
CSE 421

Introduction to Algorithms

Lecture 11: Dynamic Programming

1

2

Algorithmic Paradigms

Greedy: Build up a solution incrementally, myopically optimizing some local

criterion.

Divide-and-conquer: Break up a problem into sub-problems (each typically a

constant factor smaller), solve each sub-problem independently, and combine

solution to sub-problems to form solution to original problem.

Dynamic programming: Break up a problem into a series of overlapping sub-

problems, and build up solutions to larger and larger sub-problems.

Algorithm Design Techniques

Dynamic Programming:

• Technique for making building solution to a problem based on solutions to

smaller subproblems (recursive ideas).

• The subproblems just have to be smaller, but don’t need to be a constant-

factor smaller like divide and conquer.

• Useful when the same subproblems show up over and over again

• The final solution is simple iterative code when the following holds:

• The parameters to all the subproblems are predictable in advance

3

Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology

• Dynamic programming = planning over time.

• Secretary of Defense was hostile to mathematical research.

• Bellman sought an impressive name to avoid confrontation.

4

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

"it's impossible to use dynamic in a pejorative sense"

"something not even a Congressman could object to"

Dynamic Programming Applications

Areas.

• Bioinformatics.

• Control theory.

• Information theory.

• Operations research.

• Computer science: theory, graphics, AI, compilers, systems, ….

Some famous dynamic programming algorithms.

• Unix diff for comparing two files.

• Viterbi for hidden Markov models.

• Smith-Waterman for genetic sequence alignment.

• Bellman-Ford for shortest path routing in networks.

• Cocke-Kasami-Younger for parsing context free grammars.

5

Three Steps to Dynamic Programming

1. Formulate the answer as a recurrence relation or recursive algorithm

2. Figure out the possible values of parameters in the recursive calls.

• This should be “small”, i.e., bounded by a low-degree polynomial

• Can use memoization to store a cache of previously computing values

3. Specify an order of evaluation for the recurrence so that you already have the
partial results stored in memory when you need them.

6

7

A Simple Case: Computing Fibonacci Numbers

Recall �� = ���� + ���� for � ≥ � and �	 = 	, �� = �
The obvious recursive algorithm direct from this recurrence is

F(n){

if n=0 return(0)

else if n=1 return(1)

else return(F(n-1)+F(n-2))

}

8

Let’s start tracking the call tree...

F (6)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)

F (1) F (0)

1 0

F (1)

9

The full call tree has > �� leaves (exponential in �)

F (6)

F (2)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)F (3)

F (1) F (0)

1 0

F (0)

01

F (1)

F (1) F (0)

1 0
F (1)

F (2) F (1)

1
F (0)

1 0

F (2) F (1)

1
F (0)

1 0

F (1)

1

F (1)

10

Memoization (Caching)

Remember all values from previous recursive calls in a cache

• the parameters and

• The values returned on those parameters

Before each recursive call, test to see if value has already been computed

for those parameters

11

Memoization

F (6)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)

F (1) F (0)

1 0

F (1)

Three Steps to Dynamic Programming

1. Formulate the answer as a recurrence relation or recursive algorithm

2. Figure out the possible values of parameters in the recursive calls.

• This should be “small”, i.e., bounded by a low-degree polynomial

• Can use memoization to store a cache of previously computing values

3. Specify an order of evaluation for the recurrence so that you already have the
partial results stored in memory when you need them.

• Produces iterative code

12

Three Steps to Dynamic Programming

1. Formulate the answer as a recurrence relation or recursive algorithm

2. Figure out the possible values of parameters in the recursive calls.

• This should be “small”, i.e., bounded by a low-degree polynomial

• Can use memoization to store a cache of previously computing values

3. Specify an order of evaluation for the recurrence so that you already have the
partial results stored in memory when you need them.

• Produces iterative code

13

Fibonacci: Dynamic Programming Version

FiboDP(n):

F[0]←←←←0

F[1]←←←←1

for i←←←←2 to n {

F[i]←←←←F[i-1]+F[i-2]

}

return(F[n])

14

Three Steps to Dynamic Programming

1. Formulate the answer as a recurrence relation or recursive algorithm

2. Figure out the possible values of parameters in the recursive calls.

• This should be “small”, i.e., bounded by a low-degree polynomial

• Can use memoization to store a cache of previously computing values

3. Specify an order of evaluation for the recurrence so that you already have the
partial results stored in memory when you need them.

