CSE 421Introduction to Algorithms

Lecture 11: Dynamic Programming

I EN SCHOOL

Algorithmic Paradigms

Greedy: Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer: Break up a problem into sub-problems (each typically a constant factor smaller), solve each sub-problem *independently*, and combine solution to sub-problems to form solution to original problem.

Dynamic programming: Break up a problem into a series of overlapping subproblems, and build up solutions to larger and larger sub-problems.

Algorithm Design Techniques

Dynamic Programming:

- Technique for making building solution to a problem based on solutions to smaller subproblems (recursive ideas).
- The subproblems just have to be smaller, but don't need to be a constantfactor smaller like divide and conquer.
- Useful when *the same subproblems show up over and over again*
- The final solution is simple iterative code when the following holds:
	- *The parameters to all the subproblems are predictable in advance*

Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.

"it's impossible to use dynamic in a pejorative sense""something not even a Congressman could object to"

Reference: Bellman, R. E. *Eye of the Hurricane, An Autobiography.*

Dynamic Programming Applications

Areas.

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, compilers, systems, ….

Some famous dynamic programming algorithms.

- Unix **diff** for comparing two files.
- Viterbi for hidden Markov models.
- Smith-Waterman for genetic sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

Three Steps to Dynamic Programming

1. Formulate the answer as a recurrence relation or recursive algorithm

- 2. Figure out the possible values of parameters in the recursive calls.
	- This should be "small", i.e., bounded by a low-degree polynomial
	- Can use memoization to store a cache of previously computing values
- 3. Specify an order of evaluation for the recurrence so that you already have the partial results stored in memory when you need them.

A Simple Case: Computing Fibonacci Numbers

Recall $\bm{F}_{\bm{n}}$ $_{n} = F_{n}$ $^{\mathrm{-1}}$ $_1 + F_n$ -2 $_2$ for $n\geq 2$ and ${F}_0$ $_{0} = 0, F$ 1 $_1=1$

The obvious recursive algorithm direct from this recurrence is

```
F(n){if n=0 return(0)
     else if n=1 return(1)
     else return(F(n-1)+F(n-2))}
```
Let's start tracking the call tree...

The full call tree has $> F_n$ leaves (exponential in n)

Memoization (Caching)

Remember all values from previous recursive calls in a cache

- the parameters and
- The values returned on those parameters

Before each recursive call, test to see if value has already been computed for those parameters

Memoization

Three Steps to Dynamic Programming

- 1. Formulate the answer as a recurrence relation or recursive algorithm
- 2. Figure out the possible values of parameters in the recursive calls.
	- This should be "small", i.e., bounded by a low-degree polynomial
	- Can use memoization to store a cache of previously computing values
- 3. Specify an order of evaluation for the recurrence so that you already have the partial results stored in memory when you need them.
	- Produces iterative code

Three Steps to Dynamic Programming

- 1. Formulate the answer as a recurrence relation or recursive algorithm
- 2. Figure out the possible values of parameters in the recursive calls.
	- This should be "small", i.e., bounded by a low-degree polynomial
	- Can use memoization to store a cache of previously computing values
- 3. Specify an order of evaluation for the recurrence so that you already have the partial results stored in memory when you need them.
	- Produces iterative code

Fibonacci: Dynamic Programming Version

```
FiboDP(n): 
F[0]←0 

F[1]←1 

fori←2 to n { 
          F[i]←F[i-1]+F[i-2] }
return(F[n])
```
Three Steps to Dynamic Programming

- 1. Formulate the answer as a recurrence relation or recursive algorithm
- 2. Figure out the possible values of parameters in the recursive calls.
	- This should be "small", i.e., bounded by a low-degree polynomial
	- Can use memoization to store a cache of previously computing values
- 3. Specify an order of evaluation for the recurrence so that you already have the partial results stored in memory when you need them.
	- Produces iterative code

Once you have an iterative DP solution: see if you can save space...

Fibonacci: Space-Saving Dynamic Programming

```
FiboDP(n): 
prev←0 
curr←1 
for i←2 to n { 
          temp←currcurr←curr+prevprev←temp} 
return(curr)
```
Dynamic Programming

When is dynamic programming useful?

- For optimization problems this typically requires that the "Principle of optimality" hold for the problem
	- "Optimal solutions to the sub-problems suffice for optimal solution to the whole problem"

Input: Like interval scheduling each request \boldsymbol{i} has start and finish times \boldsymbol{s}_i and \boldsymbol{f}_i . Each request \bm{i} also has an associated value or weight $\bm{\nu}_{\bm{i}}$

 v_i might be

- the amount of money we get from renting out the resource
- the amount of time the resource is being used $(\boldsymbol{v_i} = \boldsymbol{f_i} \boldsymbol{s_i})$

Find: A maximum-weight compatible subset of requests.

