CSE 421
Introduction to Algorithms

Lecture 9: Divide and Conquer
Matrix & Integer Multiplication




Algorithm Design Techniques

Divide & Conquer
* Divide instance into subparts.
 Solve the parts recursively.
e Conquer by combining the answers
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Last Time: Solving Divide and Conquer Recurrences

Master Theorem: Suppose that T(n) = a-T(n/b) + O0(n*) forn > b.
* If a < b*then T(n) is O(nk)

e If a = b¥then T(n) is 0(n*log n)

* If a > b*then T(n) is 0(n'°8 @)

Binary search:a =1,b =2,k = 0 soa = b*: Solution: O(nolog n) = O(logn)
Mergesort: a = 2, b = 2, k = 1 so a = b*: Solution: 0(nllogn) = 0(nlogn)
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Matrix Multiplicat

—au dp  dy;  dy | —bu b, b; by, |
dyy Ay Gy dy . by by by by
Ay Ay Ay Ay | | by by by by,

la, a, agz ay| |by b, by by

a, by, +apby, +asby, +ayb,  ayb,+anby+ash, +agb, o a“b“+a1,bu+al3b34+a“b4ﬂ
by +arohy +anhy +ayb,,  ayb, +anby tayh, +ayb, © ayby+anby, +anhy, +ayby,

2
b,+ayb, ° ab,+tanb,+tasb,+ab,

33734

a, b, +a.b+a b +a b, ab,+a,b,+a

3331 33

_a“b“ +ayb, +ab,+ab, ab,+a,b,+asb,+ab, o aub,+ayb,+ab,, +a44b44j

Multiplying n X n matrices: Entry ¢;; = Y. Qi by;
« n3 multiplications
« n3 — n? additions
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Multiplying Matrices

fori<—1ton
forj<—1ton
Cli,j]< O
fork«<1ton
Cli,jl < C|i,j] + Ali, k]-B|k, j|
endfor
endfor

endfor

Can we improve this with divide and conquer?
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Multiplying Matrices

dyy dp | G Ay by,
Gy, Ay | Gy dy . b,,
Ay Ay Ay Ay | | by
| dyy dyy Ay dyy | _b41

ay by, +ayby, t-aysby +ay by,

@b+ b, i aysy, +ayby,

3

a b, +a,by +aby, +ay by,

33731

 a, by +auhy +apby, +ab,

n_n
_X_
2 2
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blz b13 b14
b22 b23 b?.-}
b32 b33 b34
b42 b43 b44 ]

ab, +apby ay

ay by, +a5,b) -ayshy, +a,
ay, b, +a,b,, +agsb, +a,b,,

a,b, +a,b, +azb, +a,

b

4“42

ayby+apby+apby, +aub,, W
by +ayby +ayby +ay by,

ab,+anb, +ab, +a b,

ayb,+anb,+agb, +a b, |

matrix multiplications inside the n X n computation




Multiplying Matrices

a, a, |a; ay| |by, b, by; b,

dn G |93 9| by by by by

Ay Ay Ay Ay | (by by | by by,
| Ay Ay Ay Ay | b41 b42 b43 b44 i

ay by +aby Hapby +ayby | ayby +apby Hapb, +aby, | o ayby+apby, +apby+aub,,

Ay +apby Hayshs + by | by +anby, Hagby +ayby,| o ayby+ayby+ayby +ay by,

e 2

ayb, +apby, +agb, +ay b, ayb,+Hanb, +apb, +anb, o ayb,+anb,+asb, +ab,,

3

_a41b11 +agh, +agby+aub,  ab,+anb,+agby+audb, o anb,+anb,+asb, +a44b44_

matrix multiplications inside the n X n computation

n_n
_X_
2 2

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING




Multiplying Matrices

_allA all al-.A al-i b]B b bB b -
a, 1&,, | a, 1%, | | b, 1B, | b,; 12,
@
aSlA Ay | 33 b:B by, bsB by,
| a,; 24, a4,Azzz44_ b, 2%, | b, 23, |

