
CSE 421

Introduction to Algorithms

Lecture 13: Dynamic Programming

RNA folding, Sequence Alignment

1

Dynamic Programming for Optimization

1. Formulate the (optimum) value as a recurrence relation or recursive algorithm

2. Figure out the possible values of parameters in the recursive calls.

• This should be “small”, i.e., bounded by a low-degree polynomial

• Can use memoization to store a cache of previously computing values

3. Specify an order of evaluation for the recurrence so that you already have the
partial results stored in memory when you need them.

• Produces iterative code

• Store extra information to be able to reconstruct optimal solution and add
reconstruction code

Once you have an iterative DP solution: see if you can save space.

2

Knapsack pattern:

• 2-D, O(1) elements in previous row, above
and arbitrary far to the left

• �(��) space

• �(�) space if only optimum value needed

• Maintain current and previous rows

Dynamic Programming Patterns so far
Fibonacci pattern:

• 1-D, �(�) immediately prior

• �(�) space

Weighted interval scheduling pattern:

• 1-D, �(�) arbitrary prior

• �(�) space

Longest increasing subsequence pattern:

• 1-D, all � − � prior

• �(�) space

3

�(�)
�(�)

�(��)

�(��)

Dynamic Programming over Intervals

In this different class of problems from ones we have seen before, there are

• 1-dimensional inputs

• A notion of optimization over intervals in that 1 dimension

A number of important problems fit this paradigm

• We focus on a version of one these: RNA Secondary Structure

4

5

RNA Secondary Structure

RNA (ribonucleic acid): String 	 = ���� ⋯ �� of bases over alphabet

{A, C, G, U} standing for adenine, cytosine, guanine, and uracil.

RNA Secondary Structure: RNA is single-stranded and tends to loop back and form bonds between

pairs of its bases “base-pairs”. This structure is essential for understanding behavior of the molecule.

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

complementary base pairs: A-U, C-G

G

U

C

A

GA

A

G

CG

A

U
G

A

U

U

A

G

A

C A

A

C

U

G

A

G

U

C

A

U

C

G

G

G

C

C

G

5

6

RNA Secondary Structure

Defn: A secondary structure for an RNA sequence 	 = ���� ⋯ �� is a set of pairs = { (��, ��) } that satisfy:

• [Watson-Crick condition] is a matching and each pair in is a Watson-Crick complement:

A-U, U-A, C-G, or G-C.

• [No sharp bends] The ends of each pair are separated by at least � intervening bases.

That is, if ��, �� ∈ , then � < � − �.

• [Non-crossing] If (��, ��) and (��, �ℓ) are two pairs in , then we cannot have � < � < � < ℓ.

Optimizing energy: The usual hypothesis is that an RNA molecule will form a secondary structure that

optimizes the total free energy. Maximizing the # of base pairs in roughly maximizes free energy.

Given: an RNA molecule 	 = ���� ⋯ ��,

Find: a secondary structure for 	 maximizing the number of base pairs in .

6

7

RNA Secondary Structure: Examples

Examples.

sharp bend crossingok

A U G U G G C C A U A U G G G C A U A G U U G G C C A UG

≤≤≤≤ 4

C

G G

C

A

G

U

U

U A

G G

C

A

G

U

U A

C

G G

C

A

U

G

U

U A

G

base pair

7

As usual we consider two cases based on the status of the last base in an optimal secondary

structure

First attempt: Define OPT(�) = maximum # of base pairs in a secondary structure

of the substring ���� ⋯ ��.
Case 1: OPT does not match base ��. Value is OPT(� − �).

Case 2: OPT contains some base pair (��, ��).

Two independent* subproblems:

• One on ���� ⋯ ���� with value OPT(� − �)

• One on ������ ⋯ ����
• Not of the same type: Need to allow starting index ≠ �

* Independence guaranteed by non-crossing property

8

RNA Secondary Structure: False Start

� ��

match �� and ��

8

Defn: Define OPT(�, �) = maximum # of base pairs in a secondary structure

of the substring ���� ⋯ ��.
Case 1: OPT does not match base ��. Value is OPT(�, � − �).

Case 2: OPT contains some base pair (��, ��).

Two independent subproblems:

• One on ���� ⋯ ���� with value OPT(�, � − �)

• One on ������ ⋯ ���� with value OPT(� + �, � − �)

9

RNA Secondary Structure: DP over Intervals

� � �

match �� and ��

OPT �, �
= � � if � ≤ � + �"#${OPT �, � − � ,,,, max{1+max{1+max{1+max{1+OPT �, � − � + OPT � + �, � − � ∶ � > � + �, �� ∼ �� }} if � > � + �where we write � ∼ �′ iff they are Watson-Crick complement pairs A-U, U-A,C-G, or G-C

Intervals for recursive calls are shorter

9

10

Dynamic Programming Over Intervals: Iterative Solution

Evaluate in order of increasing interval length

RNA(b1,…,bn) {

for m = 0 to n-1 // interval length

for i = 1 to n-m // interval start

j = i + m

if m < 5

OPT[i, j] = 0

else {

OPT[i, j] = OPT[i, j-1]

for k = i to j-5 // split point

if WatsonCrick(bk,bj)

if 1+OPT[i, k-1] + OPT[k+1, j-1] > OPT[i, j] {

OPT[i, j] = 1 + OPT[i, k-1] + OPT[k+1, j-1]