Input: Set of jobs with start times, finish times, and weights

Goal: Find maximum weight subset of mutually compatible jobs.

Input: Set of jobs with start times, finish times, and weights

Goal: Find maximum weight subset of mutually compatible jobs.

Input: Set of jobs with start times, finish times, and weights

Goal: Find maximum weight subset of mutually compatible jobs.

Greedy Algorithms for Weighted Interval Scheduling?

Notation: Label jobs by finishing time: ${f}_1 \leq {f}_2 \leq \cdots \leq {f}_n$

Notation: Label jobs by finishing time: ${f}_1 \leq {f}_2 \leq \cdots \leq {f}_n$

FN SCHOOL CE & ENGINEERING

Towards Dynamic Programming: Step 1 – Recursive Algorithm

Suppose that we first sort the requests by finish time \pmb{f}_i so $\pmb{f}_1 \!\le\!\! \pmb{f}_2 \!\le\! ... \!\le\! \pmb{f}_n.$

We now want

- a recursive solution that makes calls to smaller problems and
- the indices for those smaller problems to be convenient,

so we first focus on the options for the *last* request, request $\boldsymbol{n}.$

Notation: Label jobs by finishing time: ${f}_1 \leq {f}_2 \leq \cdots \leq {f}_n$

Notation: Label jobs by finishing time: ${f}_1 \leq {f}_2 \leq \cdots \leq {f}_n$

There are two cases we need to compare:When we don't include request $\bm{n}.$

> In this case all the other requests are still fair game

When we do include request $\bm{n}.$

Time

In this case we need to rule out some incompatible requests.

It will be convenient to be able to prune incompatible requests quickly…

FN SCHOOL

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.**Defn:** $p(j)$ = largest index $i < j$ s.t. job i is compatible with j .

Computing all the $p(j)$ values: For $j \leftarrow 1$ to n Run binary search for s_j in the list $f_1 \le f_2 \le \cdots \le f_n$ to find largest i with ${f}_i \le {s}_j$ $\boldsymbol{p(j)} \leftarrow \boldsymbol{i}$

 $\bm{ \mathit{O} } (\bm{n} \log \bm{n}$

Structure of the subproblems

Notation: $\mathsf{OPT}(j)$ **= value of optimal solution to the problem consisting of job requests** $1, 2, ..., j$ **.**

Case 1: **OPT** selects job

- It can't use incompatible jobs $p(j) + 1, ..., j 1$
- It must include an optimal solution to problem consisting of remaining compatible jobs $1, ..., p(j)$.

Case 2: **OPT** doesn't select job

• It must include an optimal solution to problem consisting of remaining compatible jobs $1, ..., j-1$

OPT $\mathsf{T}(j)$ = $\Big\{$ \int if $j = 0$ $\max\{v_j + \mathsf{OPT}(p(j)),\mathsf{OPT}(j-1)\}$ otherwise

Optimal substructure

```
Input: n, s1,…,sn , 
f1,…,fn , 
v1,…,vnSort jobs by finish times so that f_1 \leq f_2 \leq \ldots \leq f_n.
Compute p(1), p(2), …, p(n)
Compute-Opt(j) {if (j = 0)
       return0else
return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```
PAUL G. ALLEN SCHOOL **TER SCIENCE & ENGINEERING**

This recursive algorithm can be very bad…

Suppose that $p(j) = j - 2$ for every $j \ge 2$.

- Then Compute-Opt(j) calls Compute-Opt($j-1$) and Compute-Opt($j-2$)
- This is the same exponential run-time as the recursive Fibonacci code!

Weighted Interval Scheduling: Step 2 Memoization

Memoization: Store results of each sub-problem in a cache; lookup as needed.

```
Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_nSort jobs by finish times so that f_1 \leq f_2 \leq \ldots \leq f_n.
Compute p(1), p(2), …, p(n)
for j = 1 to n
    M[j] = empty
global array
M[0] = 0M-Compute-Opt(j) {
if (M[j] is empty)
M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
    return M[j]
}
```
PAULG ALLENSCHOOL

- 1. Formulate the answer as a recurrence relation or recursive algorithm
- 2. Figure out the possible values of parameters in the recursive calls.
	- This should be "small", i.e., bounded by a low-degree polynomial
	- Can use memoization to store a cache of previously computing values
- 3. Specify an order of evaluation for the recurrence so that you already have the partial results stored in memory when you need them.
	- Produces iterative code

Recursion for $\mathsf{OPT}[j]$ only needs values of $\mathsf{OPT}[i]$ for $0 \leq i < j$.

• So we can evaluate them in order $\bm{j} = \bm{0}, \bm{1}, \bm{2}, ..., \bm{n}$

