CSE 421Introduction to Algorithms

Lecture 10: Divide and ConquerMedian, Quicksort

Today

Divide and conquer examples

- Simple, randomized median algorithm
	- Expected $O(\bm{n})$ time
- Surprising deterministic median algorithm
	- Worst case $O(n)$ time
- Expected time analysis for randomized QuickSort
	- Expected $O(\bm{n} \log \bm{n})$ time

Order problems: Find the k^{th} **smallest**

Runtime measures

- # of machine instructions
- # of comparisons
- 1^{st} Smallest = Minimum
	- $O(\bm{n})$ time
	- $n-1$ comparisons
- 2nd Smallest
	- Still $O(\bm{n})$ time and comparisons...

Median and Selection

- **Median:** \mathbf{k}^{th} smallest for $\mathbf{k} = \mathbf{n}/2$
- Easily computed in $O(\bm{n} \log \bm{n})$ time with sorting.

Q: How can Median be solved in $O(n)$ time?

A: Use divide and conquer ...

- But Median for a smaller set isn't a natural subproblem for Median.
- *Idea*: Generalize Median so natural subproblems are of the same type.

Selection:

 G iven: A (multi-)set \boldsymbol{S} of \boldsymbol{n} numbers, and an integer \boldsymbol{k} .

Find: The k^{th} smallest number in S .

Linear Time Divide and Conquer for Selection

General idea:

• Use a linear amount of work to reduce* Selection for a set of size \boldsymbol{n} to Selection for a set that is a *constant factor smaller* than .

 $m(u^{\ell})$

Recurrence

• $T(n) = T(n/b) + O(n)$ for some $b > 1$.

Apply the Master Theorem for $a = 1$, $k = 1$, and $b > 1$

• Since \boldsymbol{a} $\frac{k}{n} = 1 < b$ solution is $\bm{o}(n).$

*The value of \bm{k} will also change to some \bm{k}' for the recursive call.

azt salom

 $h=\begin{cases} \frac{1}{h^{1.5}}a^{h} \end{cases}$

General Recursive Selection

 $\mathsf{Select}(\pmb{k}, \ \pmb{S})$ Choose element \bm{x} from \bm{S} "pivot" $S_L \leftarrow \{ y \in S \mid y < x \}$ **Contract Contract Contract Contract** $S_E \leftarrow \{ y \in S \mid y = x \}$ $S_G \leftarrow \{ y \in S \mid y > x \}$ if $|\boldsymbol{S_L}$ **return Select(k, SL)** $L \geq k$ else if $|\mathcal{S}_L| + |\mathcal{S}_E| \geq k$ return $\boldsymbol{\mathit{x}}$ $|E|\geq k$ else $\displaystyle \frac{\textsf{return Select}(k - |\mathcal{S}_L|)}{}$ $\lfloor L \rfloor - |S_E|, S_G$

 $O(\boldsymbol{n})$ time to partition

SCHOOL

Implementing: "Choose element ..."

 $\mathsf{Select}(\pmb{k}, \ \pmb{S})$ Choose element \boldsymbol{x} from \boldsymbol{S} $S_L \leftarrow \{ y \in S \mid y < x \}$ **Contract Contract Contract Contract** $S_E \leftarrow \{ y \in S \mid y = x \}$ $S_G \leftarrow \{ y \in S \mid y > x \}$ if $|\boldsymbol{S_L}$ $|L| \geq k$ return **Select**(\bm{k} , $\bm{S}_{\bm{L}}$) else if $|\mathcal{S}_L| + |\mathcal{S}_E| \geq k$ return $\boldsymbol{\mathit{x}}$ $|E|\geq k$ else $\mathsf{return} \ \mathsf{Select}(k - |{\cal S}_L)$

Want to choose an x so that $\max(|S_L|, |S_G|)$ is as small as possible. That is, want \bm{x} near the middle. Two algorithms:

- QuickSelect
	- Choose x at random
	- Good average case performance
- BFPRT Algorithm

 $|L|-|S_E|, S_G|$

- Choose x by a complicated, but linear time method guaranteeing good split
- Good worst case performance

G ALLEN SCHOOL

QuickSelect: Random Choice of Pivot

QuickSelect:

• Run Select always choosing the pivot element x *uniformly at random* from
cross the clarecrip of S among the elements of $\boldsymbol{S}.$

Theorem: QuickSelect has expected runtime $O(n).$

Proof: Let $\bm{T}(\bm{n})$ be the expected runtime of $\bm{\mathsf{QuickSelect}}$ on worst-case input sets \boldsymbol{S} of size \boldsymbol{n} and integer $\boldsymbol{k}.$

(The only randomness in the expectation is in the random choices of the algorithm.)

QuickSelect: Random Choice of Pivot

Consider a call to $\mathsf{Select}(\bm{k}, \, \bm{S})$ and sorted order of elements in \bm{S}

With probability $\geq 1/2$ pivot x is good

- For any good pivot the recursive call has subproblem size $\leq 3n/4$
- After 2 calls QuickSelect has expected problem size $\leq 3n/4$

So $\bm{T}(\bm{n}) = \bm{T}(\bm{n}/\bm{b}) + O(\bm{n})$ for $\bm{b} = \frac{\bm{4}}{2} > 1 \implies$ Expected $O(\bm{n})$ time

Blum-Floyd-Pratt-Rivest-Tarjan Algorithm

QuickSelect requires randomness to find a good pivot and is only good on the average.