• Produces iterative code

Once you have an iterative DP solution: see if you can save space...

15

Fibonacci: Space-Saving Dynamic Programming

FiboDP(n):

prev←←←←0

curr←←←←1

for i←←←←2 to n {

temp←←←←curr

curr←←←←curr+prev

prev←←←←temp

}

return(curr)

16

17

Dynamic Programming

When is dynamic programming useful?

• For optimization problems this typically requires that the

“Principle of optimality” hold for the problem

“Optimal solutions to the sub-problems suffice for optimal
solution to the whole problem”

18

Weighted Interval Scheduling

Input: Like interval scheduling each request has start and finish times � and �.
Each request also has an associated value or weight �

� might be

• the amount of money we get from renting out the resource

• the amount of time the resource is being used (� = � − �)

Find: A maximum-weight compatible subset of requests.

Weighted Interval Scheduling

Input: Set of jobs with start times, finish times, and weights

Goal: Find maximum weight subset of mutually compatible jobs.

19

Time

f

g

h

e

a

b

c

d

0 1 2 3 4 5 6 7 8 9 10

Weighted Interval Scheduling

Input: Set of jobs with start times, finish times, and weights

Goal: Find maximum weight subset of mutually compatible jobs.

20

Time

f

g

h

e

a

b

c

d

0 1 2 3 4 5 6 7 8 9 10

Greedy by finish times would give 9

Weighted Interval Scheduling

Input: Set of jobs with start times, finish times, and weights

Goal: Find maximum weight subset of mutually compatible jobs.

21

Time

f

g

h

e

a

b

c

d

0 1 2 3 4 5 6 7 8 9 10

Optimal yields 10

Greedy Algorithms for Weighted Interval Scheduling?

• What criterion should we try?
• Earliest start time �

• Doesn’t work

• Shortest request time � − �
• Doesn’t work

• Fewest conflicts

• Doesn’t work

• Earliest finish time �
• Doesn’t work

• Largest value/weight �
• Doesn’t work

22

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Time

6

7

8

4

3

1

2

5

0 1 2 3 4 5 6 7 8 9 10

23

Weighted Interval Scheduling

11

24

Weighted Interval Scheduling

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

25

Towards Dynamic Programming: Step 1 – Recursive Algorithm

Suppose that we first sort the requests by finish time � so �� ��� �…� ��.

We now want

• a recursive solution that makes calls to smaller problems and

• the indices for those smaller problems to be convenient,

so we first focus on the options for the last request, request �.

26

Weighted Interval Scheduling

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

There are two cases we need to compare:

When we don’t include request �.

In this case all the other requests are

still fair game

When we do include request �.

27

Weighted Interval Scheduling

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

There are two cases we need to compare:

When we don’t include request �.

In this case all the other requests are

still fair game

When we do include request �.

In this case we need to rule out some

incompatible requests.

It will be convenient to be able to

prune incompatible requests quickly…

28

Weighted Interval Scheduling

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Defn: �(�) = largest index < � s.t. job is compatible with �.

Example: �(�) = �, �(�) = �, �(�) = 	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

� �(�)
1 0

2 0

3 0

4 1

5 0

6 2

7 3

8 5

Computing all the �(�) values:

For � ← � to �
Run binary search for �� in the

list �� ≤ �� ≤ ⋯ ≤ �� to

find largest with � ≤ ��� � ←
 � log �

Structure of the subproblems

Notation: OPT(�) = value of optimal solution to the problem consisting of job requests �, �, … , �.

Case 1: OPT selects job �
• It can’t use incompatible jobs � � + �, … , � − �
• It must include an optimal solution to problem

consisting of remaining compatible jobs �, … , �(�).

Case 2: OPT doesn’t select job

• It must include an optimal solution to problem

consisting of remaining compatible jobs �, … , � − �

29

Optimal substructure

OPT � = $ 	 if � = 	
'(){�� + OPT � � , OPT � − � } otherwise

Weighted Interval Scheduling: Recursive Solution

30

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤≤≤≤ f2 ≤≤≤≤ ... ≤≤≤≤ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {

if (j = 0)

return 0

else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

}

Weighted Interval Scheduling: Recursive Solution

This recursive algorithm can be very bad…

Suppose that �(�) = � − � for every � ≥ �.

