CSE 421
Introduction to Algorithms

Lecture 14: Dynamic Programming
Bellman-Ford

Shortest Paths allowing negative-cost edges

Shortest path problem:

Given: a directed graph G = (V, E) with edge weights c,,,, (possibly negative) and
vertices s, t € V.

Find: a shortest path in G from s to node t.

Sample Application: Nodes represent agents in a financial setting and c,,, is cost of a
transaction in which we buy from agent v and sell immediately to w.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Shortest Paths: Failed Attempts

Why not Dijkstra’s Algorithm? Can fail if negative edge costs.

) /@\ 3 Dijkstra begins with § = {s}and d(s) = 0.
€<)@ Next step would add t to s at distance 1, though
6 actual minimum distance from s to t is —1.

1
\@/
Adding a constant to every edge cost to make them = 0? Also fails.

Add 3 > /'@\ 3 Problem: Paths can have different lengths so adding a
@(\/@ fixed amount per edge changes relative costs.
6 6 Original shortest path is s-v-w-t with cost 3.
0
\@7 3 @/ After adjustment, shortest path is s-u-t.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Shortest Paths: Negative Cost Cycles

Negative cost cycle: /?
-6
-4
Q/ —0
Observation: (1) If some path from s to t contains a negative cost cycle,
there does not exist a shortest s-t path.

The path can go around the cycle
e W more times and get even lower
cost, the limit of path costs is —co,

cWw) <o

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Shortest Paths: Negative Cost Cycles

Observation: (1) If some path from s to t contains a negative cost cycle,
there does not exist a shortest s-t path.

(2) If the graph G has no negative cycles then a shortest s-t path must
have at most n — 1 edges.

If not, there would be a repeated vertex which would create a cycle that could
be removed without decreasing the cost.

e”“@/\n

cW)=0

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Shortest Paths: Dynamic Programming

Defn: OPT(i, V) = length of shortest v-t path P using at most i edges.

Case 1: P uses at most i — 1 edges.
* In this case OPT(i,v) = OPT(i — 1,v)

Case 2: P uses exactly i edges.

* if (v, w) is first edge, then OPT uses (v, w), and then selects the
best w-t path using at most i — 1 edges

OPT(i, v) = <

(

0 ifi=0andv =t
o) ifi=0andv #t
min(OPT(i — 1,v), min c,,, + OPT(i — 1,w) otherwise
(v,w)EE

By observation: if no negative cost cycles, OPT(n — 1, v) = length of shortest v-t path.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Shortest Paths: Implementation

Shortest-Path (G, t) {
foreach node v € V
OPT[0, v] & o
OPT[O0, t] « O

for i = 1 to n-1

n — 1 iterations of outer loop
foreach node v € V

OPT[i, v] « OPT[i-1, V] Two inner loops together
foreach edge (v, w) € E touch each directed edge once
OPT[i, Vv] ¢ min { OPT[i, V], c,, + OPT[i-1l, w] }
} Total: O(nm) time

0(n*) space

To find the shortest paths, maintain a “successor” pointer for each vertex
that gives the next vertex on the current shortest path to t.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Shortest Paths: Practical Improvements

Practical improvements:
* Maintain only one array OPT|[v] = shortest v-t path that we have found so far.

* No need to check edges of the form (v, w) unless OPT[w] changed in previous
iteration.

Theorem: Throughout the algorithm, OPT[v] is length of some v-t path, and after
i rounds of updates, the value OPT[v] is no larger than the length of shortest
V-t path using at most i edges.