}

}

return OPT[1, n]

}

�(�) iterations

�(�) iterations�(�) iterations

�(�2)

10

Dynamic Programming Over Intervals: Iterative Solution

DP over intervals pattern

• 2-D lower triangular portion

• Fill sub-diagonals in order of

distance from the diagonal

• Each of the �(��) entries uses �(�) pairs of entries in

• a fixed row to the left and

• a column above

• Time �(�2), space �(��)

11

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0

0 0

0 0

0

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

0 0 0 0 0

0

0

0

0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

end index �

start index�

0

Sequence Alignment

12

How similar are two strings?
• ocurrance

• occurrence

13

String Similarity

o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

o c u r r a n c e

c c u r r e n c eo

-

1 mismatch, 1 gap

o c u r r n c e

c c u r r n c eo

- - a

e -

0 mismatches, 3 gaps

Clearly a better

matching

Maybe a better matching

• depends on cost of

gaps vs mismatches

13

Applications:

• Basis for Unix diff.

• Speech recognition.

• Computational biology.

Edit distance: [Levenshtein 1966, Needleman-Wunsch 1970]

• Gap penalty 3; mismatch penalty 456 if symbol 5 is replaced by symbol 6.

• Cost = gap penalties + mismatch penalties.

14

Edit Distance

C G A C C T A C C T

C T G A C T A C A T

T

C 4
TC

+ 4
GT

+ 4
AG

+ �4
CA

T G A C C T A C C T

C T G A C T A C A T

- C

C -�3 + 4
CA

14

15

Sequence Alignment:

Given: Two strings 7 = 8�8� … 8: and ; = <�<� … <�
Find: “Alignment” of 7 and ; of minimum edit cost.

Defn: An alignment = of 7 and ; is a set of ordered pairs 8�-<�
s.t. each symbol of 7 and ; occurs in at most one pair

with no “crossing pairs”.

The pairs 8�-<� and 8�>-<�> cross iff � < �′ but � > �′.

Sequence Alignment

cost = = B 48�<�8�,<� ∈= + B 3�∶ 8� CDEFGHIJK + B 3�: <� CDEFGHIJK
 mismatch gap

C T A C C -

T A C A T-

G

G<� <� <2 <� <O <P

8� 82 8� 8O8� 8P

Example:

CTACCG vs TACATG

= = {8�−<�, 82-<�, 8�-<2, 8O-<�, 8P-<P}
Note: if 8� = <� then 48�<� = �

15

Sequence Alignment: Problem Structure

Defn: OPT(�, �) = min cost of aligning strings 8�8� … 8� and <�<� … <�.

Case 1: OPT matches 8�-<�.

• Pay mismatch cost 48�<� for 8�-<� + min cost of aligning strings 8�8� … 8��� and <�<� … <���
Note: if 8� = <� then 48�<� = �

Case 2a: OPT leaves 8� unmatched.

• Pay gap cost 3 for 8� + min cost of aligning 8�8� … 8��� and <�<� … <�
Case 2b: OPT leaves <� unmatched.

• Pay gap cost 3 for <� + min cost of aligning 8�8� … 8� and <�<� … <���

16

OPT �, � =
� ⋅ 3 if � = �

min S48�<� + OPT(� − �, � − �)3 + OPT(� − �, �)3 + OPT(�, � − �) otherwise
� ⋅ 3 if � = �

Sequence Alignment: Algorithm

17

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, δδδδ, αααα) {

for i = 0 to m

OPT[i, 0] = i δδδδ

for j = 0 to n

OPT[0, j] = j δδδδ

for i = 1 to m

for j = 1 to n

OPT[i, j] = min(αααα[xi, yj] + OPT[i-1, j-1],

δδδδ + OPT[i-1, j],

δδδδ + OPT[i, j-1])

return OPT[m, n]

}

�(:�)