• Then Compute-Opt(�) calls Compute-Opt(� − �) and Compute-Opt(� − �)

• This is the same exponential run-time as the recursive Fibonacci code!

31

3

4

5

1

2

32

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤≤≤≤ f2 ≤≤≤≤ ... ≤≤≤≤ fn.

Compute p(1), p(2), …, p(n)

for j = 1 to n

M[j] = empty

M[0] = 0

M-Compute-Opt(j) {

if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))

return M[j]

}

global array

Weighted Interval Scheduling: Step 2 Memoization

Memoization: Store results of each sub-problem in a cache;

lookup as needed.

Weighted Interval Scheduling: Step 3

1. Formulate the answer as a recurrence relation or recursive algorithm

2. Figure out the possible values of parameters in the recursive calls.

• This should be “small”, i.e., bounded by a low-degree polynomial

• Can use memoization to store a cache of previously computing values

3. Specify an order of evaluation for the recurrence so that you already have the
partial results stored in memory when you need them.

• Produces iterative code

Recursion for OPT[�] only needs values of OPT[] for 	 ≤ < �.

• So we can evaluate them in order � = 	, �, �, … , �
33

Weighted Interval Scheduling: Iterative Solution

34

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤≤≤≤ f2 ≤≤≤≤ ... ≤≤≤≤ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {

OPT[0] = 0

for j = 1 to n

OPT[j] = max(vj + OPT[p(j)], OPT[j-1])

}

2(� log �)

2(�)

35

Weighted Interval Scheduling: Iterative Solution

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Defn: �(�) = largest index < � s.t. job is compatible with �.

Example: �(�) = �, �(�) = �, �(�) = 	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

� �� �(�) OPT[�]
0 - - 0

1 3 0

2 2 0

3 6 0

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

36

Weighted Interval Scheduling: Iterative Solution

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Defn: �(�) = largest index < � s.t. job is compatible with �.

Example: �(�) = �, �(�) = �, �(�) = 	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

� �� �(�) OPT[�]
0 - - 0

1 3 0 3

2 2 0

3 6 0

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

37

Weighted Interval Scheduling: Iterative Solution

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Defn: �(�) = largest index < � s.t. job is compatible with �.

Example: �(�) = �, �(�) = �, �(�) = 	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

� �� �(�) OPT[�]
0 - - 0

1 3 0 3

2 2 0

3 6 0

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

38

Weighted Interval Scheduling: Iterative Solution

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Defn: �(�) = largest index < � s.t. job is compatible with �.

Example: �(�) = �, �(�) = �, �(�) = 	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

� �� �(�) OPT[�]
0 - - 0

1 3 0 3

2 2 0 3

3 6 0

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

39

Weighted Interval Scheduling: Iterative Solution

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Defn: �(�) = largest index < � s.t. job is compatible with �.

Example: �(�) = �, �(�) = �, �(�) = 	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

� �� �(�) OPT[�]
0 - - 0

1 3 0 3

2 2 0 3

3 6 0

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

40

Weighted Interval Scheduling: Iterative Solution

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Defn: �(�) = largest index < � s.t. job is compatible with �.

Example: �(�) = �, �(�) = �, �(�) = 	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

� �� �(�) OPT[�]
0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

41

Weighted Interval Scheduling: Iterative Solution

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Defn: �(�) = largest index < � s.t. job is compatible with �.

Example: �(�) = �, �(�) = �, �(�) = 	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

� �� �(�) OPT[�]
0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

42

Weighted Interval Scheduling: Iterative Solution

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Defn: �(�) = largest index < � s.t. job is compatible with �.

Example: �(�) = �, �(�) = �, �(�) = 	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

� �� �(�) OPT[�]
0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0

6 4 2

7 4 3

8 3 5

43

Weighted Interval Scheduling: Iterative Solution

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Defn: �(�) = largest index < � s.t. job is compatible with �.

Example: �(�) = �, �(�) = �, �(�) = 	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

� �� �(�) OPT[�]
0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 5

6 4 2

7 4 3

8 3 5

44

Weighted Interval Scheduling: Iterative Solution

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Defn: �(�) = largest index < � s.t. job is compatible with �.

