENGINEERING*

Detecting Negative Cycles

Lemma: If every vertex in G can reach t and $\mathsf{OPT}(n, v) = \mathsf{OPT}(n - 1, v)$ for all v , then G has no negative cycles.

Proof: This would be a fixed point of recurrence that computes $\mathsf{OPT}(i,\nu)$ correctly for every i . Vertices on negative cycles that can reach \boldsymbol{t} couldn't possibly have a fixed point.

Lemma: If $\mathsf{OPT}(n, v) < \mathsf{OPT}(n-1, v)$ for some v, then shortest path from v to t with length $\leq n$ contains a cycle $\boldsymbol{W}.$ Moreover \boldsymbol{W} has negative cost.

Proof: (By contradiction)

 $\textsf{Since }\textsf{OPT}({\boldsymbol{n}},{\boldsymbol{\nu}})<\textsf{OPT}({\boldsymbol{n}}-1,{\boldsymbol{\nu}})$, paths ${\boldsymbol{P}}$ with cost $\textsf{OPT}({\boldsymbol{n}},{\boldsymbol{\nu}})$ have exactly ${\boldsymbol{n}}$ edges.

By pigeonhole principle, such a \boldsymbol{P} must contain a directed cycle $\boldsymbol{W}.$

Deleting W yields a v - t path with $< n$ edges \Rightarrow W has negative cost.

Detecting Negative Cycles

Theorem: Can detect negative cost cycles in $O(mn)$ time.

 $\boldsymbol{\mathsf{Algorithm:}}\;$ Add new node \boldsymbol{t} and connect all nodes to \boldsymbol{t} with $\boldsymbol{0}$ -cost edge.

 $\mathsf{Check}\; \mathsf{if}\; \mathsf{OPT}({\boldsymbol{n}},{\boldsymbol{\nu}})=\mathsf{OPT}({\boldsymbol{n}}-{\boldsymbol{1}},{\boldsymbol{\nu}})$ for all vertices ${\boldsymbol{\nu}}$

- if yes, then no negative cycles
- $\bullet\,$ if no, then extract cycle from shortest path from \boldsymbol{v} to \boldsymbol{t}

Detecting Negative Cycles: Application

Currency conversion: Given *n* currencies and exchange rates between pairs of currencies, is there an arbitrage opportunity?

Remark: High speed trading makes fastest algorithm very valuable!

Detecting Negative Cycles: Summary

Run Bellman-Ford on graph with

- extra node t .
- early stopping for up to n iterations (instead of $n 1$).
- successor variables

Fact: upon termination, successor variables trace a negative cycle if one exists...