al by +apby +ashy +a by, alle+ by, +ayby, +ayby | o aghy +aub24ia1sb4 +ayby,
¥

lb“+aﬂ,b,,1+am ! +a¢B K )Baﬂb +aﬂh +a34b4, o a,b,+a.b,+ab,+ab,,

aﬁm@lﬂ&@% n22a,b,, |

_a41b11+a42b21+a43 12’1‘:’44 i1 1%;1 ' H 20y +abs, +ayb,,

o)

matrix multiplications inside the n X n computation

NS
X
NS
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Multiplying Matrices

r N (- A
11 AlZ B11 BlZ

A
Ay A,, B, B,,

\ J . J
(
A1,B11+A15By,
A;1B11+A,,B,,
g

A;,B1,+A,By)

A,,B1,+A,,B,,

n n . . g . . . .
> X5 matrix multiplications inside the n X n computation
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Multiplying Matrices: Divide and Conquer

~ N (. N (. )

Ay A, By B,, A11B11+A5By; | AgBiptAL,B),
\A21 Azzj KBZI B,, Y KAZIBll'l'AZZBZl A21B12+Azszzj
g X g matrix operations inside the n X n computation:

8 matrix multiplications: T(n/2) each
4 matrix additions: (n/2)? each; total 0(n?)
Recurrence: T(n) = 8 T(n/2) + 0(n?)

Apply Master Theorem:
a=8,b=2,k=2 Nowb*=2%=4 soa> b"andlog, a = 3.

Solution: T(n) is O(nlogb “) = 0(n3) No savings!
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Strassen’s Divide and Conquer (1968)

4 N (. N\ (- )
A | Ap B;; | By A11B11+A15By | ApiBiytAg,By,
\Az1 A,, ) \521 B,, ) \A21311+A22821 A21B12+Azszzj

Key observations: This picture looks just like 2 X 2 matrix multiplication!
and the number of multiplications is what really matters

Strassen: Can multiply 2 X 2 matrices using only 7 multiplications!
(and many more additions)

Recurrence: T(n) = 7 T(n/2) + 0(n?)
Apply Master Theorem:
a=7,b=2,k=2sosolution T(n)is 0(n'°827) = 0(n*807%)!
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Strassen’s Divide and Conquer (1968)

P« A.3(By1 + By1); Py Ay(By; + Byy)
P;< (Ayy — Ap)Byy; Py (Ay; — Ay)By,
P (Ay; — Ag)(Byy — Byy)

Po< (A — Az1)(By; — Byy)

P; < (Az; — Ay)(Byy + Byy)

Ci,<P,+P,; C,,«<P,+P;+P, — P,
C,y«<P,+P,+P.+P,; C,p—~P,+P,
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Fast Matrix Multiplication

Using Strassen’s 0 (n?%%74) algorithm:
* Practical for exact calculations on large matrices
* Not numerically stable with approximations
e Stop recursion when n < 32 and use simple algorithm instead
 This kind of stopping of recursion is typical for divide and conquer

Decades of theoretical improvements since:

« Best current time 0 (n?3728596)

* None of these improvements is practical (require n in the millions and more)

Open: Is there an 0(n?) time matrix multiplication algorithm?
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Integer Multiplication

695273 110110 |
x 123412 %« 101110 Elementary school algorithm
1390546 0
695273 110110
2781092 110110 24 4 e
2085819 110110 O (n*) time for n-bit integers
1390546 0
695273 110110
85805031476 100110110100
Decimal Binary

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING




Integer Multiplication: Divide and Conquer

Break up each n-bit integer x and y into two nn/2-bit integers

X1 X0 Y1 Yo

so x =x;:-2M% +xpandy =y, - 2M2 + y,.

