
CSE 421

Introduction to Algorithms

Lecture 14:  Dynamic Programming

Bellman-Ford
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Shortest Paths allowing negative-cost edges

Shortest path problem:

Given: a directed graph � = (�, �) with edge weights �	
 (possibly negative) and 

vertices �, � ∈ �. 

Find: a shortest path in � from � to node �.

Sample Application: Nodes represent agents in a financial setting and �	
 is cost of a 

transaction in which we buy from agent 	 and sell immediately to 
.
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Shortest Paths:  Failed Attempts

Why not Dijkstra’s Algorithm?  Can fail if negative edge costs.

Adding a constant to every edge cost to make them ≥ �?   Also fails.
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Dijkstra begins with � = {�} and �(�) = �.

Next step would add � to � at distance �, though 

actual minimum distance from � to � is −�.

Add 3 Problem: Paths can have different lengths so adding a 

fixed amount per edge changes relative costs.

Original shortest path is s-v-w-t with cost 3.

After adjustment, shortest path is s-u-t.
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Shortest Paths:  Negative Cost Cycles

Negative cost cycle:

Observation: (1) If some path from � to � contains a negative cost cycle, 

there does not exist a shortest �-� path.
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The path can go around the cycle � more times and get even lower 

cost, the limit of path costs is −∞.
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Shortest Paths:  Negative Cost Cycles

Observation: (1) If some path from � to � contains a negative cost cycle, 

there does not exist a shortest �-� path.

(2) If the graph � has no negative cycles then a shortest �-� path must 

have at most � − � edges.

If not, there would be a repeated vertex which would create a cycle that could 

be removed without decreasing the cost.

s t�
� � ≥  �
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Shortest Paths:  Dynamic Programming

Defn: OPT(�, 	) = length of shortest 	-� path � using at most � edges.

Case 1:  � uses at most � − � edges.

• In this case OPT �, 	 = OPT(� − �, 	)
Case 2:  � uses exactly � edges.

• if (	, 
) is first edge, then OPT uses (	, 
), and then selects the 

best 
-� path using at most � − � edges

By observation: if no negative cost cycles, OPT(� − �, 	) = length of shortest 	-� path.
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OPT �, 	 = � � if � = � and 	 = �∞ if � = � and 	 ≠ �min(OPT(� − �, 	), min	,
 ∈��	
 + OPT(� − �, 
) otherwise



Shortest Paths:  Implementation
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Shortest-Path(G, t) {

foreach node v ∈∈∈∈ V

OPT[0, v] ←←←← ∞∞∞∞

OPT[0, t] ←←←← 0

for i = 1 to n-1

foreach node v ∈∈∈∈ V

OPT[i, v] ←←←← OPT[i-1, v]

foreach edge (v, w) ∈∈∈∈ E

OPT[i, v] ←←←← min { OPT[i, v], cvw + OPT[i-1, w] }

} Total: .(�/) time. �0 space

Two inner loops together 

touch each directed edge once

� − 1 iterations of outer loop

To find the shortest paths, maintain a “successor” pointer for each vertex 

that gives the next vertex on the current shortest path to �.



Shortest Paths:  Practical Improvements

Practical improvements:

• Maintain only one array OPT[	] = shortest 	-� path that we have found so far.

• No need to check edges of the form (	, 
) unless OPT[
] changed in previous 

iteration.

Theorem: Throughout the algorithm, OPT[	] is length of some 	-� path, and after � rounds of updates, the value OPT[	] is no larger than the length of shortest  	-� path using at most � edges.

Overall impact.

Space:  2(/ +  �).

