CSE 421 Introduction to Algorithms

Lecture 10: Divide and Conquer Median, Quicksort

Today

Divide and conquer examples

- Simple, randomized median algorithm
 - Expected O(n) time
- Surprising deterministic median algorithm
 - Worst case O(n) time
- Expected time analysis for randomized QuickSort
 - Expected $O(n \log n)$ time

Order problems: Find the k^{th} smallest

Runtime measures

- # of machine instructions
- # of comparisons
- 1st Smallest = Minimum
 - *0*(*n*) time
 - n-1 comparisons
- 2nd Smallest
 - Still O(n) time and comparisons...

Median and Selection

Median: k^{th} smallest for k = n/2

• Easily computed in $O(n \log n)$ time with sorting.

Q: How can Median be solved in O(n) time?

A: Use divide and conquer ...

- But Median for a smaller set isn't a natural subproblem for Median.
- Idea: Generalize Median so natural subproblems are of the same type.

Selection:

Given: A (multi-)set S of n numbers, and an integer k.

Find: The k^{th} smallest number in S.

Linear Time Divide and Conquer for Selection

General idea:

• Use a linear amount of work to reduce* Selection for a set of size n to Selection for a set that is a *constant factor smaller* than n.

Recurrence

• T(n) = T(n/b) + O(n) for some b > 1.

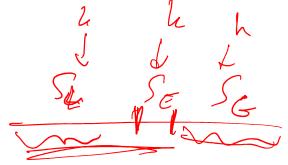
Apply the Master Theorem for a = 1, k = 1, and b > 1

• Since $a^k = 1 < b$ solution is O(n).

*The value of k will also change to some k' for the recursive call.

General Recursive Selection

```
Select(k, S)
   Choose element x from S
                                       "pivot"
   S_L \leftarrow \{y \in S \mid y < x\}
   S_E \leftarrow \{y \in S \mid y = x\}
   S_G \leftarrow \{y \in S \mid y > x\}
   if |S_L| \ge k
       return Select(k, S_L)
   else if |S_L| + |S_F| \ge k
       return x
   else
        return Select(k - |S_L| - |S_E|, S_G)
```



Implementing: "Choose element x ..."

```
Select(k, S)

Choose element x from S

S_L \leftarrow \{y \in S \mid y < x\}

S_E \leftarrow \{y \in S \mid y = x\}

S_G \leftarrow \{y \in S \mid y > x\}

if |S_L| \ge k

return Select(k, S_L)

else if |S_L| + |S_E| \ge k

return x

else
```

Want to choose an x so that $\max(|S_L|, |S_G|)$ is as small as possible. That is, want x near the middle.

Two algorithms:

- QuickSelect
 - Choose x at random
 - Good average case performance
- BFPRT Algorithm
 - Choose x by a complicated, but linear time method guaranteeing good split
 - Good worst case performance

QuickSelect: Random Choice of Pivot

QuickSelect:

 Run Select always choosing the pivot element x uniformly at random from among the elements of S.

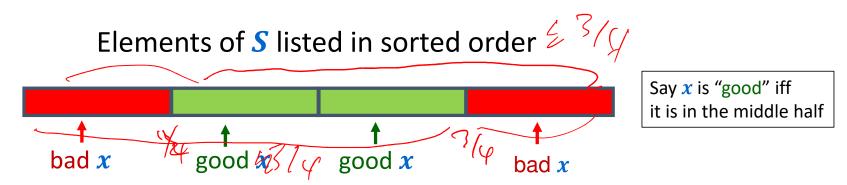
Theorem: QuickSelect has expected runtime O(n).

Proof: Let T(n) be the expected runtime of QuickSelect on worst-case input sets S of size n and integer k.

(The only randomness in the expectation is in the random choices of the algorithm.)

QuickSelect: Random Choice of Pivot

Consider a call to Select(k, S) and sorted order of elements in S



With probability $\geq 1/2$ pivot x is good

- For any good pivot the recursive call has subproblem size $\leq 3n/4$
- After 2 calls QuickSelect has expected problem size $\leq 3n/4$

So
$$T(n) = T(n/b) + O(n)$$
 for $b = 4/3 > 1 \implies \text{Expected } O(n)$ time

Blum-Floyd-Pratt-Rivest-Tarjan Algorithm

QuickSelect requires randomness to find a good pivot and is only good on the average.

The BFPRT Algorithm always finds a good pivot that will guarantee to leave a sub-problem of size $\leq 3n/4$. Here is how it works...

- Split S into n/5 sets of size 5
 - Sort each set of size 5 and choose the median of that set as its representative.
- Let the pivot x be that median.

Why does it work...?