Thenx -y = (x1 - 2™?% + x0)(y1 - 2% + y,)
=X1-Y1- 2"+ (X1 - Yo+ X0 -¥1) - 2%+ x0- ¥

Divide and conquer: X0 Yo
e Solve 4 size n/2 subproblems X1 Yo

 Shift answers, add results 0(n) Xo ' V1

Recurrence: T(n) =4T(n/2)+ 0(n) X1 Y1
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Integer Multiplication: Divide and Conquer

Break up each n-bit integer x and y into two nn/2-bit integers

X1 X0 Y1 Yo

so x =x;:-2M% +xpandy =y, - 2M2 + y,.

Thenx -y = (x1 - 2™?% + x0)(y1 - 2% + y,)
=X1-Y1- 2"+ (X1 - Yo+ X0 -¥1) - 2%+ x0- ¥

Divide and conquer: Master Theorem:
* Solve 4 size n/2 subproblems T a= 4'k b=2k=1
e a>b
e Shif Its O
Shift answers, add results 0(n) So T(n) is O(nlogb a) — 0(n?)
Recurrence: T(n) =4T(n/2)+ 0(n) No savings!
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Karatsuba’s Divide and Conquer Algorithm (1963)
We want to compute x - ¥y = x1 - V1 - 2™+ (X1 - Yo + X0 - V1) - 2™% + xy - Vo
For divide and conquer, we already have to compute x; - y; and x - v,

We just need that middle term (x4 - yo + xo - ¥1) Wwhich looks like two multiplications.

If we compute (x1+xg): (1 +vo) =x1 Y1+ (x1 Yo+ x0:Yy1) + X0 Vo then
we can cancel off the first and last parts to get the middle term we need and we only
use one multiplication.
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Karatsuba’s Divide and Conquer Algorithm (1963)

We want to compute x - y = x1 - ¥4 - 2™+ (X1 - Yo + X0 - V1) - 2™% + x4 - Vo
Karatsuba:
Use only 3 “half-size” multiplications by computing middle term more efficiently

* Multiplytogett, = x4 - y;. T(n/2)

* Multiply togetty = x¢ - Vp. T(n/2)

* Add to get x; + xg and y; + yp. O(n) :n/2 + 1 bit answers
* Multiply to gets = (x1 + x¢) - (y1 + Vo) T(n/2+1)

=x1 Y1+ (X1 Yo+ Xo-Y1) + X0 Yo
 Computet; = s — t, — tg whichequals x{ - yo + X¢ * V1 0O(n)
 Shift £; and t,, add results to ¢ O(n)

Recurrence: T(n) =3 T(n/2 + 1) + O(n) Solution: T(n)is 0(n'°823) = 0(n1->8%)
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Fast Multiplication and the Fast Fourier Transform (FFT)

Fast integer multiplication is used for multi-precision arithmetic
e Relevant input-size measure: # of 64-bit words of precision

Karatsuba’s algorithm is not the fastest for integer multiplication

* Fastestis O(nlogn) time based on the Fast Fourier Transform (FFT)
* [Schoenhage-Strassen 1971, Furer 2007, Harvey-Hoeven 2019]
* Many messy details. We'll focus on FFT itself!

Fast Fourier Transform (FFT) [Cooley-Tukey 1967]
* Efficient conversion back-and-forth between a signal and its frequencies.
* O(nlogn) time algorithm for multiplying polynomials.
* Practical variant is standard for computing the Discrete Cosine Transform (DCT)
* Workhorse of modern signal processing.
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Polynomial Multiplication

Variable x
Polynomial p(x): integer combination of powers of x
* e.g., quadratic polynomial p(x) = 3x% + 2x + 1
* Represent by a vector of integer coefficients |3, 2, 1]

Polynomial Multiplication:
Given:p(x) =a,_ x" 1 4+a,_x"*+ +a,x*+a;x+ a,
andg(x)=b,,_ x" 1 +b,_ x" %2+ -+b,x2+b;x+b,
Compute: (Vector of coefficients of) polynomial 7(x) = p(x) q(x)

eg,B3x+1)2x+3)=6x>+9x+2x+3=6x*+11x+3

Basic algorithm: Compute all n? products a;b; and collect terms.
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Polynomial Multiplication: Degree 1 similar to Karatsuba

Givenp(z) = a4 -z + ayg q(z) = by - z + by compute
T(Z) = a1b1 . Z2 + (a1b0 + aobl) - Z + aobo

Just as Strassen’s Algorithm was based on multiplying 2 X 2 matrices with few products,
this is based on multiplying degree 1 polynomials using few products.