Running time:  Still .(/�) worst case, but substantially faster in practice.
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Bellman-Ford:  Efficient Implementation
Push-Based-Shortest-Path(G, s, t) {

foreach node v ∈∈∈∈ V {

OPT[v] ←←←← ∞∞∞∞

successor[v] ←←←← φφφφ

}

OPT[t] = 0; oldupdated ←←←← {t} 

for i = 1 to n-1 {

updated ←←←← φφφφ

foreach node w ∈∈∈∈ V {

if (w is in oldupdated) {

foreach node v such that (v, w) ∈∈∈∈ E {

if (OPT[v] > cvw + OPT[w]) {

OPT[v] ←←←← cvw + OPT[w]

successor[v] ←←←← w

updated ←←←← updated ∪ {v}
}

}

}

if updated = φφφφ, stop.

else oldupdated ←←←← updated

}

}
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Bellman-Ford
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Bellman-Ford
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Bellman-Ford
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Bellman-Ford
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Bellman-Ford
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Bellman-Ford
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Bellman-Ford
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Shortest paths with negative costs on a DAG

Edges only go from lower to higher-numbered vertices

• Update distances in reverse order of topological sort

• Only one pass through vertices required

• 2(� + /) time
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Distance Vector Protocol
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Bellman-Ford Application: Distance Vector Protocol

Application domain: Communication networks

• Node ≈ router

• Edge ≈ direct communication link

• Cost of edge ≈ delay on link.

Edge costs are non-negative, why not use Dijkstra's algorithm?

• Dijkstra’s algorithm requires global information in the network

Advantages of Bellman-Ford approach:

• It only uses only local knowledge of neighboring nodes.

• No need for synchronization:  We don't expect routers to run in lockstep. The order in which 

each foreach loop executes in not important. Moreover, the Bellman-Ford algorithm still 

converges even if updates are asynchronous!
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Distance Vector Protocol

Distance vector protocol:

• Each router maintains a vector of shortest path lengths to every other node (distances) and the first 

hop on each path (directions).

• Algorithm: each router performs � separate computations, one for each potential destination 

node.

• “Routing by rumor.” 

Examples: RIP, Xerox XNS RIP, Novell's IPX RIP, Cisco's IGRP, DEC's DNA Phase IV, AppleTalk’s RTMP.

Caveat: Edge costs may change during algorithm (or fail completely).

tv 1s 1

1

deleted

"counting to infinity“ problem

2 1
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Path Vector Protocols

Link state routing:

• Each router also stores the entire path.

• Based on Dijkstra's algorithm.

• Avoids "counting-to-infinity" problem and related difficulties.

• Requires significantly more storage.

Examples:  Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).
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Negative Cycles in a Graph
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Detecting Negative Cycles

Lemma: If every vertex in � can reach � and  OPT �, 	 � OPT�� � �, 	� for all 	, then � has 

no negative cycles.

Proof: This would be a fixed point of recurrence that computes OPT �, 	 correctly for every �.   

Vertices on negative cycles that can reach � couldn’t possibly have a fixed point.

Lemma: If OPT �, 	 � OPT�� � �, 	� for some 	, then shortest path from 	 to � with length 4 �

contains a cycle �.  Moreover � has negative cost.

Proof: (By contradiction)

Since OPT �, 	 � OPT�� � �, 	�, paths � with cost OPT �, 	 have exactly � edges.

By pigeonhole principle, such a � must contain a directed cycle �.

Deleting � yields a 	-� path with � � edges   � has negative cost.

c(W) < 0 23
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Detecting Negative Cycles

Theorem: Can detect negative cost cycles in .�/�� time.

Algorithm: Add new node � and connect all nodes to � with �-cost edge.

Check if OPT �, 	 = OPT�� � �, 	) for all vertices 	

• if yes, then no negative cycles

• if no, then extract cycle from shortest path from 	 to �
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Detecting Negative Cycles:  Application

Currency conversion: Given � currencies and exchange rates between 

pairs of currencies, is there an arbitrage opportunity?

Remark: High speed trading makes fastest algorithm very valuable!
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Detecting Negative Cycles:  Summary

Run Bellman-Ford on graph with

• extra node 5.

• early stopping for up to 6 iterations (instead of 6 � 1).

• successor variables

Fact: upon termination, successor variables trace a negative cycle if     

one exists...
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Bellman-Ford for Negative Cycles
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Bellman-Ford for Negative Cycles
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Bellman-Ford for Negative Cycles
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Bellman-Ford for Negative Cycles
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Bellman-Ford for Negative Cycles
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Bellman-Ford for Negative Cycles
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Bellman-Ford for Negative Cycles
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Bellman-Ford for Negative Cycles
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Bellman-Ford for Negative Cycles
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