
CSE 421

Introduction to Algorithms

Lecture 10:  Divide and Conquer

Median, Quicksort
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Today

Divide and conquer examples

• Simple, randomized median algorithm 

• Expected �(�) time

• Surprising deterministic median algorithm 

• Worst case �(�) time

• Expected time analysis for randomized QuickSort

• Expected �(� log �) time
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Order problems: Find the 	th smallest

Runtime measures

• # of machine instructions

• # of comparisons

• 1st Smallest = Minimum

• �(�) time

• � − � comparisons

• 2nd Smallest

• Still �(�) time and comparisons...



Median and Selection

Median: 	th smallest for 	 =  �/�

• Easily computed in �(� log �) time with sorting.

Q: How can Median be solved in �(�) time? 

A: Use divide and conquer ...

• But Median for a smaller set isn’t a natural subproblem for Median.

• Idea:  Generalize Median so natural subproblems are of the same type.

Selection:

Given: A (multi-)set � of � numbers, and an integer 	.

Find: The 	th smallest number in �.
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Linear Time Divide and Conquer for Selection

General idea:  

• Use a linear amount of work to reduce* Selection for a set of size �
to Selection for a set that is a constant factor smaller than �.

Recurrence

• � � =  � �/� + �(�) for some � >  �.

Apply the Master Theorem for � = �, 	 = �, and � >  �

• Since �	 = � < � solution is �(�).

*The value of 	 will also change to some 	′ for the recursive call.
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General Recursive Selection
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Select(	, �)

Choose element � from � “pivot”

�� ←←←← {� ∈ � | � < � }

�� ←←←← {� ∈ � | � = � }

�� ←←←← {� ∈ � | � > � }

if �� ≥ 	 
return Select(	, ��)

else if �� + �� ≥ 	
return �

else

return Select(	 − �� − |��|, ��)

�(�) time to partition



Implementing: “Choose element � ...” 
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Select(	, �)

Choose element � from �
�� ←←←← {� ∈ � | � < � }

�� ←←←← {� ∈ � | � = � }

�� ←←←← {� ∈ � | � > � }

if �� ≥ 	 
return Select(	, ��)

else if �� + �� ≥ 	
return �

else

return Select(	 − �� − |��|, ��)

Want to choose an � so that max( �� , �� ) is as 
small as possible.  That is, want � near the middle.

Two algorithms:

• QuickSelect

• Choose � at random

• Good average case performance

• BFPRT Algorithm

• Choose � by a complicated, but linear time 
method guaranteeing good split

• Good worst case performance



QuickSelect:  Random Choice of Pivot

QuickSelect:

• Run Select always choosing the pivot element � uniformly at random from 

among the elements of �.  

Theorem: QuickSelect has expected runtime �(�).

Proof: Let �(�) be the expected runtime of QuickSelect

on worst-case input sets � of size � and integer 	.

(The only randomness in the expectation is in the random choices of the algorithm.)
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QuickSelect:  Random Choice of Pivot

Consider a call to Select(	, �) and sorted order of elements in �

With probability ≥ �/� pivot � is good 

• For any good pivot the recursive call has subproblem size ≤ %�/&

• After 2 calls QuickSelect has expected problem size ≤ %�/&

So � � =  � �/� + �(�) for � = &/% > �
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bad � bad �good � good �

Elements of � listed in sorted order

⇒ Expected �(�) time

Say � is “good” iff

it is in the middle half



Blum-Floyd-Pratt-Rivest-Tarjan Algorithm

QuickSelect requires randomness to find a good pivot and is only good 

on the average.

The BFPRT Algorithm always finds a good pivot that will guarantee to 

leave a sub-problem of size ≤ %�/&.  Here is how it works… 

• Split � into �/( sets of size (.

• Sort each set of size ( and choose the median of that set as its representative.

• Compute the median of those �/( representatives.    Another recursion!

• Let the pivot � be that median.

Why does it work…?
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BFPRT, Step 1:  Construct sets of size 5, sort each set
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13 5 62 32 47 81 64 51 11

15 16 41 12 8 18 98 21 9

32 45 81 73 69 25 96 12 5

14 86 52 25 9 42 91 36 17

95 65 32 81 7 91 6 11 77

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

13, 15, 32, 14, 95, 5, 16, 45, 86, 65, 62, 41, 81, 52, 32, 32, 12, 73, 25, 81, 47, 8, 

69, 9, 7, 81, 18, 25, 42, 91, 64, 98, 96, 91, 6, 51, 21, 12, 36, 11, 11, 9, 5, 17, 77

Group:

Input:

Sort each 

group:
� �



BFPRT, Step 2: Find median of column medians
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95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

Column 

medians:

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

Imagining rearranging columns by column median

�(�/(�



95 51 77 69 81 91 98 86 81

32 36 17 47 73 81 96 65 62

15 21 11 9 32 42 91 45 52

14 12 9 8 25 25 64 16 41

13 11 5 7 12 18 6 5 32

BFPRT, Step 2: Find median of column medians

13

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

Column 

medians:

Imagining rearranging columns by column medians

�(�/(�



95 51 77 69 81 91 98 86 81

32 36 17 47 73 81 96 65 62

15 21 11 9 32 42 91 45 52

14 12 9 8 25 25 64 16 41

13 11 5 7 12 18 6 5 32

BFPRT, Step 2: Find median of column medians

14

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

Column 

medians:

Choose � to be that median of medians

�(�/(�

Not in ��

Size ≥ �/&



95 51 77 69 81 91 98 86 81

32 36 17 47 73 81 96 65 62

15 21 11 9 32 42 91 45 52

14 12 9 8 25 25 64 16 41

13 11 5 7 12 18 6 5 32

BFPRT, Step 2: Find median of column medians

15

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

Column 

medians:

Choose � to be that median of medians

�(�/(�

Not in ��

Size ≥ �/&

|��|, )* $
%�

&



BPFRT Recurrence

Choose partitioning element �

• �(�/() + �(�)

Partitioning based on �

• �(�)

Cost of recursive subproblem

• �(%�/&)

Recurrence

• � � = � %�/& + �(�/() + �(�)
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Why is the solution �(�)?
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Solution to �(�) = �(%�/&) + �(�/() + +� is �(�)

Key property of recurrence:

• %/& +  �/( <  �

• Sum is �,/�-

Cost at top level is +�; so at other levels, linear in the sum of problem sizes

• Sum of problem sizes decreases by �,/�- factor per level of recursion

• Total cost is geometric series with ratio <  � and largest term +�

• Solution is �(�).



QuickSort
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QuickSort(�)

if � ≤ � return �
Choose element � from � “pivot”

�� ←←←← {� ∈ � | � < � }

�� ←←←← {� ∈ � | � = � }

�� ←←←← {� ∈ � | � > � }

return [QuickSort(��), ��, QuickSort(��)]
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QuickSort

Pivot selection

• Choose the median

• � � = � � �/� + �(�) �(� log �)

• Choose arbitrary element

• Worst case – �(��)

• Element might be smallest, so one subproblem has size � − �

• Average case – �(� log �) similar to QuickSelect analysis

• Choose random pivot

• Expected time – �(� log �)

We’ll give an analysis for this bound ...



Expected Runtime for QuickSort: “Global analysis”

Runtime is proportional to # of comparisons

• Count comparisons for simplicity

Master theorem kind of analysis won’t work ...

Instead, use a clever global analysis:

• Number elements ��, ��, … , �� based on final sorted order

• Let /01 = Probability that QuickSort compares �0 and �1

Expected number of comparisons:

∑ ∑ /01
�
1304�

�5�
03�
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Expected Runtime for QuickSort: “Global analysis”

Lemma: For 0 < 1 we have /01 ≤
�

1504�
. 

Proof: If �0 and �1 are compared then it must be during the call 

when they end up in different subproblems 

• Before that, they aren’t compared to each other

• After they aren’t compared to each other

During this call they are only compared if one of them is the pivot

All elements between �0 and �1 are also in the call:

• ⇒ set has size at least 1 − 0 + � in this call

• Probability one of the � is chosen as pivot is ≤ �/(1 − 0 + �).
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Expected Runtime for QuickSort: “Global analysis”

Lemma: For 0 < 1 we have /01 ≤
�

1504�
. 

Expected number of comparisons:

∑ ∑ /01
�
1304�

�5�
03� ≤ ∑ ∑

�

1504�

�
1304�

�5�
03�

= ∑ ∑
�

	4�

�504�
	3�

�5�
03�

< � ∑ ∑
�

	

�
	3�

�5�
03�

< � � 6�

= � � ln � + � � ≤ 1.3871.3871.3871.387 � log� �
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for 	 = 1 − 0

Harmonic series sum: 

6� = ∑
�

	

�
	3� = � +

�

�
+

�

%
+

�

&
+ ⋯ +

�

�

Fact: 6� = ln � + �(�)



QuickSort in Practice (Nonrandom)

Separating out set �� of elements equal to the pivot is important

• Use 4-finger algorithm instead of 2-finger algorithm for partitioning

• Collect equal elements at each end and swap to middle at end of 

partitioning (saves a lot on size of recursive set sizes) 

• If � is very small use InsertionSort instead (also good if set is nearly sorted)

• Small �

• choose middle element of subarray as pivot

• Medium � 

• choose median of 3 elements as pivot

• Large � 

• consider 9 elements in 3 groups of 3; choose median of medians as pivot
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