
CSE 421

Introduction to Algorithms

Lecture 14: Dynamic Programming

Bellman-Ford

1

2

Example run with AGACATTG and GAGTTA: � = ���� = �
A G C TAA GT

T

G

A

G

T

A

870 51 3 42 6

111 2 3 4 5 6 7

1 1 222 3 4 5 6

1 222 3 4 53 5

4 435 3 4 46 4

2 323 3 3 44 5

3 334 4 3 35 4

Optimal Alignment

A G A C A T T G

_ G A G _ T T A

3

Shortest Paths allowing negative-cost edges

Shortest path problem:

Given: a directed graph � = (
, �) with edge weights ��� (possibly negative) and

vertices �, � ∈
.

Find: a shortest path in � from � to node �.

Sample Application: Nodes represent agents in a financial setting and ��� is cost of a

transaction in which we buy from agent � and sell immediately to �.

s

t

10

18

-16

9

6

15
-8

30

20

44

16

11

6

19

6

4

Shortest Paths: Failed Attempts

Why not Dijkstra’s Algorithm? Can fail if negative edge costs.

Adding a constant to every edge cost to make them ≥ �? Also fails.

u

t

s v

2

1

3

-6

u

v

s t

2

3

2

w-3

3

5 5

66

0

Dijkstra begins with � = {�} and �(�) = �.

Next step would add � to � at distance �, though

actual minimum distance from � to � is −�.

Add 3 Problem: Paths can have different lengths so adding a

fixed amount per edge changes relative costs.

Original shortest path is s-v-w-t with cost 3.

After adjustment, shortest path is s-u-t.

4

5

Shortest Paths: Negative Cost Cycles

Negative cost cycle:

Observation: (1) If some path from � to � contains a negative cost cycle,

there does not exist a shortest �-� path.

s t�
�(�) < �

-6

7

-4

The path can go around the cycle � more times and get even lower

cost, the limit of path costs is −∞.
5

6

Shortest Paths: Negative Cost Cycles

Observation: (1) If some path from � to � contains a negative cost cycle,

there does not exist a shortest �-� path.

(2) If the graph � has no negative cycles then a shortest �-� path must

have at most − � edges.

If not, there would be a repeated vertex which would create a cycle that could

be removed without decreasing the cost.

s t�
� � ≥ �

6

7

Shortest Paths: Dynamic Programming

Defn: OPT(!, �) = length of shortest �-� path " using at most ! edges.

Case 1: " uses at most ! − � edges.

• In this case OPT !, � = OPT(! − �, �)
Case 2: " uses exactly ! edges.

• if (�, �) is first edge, then OPT uses (�, �), and then selects the

best �-� path using at most ! − � edges

By observation: if no negative cost cycles, OPT(− �, �) = length of shortest �-� path.

7

OPT !, � = # � if ! = � and � = �∞ if ! = � and � ≠ �min(OPT(! − �, �), min�,� ∈���� + OPT(! − �, �) otherwise

Shortest Paths: Implementation

8

Shortest-Path(G, t) {

foreach node v ∈∈∈∈ V

OPT[0, v] ←←←← ∞∞∞∞

OPT[0, t] ←←←← 0

for i = 1 to n-1

foreach node v ∈∈∈∈ V

OPT[i, v] ←←←← OPT[i-1, v]

foreach edge (v, w) ∈∈∈∈ E

OPT[i, v] ←←←← min { OPT[i, v], cvw + OPT[i-1, w] }

} Total: 3(4) time3 5 space

Two inner loops together

touch each directed edge once

 − 1 iterations of outer loop

To find the shortest paths, maintain a “successor” pointer for each vertex

that gives the next vertex on the current shortest path to �.

Shortest Paths: Practical Improvements

Practical improvements:

• Maintain only one array OPT[�] = shortest �-� path that we have found so far.

• No need to check edges of the form (�, �) unless OPT[�] changed in previous

iteration.

Theorem: Throughout the algorithm, OPT[�] is length of some �-� path, and after ! rounds of updates, the value OPT[�] is no larger than the length of shortest �-� path using at most ! edges.

Overall impact.

Space: 7(4 +).

Running time: Still 3(4) worst case, but substantially faster in practice.

9

10

Bellman-Ford: Efficient Implementation
Push-Based-Shortest-Path(G, s, t) {

foreach node v ∈∈∈∈ V {

OPT[v] ←←←← ∞∞∞∞

successor[v] ←←←← φφφφ

}

OPT[t] = 0; oldupdated ←←←← {t}

for i = 1 to n-1 {

updated ←←←← φφφφ

foreach node w ∈∈∈∈ V {

if (w is in oldupdated) {

foreach node v such that (v, w) ∈∈∈∈ E {

if (OPT[v] > cvw + OPT[w]) {

OPT[v] ←←←← cvw + OPT[w]

successor[v] ←←←← w

updated ←←←← updated ∪ {v}
}

}

}

if updated = φφφφ, stop.