```
Input: n, s1,…,sn , 
f1,…,fn , 
v1,…,vnSort jobs by finish times so that f_1 \leq f_2 \leq \ldots \leq f_n.
Compute p(1), p(2), …, p(n)
Iterative-Compute-Opt {
   OPT[0] = 0
for j = 1 to n
       OPT[j] = max(vj + OPT[p(j)], OPT[j-1])
}O(\bm{n} \log \bm{n})\mathit{O}(n)
```
PAUL G. ALLEN SCHOOL UTER SCIENCE & ENGINEERING

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.

Defn: $p(j)$ = largest index $i < j$ s.t. job i is compatible with j .

Example: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.

Defn: $p(j)$ = largest index $i < j$ s.t. job i is compatible with j .

Example: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.

Defn: $p(j)$ = largest index $i < j$ s.t. job i is compatible with j .

Example: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.

Defn: $p(j)$ = largest index $i < j$ s.t. job i is compatible with j .

Example: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.

Defn: $p(j)$ = largest index $i < j$ s.t. job i is compatible with j .

Example: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.**Defn:** $p(j)$ = largest index $i < j$ s.t. job i is compatible with j .

Example: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.

Defn: $p(j)$ = largest index $i < j$ s.t. job i is compatible with j .

Example: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.**Defn:** $p(j)$ = largest index $i < j$ s.t. job i is compatible with j .

Example: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.

Defn: $p(j)$ = largest index $i < j$ s.t. job i is compatible with j .

Example: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.

Defn: $p(j)$ = largest index $i < j$ s.t. job i is compatible with j .

Example: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.**Defn:** $p(j)$ = largest index $i < j$ s.t. job i is compatible with j .

Example: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.**Defn:** $p(j)$ = largest index $i < j$ s.t. job i is compatible with j .

Example: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.**Defn:** $p(j)$ = largest index $i < j$ s.t. job i is compatible with j .

Example: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.**Defn:** $p(j)$ = largest index $i < j$ s.t. job i is compatible with j .

Example: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.**Defn:** $p(j)$ = largest index $i < j$ s.t. job i is compatible with j .

Example: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$

Weighted Interval Scheduling: Finding the Solution

So far we have computed the value $\mathsf{OPT}(n)$ but we probably want to know what that solution **OPT** actually is!

We can do this, too, by keeping track of which option was better at each step.

Define **Used**[] ⁼ $\Bigg\{$ **1** solution with value **OPT**(*j*) includes request *j*
 0 otherwise

This gives a "pointer" that leads the way along a path to the optimal solution…

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.

Defn: $p(j)$ = largest index $i < j$ s.t. job i is compatible with j .

FN SCHOOL

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.

Defn: $p(j)$ = largest index $i < j$ s.t. job i is compatible with j .

FN SCHOOL

Weighted Interval Scheduling: Finding the Solution

```
Input: n, s1,…,sn , 
f1,…,fn , 
v1,…,vnSort jobs by finish times so that f_1 \leq f_2 \leq \ldots \leq f_n.
Compute p(1), p(2), …, p(n)
Iterative-Compute-Opt {
   OPT[0] = 0
for j = 1 to n
       ifvj + OPT[p(j)] > OPT[j-1] {
            OPT[j] = vj + OPT[p(j)]
            Used[j] = 1} else { 
OPT[j] = OPT[j-1]Used[j] = 0}}
```

```
Find-Opt {j = n
OPTSol =
∅
while j > 0
      if Used[j] == 0 {
         j = j-1} else { 
OPTSol = OPTSol ∪{j}
         j = p(j)}}
```


Three Steps to Dynamic Programming

- 1. Formulate the answer as a recurrence relation or recursive algorithm
- 2. Figure out the possible values of parameters in the recursive calls.
	- This should be "small", i.e., bounded by a low-degree polynomial
	- Can use memoization to store a cache of previously computing values
- 3. Specify an order of evaluation for the recurrence so that you already have the partial results stored in memory when you need them.
	- Produces iterative code

Once you have an iterative DP solution: see if you can save space...

Dynamic Programming Patterns

Fibonacci pattern:

- 1-dimensional, $O(1)$ values immediately prior
- Space saving possible

Weighted interval scheduling pattern:

• 1-dimensional, $O(1)$ values arbitrarily far back

• No space saving possible