6

5

4

3

2

1

870 51 3 42 6

18

Example run with AGACATTG and GAGTTA: 3 = 4ETU = �
A G C TAA GT

T

G

A

G

T

A

A G C TAA GT

111 2 3 4 5 6 7

6

5

4

3

2

80 51 3 42 6 7

19

Example run with AGACATTG and GAGTTA: 3 = 4ETU = �

T

G

A

G

T

A

6

5

4

3

1 122

111 2 3 4 5 6 7

870 51 3 42 6

20

Example run with AGACATTG and GAGTTA: 3 = 4ETU = �
A G C TAA GT

T

G

A

G

T

A

6

5

4

1 222 3 4 53 5

1 1 222 3 4 5 6

111 2 3 4 5 6 7

870 51 3 42 6

21

Example run with AGACATTG and GAGTTA: 3 = 4ETU = �
A G C TAA GT

T

G

A

G

T

A

4 435 3 4 46 4

3 334 4 3 35 4

2 323 3 3 44 5

1 222 3 4 53 5

1 1 222 3 4 5 6

111 2 3 4 5 6 7

870 51 3 42 6

22

Example run with AGACATTG and GAGTTA: 3 = 4ETU = �
A G C TAA GT

T

G

A

G

T

A

23

Example run with AGACATTG and GAGTTA: 3 = 4ETU = �
A G C TAA GT

T

G

A

G

T

A

870 51 3 42 6

111 2 3 4 5 6 7

1 1 222 3 4 5 6

1 222 3 4 53 5

4 435 3 4 46 4

2 323 3 3 44 5

3 334 4 3 35 4

24

Example run with AGACATTG and GAGTTA: 3 = 4ETU = �
A G C TAA GT

T

G

A

G

T

A

870 51 3 42 6

111 2 3 4 5 6 7

1 1 222 3 4 5 6

1 222 3 4 53 5

4 435 3 4 46 4

2 323 3 3 44 5

3 334 4 3 35 4

Optimal Alignment

A G A C A T T G

_ G A G _ T T A

Genbank and WGS Statistics

25

26

Sequence Alignment: Linear Space

• Lines of code for diff: :, � at most in 1000’s

• Computational biology: :, � may be in 100,000’s.

10 billions ops OK, but 10GB array?

Q: Can we avoid using quadratic space?

Easy: Optimal value in �(: + �) space and �(:�) time.

• Compute OPT(�, •) from OPT(� − �, •).

• No longer a simple way to recover alignment itself.

Theorem: [Hirschberg 1975] Optimal alignment in �(: + �) space and �(:�) time.

• Clever combination of divide-and-conquer and dynamic programming.

• Inspired by idea of Savitch from complexity theory.

26

27

Edit distance graph: Horizontal & vertical edges weight 3
Diagonal edge into each node (�, �) weight 48�<�

Sequence Alignment: Linear Space

i-j

m-n

8�

8�

<�

82

<� <2 <� <O <P
ε

ε

0-0

33
48�<�

27

Edit distance graph: Horizontal & vertical edges weight 3
Diagonal edge into each node (�, �) weight 48�<�

28

Sequence Alignment: Linear Space

i-j

m-n

8�

8�

<�

82

<� <2 <� <O <P
ε

ε

0-0

33
48�<�

For any fixed � can compute all VUGFWG(⋅, �) in �(� + :) space�(�:) time

Let VUGFWG(�, �) = length of shortest

path from (�, �) to (�, �)

Then OPT(�, �) = VUGFWG(�, �).

28

Reversed edit distance graph: Horizontal & vertical edges weight 3
Diagonal edge into each node (�, �) weight 48�X�<�X�

29

Sequence Alignment: Linear Space

<� <� <2 <� <O <Pε

i-j

m-n

8�

8�

82

ε 0-0

3
3
48�X�<�X�

29

Reversed edit distance graph: Horizontal & vertical edges weight 3
Diagonal edge into each node (�, �) weight 48�X�<�X�

30

Sequence Alignment: Linear Space

8�

8�

82

i-j

m-n

<� <� <2 <� <O <P
ε

ε

0-0

3
3
48�X�<�X�

Let VJDK(�, �) = length of shortest

path from (:, �) to (�, �)

For any fixed � can compute all VJDK(⋅, �) in �(� + :) space�(�:) time

30

Edit distance graph: Horizontal & vertical edges weight 3
Diagonal edge into each node (�, �) weight 48�<�

31

Sequence Alignment: Linear Space

i-j

m-n

8�

8�

<�

82

<� <2 <� <O <P
ε

ε

0-0

33
48�<�

3
3
48�X�<�X�

Optimal alignment includes exactly

one node (�, �) in column �
That node minimizesVUGFWG �, � + VJDK �, �
which equals OPT :, �
Divide & conquer:

Find this for � = �/� and recurse

31

Edit distance graph: Horizontal & vertical edges weight 3
Diagonal edge into each node (�, �) weight 48�<�

32

Sequence Alignment: Linear Space

i-j

m-n

8�

8�

<�

82

<� <2 <� <O <P
ε

ε

0-0

33
48�<�

3
3
48�X�<�X�

Optimal alignment includes exactly

one node (�, �) in column �
That node minimizesVUGFWG �, � + VJDK �, �
which equals OPT :, �
Divide & Conquer:

Find this for � = �/� and recurse

Re-use space for second call.

32

Analytical details

Write Z(:, �) for the time cost.

• Recurrence Z :, � = Z �, �/� + Z : − �, �/� + [(:�)Z(�, �) = �(�), Z(:, �) = �(:)
• Solution Z :, � = �(:�).

• Not only is the value of � halved for the two subproblems, but

the lengths of the first strings still only sum to :.

• Proof via induction (Exercise).

33

34

Another side of practice

In practice the algorithm is usually run on smaller chunks of a large
string, e.g. : and � are lengths of genes so a few thousand characters

• Researchers want all alignments that are close to optimal not just
the optimal solution

• Basic algorithm is run with

• 2 rows/columns for values as in the space-saving solution, but

• all :� pointers since the whole table of pointers (� bits each)
will fit in RAM