else oldupdated ←←←← updated

}

}

10

11

Bellman-Ford

∞∞∞∞

∞∞∞∞

∞∞∞∞∞∞∞∞

∞∞∞∞

t

6

2

- 4

5

-2

-3
8

7

9

7

12

Bellman-Ford

∞∞∞∞

0

∞∞∞∞∞∞∞∞

∞∞∞∞

t

6

2

- 4

5

-2

-3
8

7

9

7

13

Bellman-Ford

∞∞∞∞

0

7∞∞∞∞

6

t

6

2

5

-2

-3
8

7

9

7

- 4

14

Bellman-Ford

4

0

72

6

t

6

2

- 4

5

-2

-3
8

7

9

7

15

Bellman-Ford

4

0

72

2

t

6

2

- 4

5

-2

-3
8

7

9

7

16

Bellman-Ford

4

0

7-2

2

t

6

2

- 4

5

-2

-3
8

7

9

7

17

Bellman-Ford

4

0

7-2

2

t

6

2

- 4

5

-2

-3
8

7

9

7

Shortest paths with negative costs on a DAG

Edges only go from lower to higher-numbered vertices

• Update distances in reverse order of topological sort

• Only one pass through vertices required

• 7(+ 4) time

18

1

4
3

12

10

8

9

11

13

14

5

6

7

2

Distance Vector Protocol

19

20

Bellman-Ford Application: Distance Vector Protocol

Application domain: Communication networks

• Node ≈ router

• Edge ≈ direct communication link

• Cost of edge ≈ delay on link.

Edge costs are non-negative, why not use Dijkstra's algorithm?

• Dijkstra’s algorithm requires global information in the network

Advantages of Bellman-Ford approach:

• It only uses only local knowledge of neighboring nodes.

• No need for synchronization: We don't expect routers to run in lockstep. The order in which

each foreach loop executes in not important. Moreover, the Bellman-Ford algorithm still

converges even if updates are asynchronous!

20

21

Distance Vector Protocol

Distance vector protocol:

• Each router maintains a vector of shortest path lengths to every other node (distances) and the first

hop on each path (directions).

• Algorithm: each router performs separate computations, one for each potential destination

node.

• “Routing by rumor.”

Examples: RIP, Xerox XNS RIP, Novell's IPX RIP, Cisco's IGRP, DEC's DNA Phase IV, AppleTalk’s RTMP.

Caveat: Edge costs may change during algorithm (or fail completely).

tv 1s 1

1

deleted

"counting to infinity“ problem

2 1

21

22

Path Vector Protocols

Link state routing:

• Each router also stores the entire path.

• Based on Dijkstra's algorithm.

• Avoids "counting-to-infinity" problem and related difficulties.

• Requires significantly more storage.

Examples: Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).

22

Negative Cycles in a Graph

23

24

Detecting Negative Cycles

Lemma: If every vertex in � can reach � and OPT , � � OPT	 � �, � for all �, then � has

no negative cycles.

Proof: This would be a fixed point of recurrence that computes OPT !, � correctly for every !.

Vertices on negative cycles that can reach � couldn’t possibly have a fixed point.

Lemma: If OPT , � � OPT	 � �, � for some �, then shortest path from � to � with length 9

contains a cycle �. Moreover � has negative cost.

Proof: (By contradiction)

Since OPT , � � OPT	 � �, �, paths " with cost OPT , � have exactly edges.

By pigeonhole principle, such a " must contain a directed cycle �.

Deleting � yields a �-� path with � edges � has negative cost.

c(W) < 0 24

25

Detecting Negative Cycles

Theorem: Can detect negative cost cycles in 3	4 time.

Algorithm: Add new node � and connect all nodes to � with �-cost edge.

Check if OPT , � = OPT	 � �, �) for all vertices �

• if yes, then no negative cycles

• if no, then extract cycle from shortest path from � to �

v

18

2

5
-23

-15
-11

6

t

0

0

0 0

0

25

26

Detecting Negative Cycles: Application

Currency conversion: Given currencies and exchange rates between

pairs of currencies, is there an arbitrage opportunity?

Remark: High speed trading makes fastest algorithm very valuable!

Kr$

£ ¥€

1/7

3/10
4/5 1.06

7/6 56

3/50
6/5

8

IBM

1/10000

800

26

27

Detecting Negative Cycles: Summary

Run Bellman-Ford on graph with

• extra node :.

• early stopping for up to ; iterations (instead of ; � 1).

• successor variables

Fact: upon termination, successor variables trace a negative cycle if

one exists...

27

28

Bellman-Ford for Negative Cycles

∞∞∞∞

0

∞∞∞∞∞∞∞∞

∞∞∞∞

t

0

0

- 4

5

-2

-3
8

0

9

5

0

29

Bellman-Ford for Negative Cycles

0

0

00

0

t

0

0

- 4

5

-2

-3
8

0

9

5

0

30

Bellman-Ford for Negative Cycles

0

0

00

-2

t

0

0

- 4

5

-2

-3
8

0

9

5

0

31

Bellman-Ford for Negative Cycles

0

0

00

-2

t

0

0

- 4

5

-2

-3
8

0

9

5

0

32

Bellman-Ford for Negative Cycles

-3

0

00

-2

t

0

0

- 4

5

-2

-3
8

0

9

5

0

33

Bellman-Ford for Negative Cycles

-3

0

0-6

-2

t

0

0

- 4

5

-2

-3
8

0

9

5

0

34

Bellman-Ford for Negative Cycles

-3

0

0-6

-5

t

0

0

- 4

5

-2

-3
8

0

9

5

0

35

Bellman-Ford for Negative Cycles

-3

0

0-9

-5

t

0

0

- 4

5

-2

-3
8

0

9

5

0

36

Bellman-Ford for Negative Cycles

-4

0

0-9

-5

t

0

0

- 4

5

-2

-3
8

0

9

5

0