The **BFPRT Algorithm** *always* finds a good pivot that will guarantee to leave a sub-problem of size $\leq 3n/4$. Here is how it works... $\vert A \rangle$

- \bullet Split S into $n/5$ sets of size 5.
- •• Sort each set of size $\frac{5}{2}$ and choose the median of that set as its representative.
- Compute the median of those $n/5$ representatives. *Another recursion!*
- Let the pivot x be that median.

Why does it work…?

BFPRT, Step 1: Construct sets of size 5, sort each set

Input:

13, 15, 32, 14, 95, 5, 16, 45, 86, 65, 62, 41, 81, 52, 32, 32, 12, 73, 25, 81, 47, 8, 69, 9, 7, 81, 18, 25, 42, 91, 64, 98, 96, 91, 6, 51, 21, 12, 36, 11, 11, 9, 5, 17, 77

 $O(n$

G ALLEN SCHOOL. **SCIENCE & ENGINEERING**

11

Column medians:

 $T(n/5)$

Imagining rearranging columns by column median

Column medians:

 $T(n/5)$

Imagining rearranging columns by column medians

Column medians:

 $T(n/5)$

Choose \boldsymbol{x} to be that median of medians

Column medians:

 $T(n/5)$

Choose \boldsymbol{x} to be that median of medians

 $3n$

&

 \leq

BPFRT Recurrence

Choose partitioning element \bm{x}

• $T(n/5) + O(n)$

Partitioning based on x

• $O(n)$

Cost of recursive subproblem

• $T(3n/4)$

Recurrence

$$
T(n) = T(3n/4) + T(n/5) + O(n)
$$

Why is the solution $O(\boldsymbol{n})$?

Solution to $T(n) =$ $= T(3n/4) + T(n/5) + cn$ is $O(n)$

Key property of recurrence:

- $3/4 + 1/5 < 1$
- Sum is $19/20$

Cost at top level is cn ; so at other levels, linear in the sum of problem sizes

- Sum of problem sizes decreases by $19/20$ factor per level of recursion
- Total cost is geometric series with ratio $<~1$ and largest term $\boldsymbol{c}\boldsymbol{n}$
- Solution is $\bm{\mathit{O}}(\bm{n}).$

 $C_{1} + \frac{19c_1}{20} + \frac{19}{20}$ cm ct

QuickSort

QuickSort

Pivot selection

- Choose the median
	- $T(n) = 2 T(n/2) + O(n)$ (*n* log *n*)

• Choose arbitrary element

- Worst case $O(n^2)$
	- Element might be smallest, so one subproblem has size $\bm{n-1}$
- Average case $O(\bm{n} \log \bm{n})$ similar to QuickSelect analysis
- Choose random pivot
	- Expected time $O(n\log n)$

We'll give an analysis for this bound ...

19

Expected Runtime for QuickSort: "Global analysis"

Runtime is proportional to # of comparisons

• Count comparisons for simplicity

Master theorem kind of analysis won't work ...

Instead, use a clever global analysis:

- Number elements $\boldsymbol{a_1}$, $\boldsymbol{a_2}$, ... , $\boldsymbol{a_n}$ based on **final** sorted order
- Let $\boldsymbol{p_{ij}}$ = Probability that QuickSort compares $\boldsymbol{a_i}$ and $\boldsymbol{a_j}$

Expected number of comparisons:

 $\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}p_{ij}$ $j\hspace{-0.04cm}=$ $i\hspace{-0.04cm}+\hspace{-0.04cm}1$ $\boldsymbol{n{-}1}$ i =1

 ζ

Expected Runtime for QuickSort: "Global analysis"

Lemma: For $\bm{i} < \bm{j}$ we have $\bm{p}_{\bm{ij}}$ ≤2 $j-i+1$

Proof:: If a_i and a_j are compared then it must be during the call when they end up in different subproblems

- Before that, they aren't compared to each other
- After they aren't compared to each other

During this call they are only compared if one of them is the pivot

All elements between \boldsymbol{a}_{i} and \boldsymbol{a}_{j} are also in the call:

- $\bullet \Rightarrow$ set has size at least $\bm{j}-\bm{i}+\bm{1}$ in this call
- Probability one of the ${\bf 2}$ is chosen as pivot is $\leq 2/(j-i+1)$.

Expected Runtime for QuickSort: "Global analysis"

QuickSort in Practice (**Nonrandom**)

Separating out set $\boldsymbol{S_{E}}$ of elements equal to the pivot is important

- Use 4-finger algorithm instead of 2-finger algorithm for partitioning
	- Collect equal elements at each end and swap to middle at end of partitioning (saves a lot on size of recursive set sizes)
- If \bm{n} is very small use InsertionSort instead (also good if set is nearly sorted)
- Small \bm{n}
	- choose middle element of subarray as pivqt
- Medium \bm{n}
-
- choose median of 3 elements as pivot
- Large \boldsymbol{n}
	- consider 9 elements in 3 groups of 3; choose median of medians as pivot