Example: �(�) = �, �(�) = �, �(�) = 	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

� �� �(�) OPT[�]
0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2

7 4 3

8 3 5

45

Weighted Interval Scheduling: Iterative Solution

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Defn: �(�) = largest index < � s.t. job is compatible with �.

Example: �(�) = �, �(�) = �, �(�) = 	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

� �� �(�) OPT[�]
0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3

8 3 5

46

Weighted Interval Scheduling: Iterative Solution

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Defn: �(�) = largest index < � s.t. job is compatible with �.

Example: �(�) = �, �(�) = �, �(�) = 	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

� �� �(�) OPT[�]
0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3

8 3 5

47

Weighted Interval Scheduling: Iterative Solution

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Defn: �(�) = largest index < � s.t. job is compatible with �.

Example: �(�) = �, �(�) = �, �(�) = 	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

� �� �(�) OPT[�]
0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3 10

8 3 5

48

Weighted Interval Scheduling: Iterative Solution

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Defn: �(�) = largest index < � s.t. job is compatible with �.

Example: �(�) = �, �(�) = �, �(�) = 	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

� �� �(�) OPT[�]
0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3 10

8 3 5

49

Weighted Interval Scheduling: Iterative Solution

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Defn: �(�) = largest index < � s.t. job is compatible with �.

Example: �(�) = �, �(�) = �, �(�) = 	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

� �� �(�) OPT[�]
0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3 10

8 3 5 10

Weighted Interval Scheduling: Finding the Solution

So far we have computed the value OPT(�) but we probably want to know what that

solution OPT actually is!

We can do this, too, by keeping track of which option was better at each step.

Define Used[�] = 5� solution with value OPT � includes request �	 otherwise

This gives a “pointer” that leads the way along a path to the optimal solution…

50

51

Weighted Interval Scheduling: Iterative Solution

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Defn: �(�) = largest index < � s.t. job is compatible with �.

Example: �(�) = �, �(�) = �, �(�) = 	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

� �� �(�) OPT[�] Used[�]
0 - - 0 -

1 3 0 3 1

2 2 0 3 0

3 6 0 6 1

4 3 1 6 1

5 5 0 6 0

6 4 2 7 1

7 4 3 10 1

8 3 5 10 0

52

Weighted Interval Scheduling: Iterative Solution

Notation: Label jobs by finishing time: �� ≤ �� ≤ ⋯ ≤ ��.

Defn: �(�) = largest index < � s.t. job is compatible with �.

Example: �(�) = �, �(�) = �, �(�) = 	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

� �� �(�) OPT[�] Used[�]
0 - - 0 -

1 3 0 3 1

2 2 0 3 0

3 6 0 6 1

4 3 1 6 1

5 5 0 6 0

6 4 2 7 1

7 4 3 10 1

8 3 5 10 0

Weighted Interval Scheduling: Finding the Solution

53

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤≤≤≤ f2 ≤≤≤≤ ... ≤≤≤≤ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {

OPT[0] = 0

for j = 1 to n

if vj + OPT[p(j)] > OPT[j-1] {

OPT[j] = vj + OPT[p(j)]

Used[j] = 1

} else {

OPT[j] = OPT[j-1]

Used[j] = 0

}

}

Find-Opt {

j = n

OPTSol = ∅
while j > 0

if Used[j] == 0 {

j = j-1

} else {

OPTSol = OPTSol ∪ {j}
j = p(j)

}

}

Three Steps to Dynamic Programming

1. Formulate the answer as a recurrence relation or recursive algorithm

2. Figure out the possible values of parameters in the recursive calls.

• This should be “small”, i.e., bounded by a low-degree polynomial

• Can use memoization to store a cache of previously computing values

3. Specify an order of evaluation for the recurrence so that you already have the
partial results stored in memory when you need them.

• Produces iterative code

Once you have an iterative DP solution: see if you can save space...

54

Dynamic Programming Patterns

Fibonacci pattern:

• 1-dimensional, 2(1) values immediately prior

• Space saving possible

Weighted interval scheduling pattern:

• 1-dimensional, 2(1) values arbitrarily far back

• No space saving possible

55