Overall impact.
Space: O(m + n).
Running time: Still O (mn) worst case, but substantially faster in practice.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bellman-Ford: Efficient Implementation

Push-Based-Shortest-Path(G, s, t) {
foreach node v € V {
OPT[v] & o
successor[v] « ¢
}
OPT[t] = 0; oldupdated « {t}
for i =1 to n-1 {
updated « ¢
foreach node w € V {
if (w is in oldupdated) ({
foreach node v such that (v, w) € E {
if (OPT[v] > c,, + OPT[w]) {
OPT[v] ¢« c,, + OPT[w]
successor[v] <« w
updated ¢« updated U {v}

}

}
if updated = ¢, stop.
else oldupdated ¢« updated

}

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bellman-Ford

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bellman-Ford

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bellman-Ford

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bellman-Ford

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bellman-Ford

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bellman-Ford

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bellman-Ford

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Shortest paths with negative costs on a DAG

Edges only go from lower to higher-numbered vertices
e Update distances in reverse order of topological sort

* Only one pass through vertices required @ @
* O(n + m) time @ A@b

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Distance Vector Protocol

PAUL G. ALLEN SCHOOL

Bellman-Ford Application: Distance Vector Protocol

Application domain: Communication networks
* Node = router
* Edge = direct communication link
* Cost of edge = delay on link.

Edge costs are non-negative, why not use Dijkstra's algorithm?
* Dijkstra’s algorithm requires global information in the network

Advantages of Bellman-Ford approach:
* It only uses only local knowledge of neighboring nodes.

* No need for synchronization: We don't expect routers to run in lockstep. The order in which
each foreach loop executes in not important. Moreover, the Bellman-Ford algorithm still

converges even if updates are asynchronous!

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Distance Vector Protocol

Distance vector protocol:

* Each router maintains a vector of shortest path lengths to every other node (distances) and the first
hop on each path (directions).

* Algorithm: each router performs n separate computations, one for each potential destination
node.

* “Routing by rumor.”

Examples: RIP, Xerox XNS RIP, Novell's IPX RIP, Cisco's IGRP, DEC's DNA Phase IV, AppleTalk’s RTMP.

Caveat: Edge costs may change during algorithm (or fail completely).

1
é 1 % “““ 1 ® "counting to infinity” problem

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Path Vector Protocols

Link state routing:
* Each router also stores the entire path.
* Based on Dijkstra's algorithm.
* Avoids "counting-to-infinity" problem and related difficulties.
* Requires significantly more storage.

Examples: Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Negative Cycles in a Graph

PAUL G. ALLEN SCHOOL

Detecting Negative Cycles

Lemma: If every vertexin G canreach t and OPT(n,v) = OPT(n — 1,v) for all v, then G has

no negative cycles.

Proof: This would be a fixed point of recurrence that computes OPT(i, v) correctly for every i.
Vertices on negative cycles that can reach t couldn’t possibly have a fixed point. |

Lemma: If OPT(n,v) < OPT(n — 1, v) for some v, then shortest path from v to t with length < n
contains a cycle W. Moreover W has negative cost.

Proof: (By contradiction)
Since OPT(n,v) < OPT(n — 1, v), paths P with cost OPT(n, v) have exactly n edges.
By pigeonhole principle, such a P must contain a directed cycle W.
Deleting W vyields a v-t path with < n edges = W has negative cost.

6‘“@/\0 :

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Detecting Negative Cycles

Theorem: Can detect negative cost cycles in O(mn) time.

Algorithm: Add new node t and connect all nodes to t with 0-cost edge.
Check if OPT(n,v) = OPT(n — 1, v) for all vertices v
* if yes, then no negative cycles
* if no, then extract cycle from shortest path fromvtot

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Detecting Negative Cycles: Application

Currency conversion: Given n currencies and exchange rates between
pairs of currencies, is there an arbitrage opportunity?

Remark: High speed trading makes fastest algorithm very valuable!

8
$ 1/7 Kr
\ 800

3/10

6/5 \/\/ 3/50
N

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Detecting Negative Cycles: Summary

Run Bellman-Ford on graph with
e extra node t.
e early stopping for up to n iterations (instead of n — 1).
e successor variables

Fact: upon termination, successor variables trace a negative cycle if
one exists...

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bellman-Ford for Negative Cycles

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bellman-Ford for Negative Cycles

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bellman-Ford for Negative Cycles

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bellman-Ford for Negative Cycles

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bellman-Ford for Negative Cycles

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bellman-Ford for Negative Cycles

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bellman-Ford for Negative Cycles

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bellman-Ford for Negative Cycles

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bellman-Ford for Negative Cycles

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