BFPRT, Step 1: Construct sets of size 5, sort each set

Input:

13, 15, 32, 14, 95, 5, 16, 45, 86, 65, 62, 41, 81, 52, 32, 32, 12, 73, 25, 81, 47, 8, 69, 9, 7, 81, 18, 25, 42, 91, 64, 98, 96, 91, 6, 51, 21, 12, 36, 11, 11, 9, 5, 17, 77

Group:

13	5	62	32	47	81	64	51	11
15	16	41	12	8	18	98	21	9
32	45	81	73	69	25	96	12	5
14	86	52	25	9	42	91	36	17
95	65	32	81	7	91	6	11	77

Sort each group:

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

O(n)

Column medians:

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

T(n/5)

Imagining rearranging columns by column median

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

Column medians:

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

T(n/5)

Imagining rearranging columns by column medians

95	51	77	69	81	91	98	86	81
32	36	17	47	73	81	96	65	62
15	21	11	9	32	42	91	45	52
14	12	9	8	25	25	64	16	41
13	11	5	7	12 /	18	6	5	32

Column medians:

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

T(n/5)

Choose x to be that median of medians

Not in S_G

Size $\geq n/4$

95	51	77	69	81	91	98	86	81
32	36	17	47	73	81	96	65	62
15	21	11	9	32	42	91	45	52
14	12	9	8	25	25	64	16	41
13	11	5	7	12	18	6	5	32

Column medians:

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

T(n/5)

Choose x to be that median of medians

95	51	77	69	81	91	98	86	81
32	36	17	47	73	81	96	65	62
15	21	11	9	32	42	91	45	52
14	12	9	8	25	25	64	16	41
13	11	5	7	12	18	6	5	32

Not in S_L Size $\geq n/4$

$$|S_L|,|S_G|\leq \frac{3n}{4}$$

BPFRT Recurrence

Choose partitioning element x

•
$$T(n/5) + O(n)$$

Partitioning based on x

• O(n)

Cost of recursive subproblem

• T(3n/4)

Recurrence

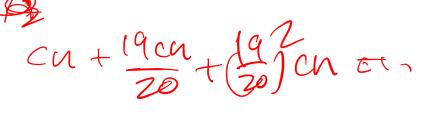
•
$$T(n) = T(3n/4) + T(n/5) + O(n)$$

Why is the solution O(n)?

Solution to
$$T(n) = T(3n/4) + T(n/5) + \underline{cn}$$
 is $O(n)$

Key property of recurrence:

- 3/4 + 1/5 < 1
- Sum is 19/20



Cost at top level is *cn*; so at other levels, linear in the sum of problem sizes

- Sum of problem sizes decreases by 19/20 factor per level of recursion
- Total cost is geometric series with ratio < 1 and largest term cn
- Solution is O(n).

QuickSort

```
\begin{aligned} &\operatorname{QuickSort}(S) \\ &\operatorname{if} |S| \leq 1 \operatorname{return} S \\ &\operatorname{Choose element} x \operatorname{from} S \quad \text{``pivot''} \\ &S_L \leftarrow \{y \in S \mid y < x \} \\ &S_E \leftarrow \{y \in S \mid y = x \} \\ &S_G \leftarrow \{y \in S \mid y > x \} \\ &\operatorname{return} \left[ \operatorname{QuickSort}(S_L), S_E, \operatorname{QuickSort}(S_G) \right] \end{aligned}
```

QuickSort

Pivot selection

- Choose the median
 - T(n) = 2 T(n/2) + O(n) $O(n \log n)$
- Choose arbitrary element
 - Worst case $O(n^2)$
 - Element might be smallest, so one subproblem has size n-1
 - Average case $-O(n \log n)$ similar to QuickSelect analysis
- Choose random pivot
 - Expected time $O(n \log n)$

We'll give an analysis for this bound ...

Expected Runtime for QuickSort: "Global analysis"

Runtime is proportional to # of comparisons

Count comparisons for simplicity

Master theorem kind of analysis won't work ...

Instead, use a clever global analysis:

- Number elements $a_1, a_2, ..., a_n$ based on final sorted order
- Let p_{ij} = Probability that QuickSort compares a_i and a_j

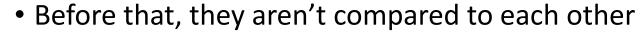
Expected number of comparisons:

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} p_{ij}$$

Expected Runtime for QuickSort: "Global analysis"

Lemma: For i < j we have $p_{ij} \le \frac{2}{j-i+1}$.

Proof: If a_i and a_j are compared then it must be during the call when they end up in different subproblems



After they aren't compared to each other

During this call they are only compared if one of them is the pivot

All elements between a_i and a_i are also in the call:

- \Rightarrow set has size at least j i + 1 in this call
- Probability one of the 2 is chosen as pivot is $\leq 2/(j-i+1)$.

Expected Runtime for QuickSort: "Global analysis"

Lemma: For i < j we have $p_{ij} \le \frac{2}{i-j+1}$.

Expected number of comparisons:

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} p_{ij} \leq \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i+1} \frac{2}{k+1} \quad \text{for } k = j-i$$

$$< 2 \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{1}{k}$$

$$< 2 n H_n$$

$$< 2 n H_n$$

$$= 2 \underline{n \ln n} + \underline{O(n)} \le 1.387 \underline{n \log_2 n}$$

Harmonic series sum:

$$H_n = \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$$

Fact:
$$H_n = \ln n + O(1)$$

for
$$k = j - i$$

QuickSort in Practice (Nonrandom)

Separating out set S_E of elements equal to the pivot is important

- Use 4-finger algorithm instead of 2-finger algorithm for partitioning
 - Collect equal elements at each end and swap to middle at end of partitioning (saves a lot on size of recursive set sizes)
- If n is very small use InsertionSort instead (also good if set is nearly sorted)
- Small **n**
 - choose middle element of subarray as pivot le later to later the later to later the later to later the later to later the la
- Medium *n*
 - choose median of 3 elements as pivot
- Large n
 - consider 9 elements in 3 groups of 3; choose median of medians as pivot