Have 3 coefficients of  to compute.

Idea: Evaluate each of p and q at 3 points, 0, 1, —1, and multiply results
*1r(0) = p(0)-q(0) =agby
r(1) = p@A)-qQA) =(ag+ay)(by+ bq)
*r(-1)= p(-1)-q(-1) = (ap — ay) (bg — by)

Can express (a;bg + agb,) and a; b4 as linear combinations of (0), (1), r(—1)
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Essential Idea for FFT: Polynomial Interpolation

Suppose 1 is an unknown degree n — 1 polynomial with coefficients ¢,,_1, ..., Cg
° T'(X) = Cn_lx"_l + -+ C2X2 + C1X + Co

Suppose you have values of r at n distinct points: y,, ..., Yn-1
* T(Yo)) s T(Yn-1)
This gives a system of n linear equationsin ¢,,_1, ..., Cg
Cno1Yo o+ Y +cye +co =1(Yo)
Cno1YT 4 o yT +oyr +co =1(y)

-1 2
Cn-1Yn-1t - +C2¥Yn_1+€1Yn-1+¢co =7Yn-1)

Fact: If the points are distinct, this system has a unique solution.
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Fast Fourier Transform: Multiplying Polynomials

FFT(p, q, n){
// Assume that p and g have degreen — 1
// Depends on good sequence of 2n points yg, V1, .-, V2n-1
Compute evaluations p(yg), ..., P(V211-1)

Compute evaluations q(vy), ..., q(¥V25,-1)
Multiply values to compute

r(o) =PWo) - q(¥o), ... T(Y2n-1) = P(¥Y2n-1) - q(V2n-1) }
Interpolate: Solve systems of equations for r(x) = p(x)q(x)

given 17(yg), ..., 7T(¥2n-1) and Yo, V1, ..., Y2n-1

om)

}

Any set of distinct points suffice. FFT chooses them to make evaluation/interpolation easy.
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FFT: Choosing evaluation points

Computing a single evaluation takes O (n) time.

Using n unrelated points would be O (n?) total time
* No savings!

Instead use divide and conquer:
* Choose related points and do it recursively on half-size problems
* In the recursion should only have half as many points

Key FFT ideas:
e For every evaluation point w, also include —w
* For every evaluation point w, use w? in the recursive evaluation.
* Half-size problems involve odd and even degree sub-polynomials

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING



Key FFT ideas

p(w) = ay + a;w + a,w? + a;w3 + a,w* + -+ a,_,0" % +a,_j0"!
= a, + a,0? + a,w* + -+ a,_ ;0" 2
+a,w+ a;w3 + asw’ + -+ a,_1w" 2
_ 2 2
- peven(w ) tT w podd(w )
p(—w) = ay— a,w + a,w? — a;w3 + aw* — -+ ap_ 0" % —a,_j0" !

2 44 ... n—2
= a, + a,w? + a,w* + -+ a, ,w
—(a,w + a;w3 + asws + -+ ap_qw"?)

peven(wz) — podd(wz)

where p,,.,(X) = @y + ayx + ax? + -+ a,_, xV?71

and podd(x) = a, +azx + asxz + -+ a,_q xn/2—1

To continue recursion, need some of the squares to be the negation of others! Complex numbers
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Complex Numbers Review

To multiply complex numbers
e add angles
* multiply lengths
(only need length 1 for FFT)

e+ fi = (a+ bi)(c + di)

a+bi =cosfO +ising = e%
emi = 1 - c+di =cosg +ising = e?
e™ = —1 e+ fi =cos(6+ @) +isin(0+ ¢) = e+
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Use powers of w “primitive” nt" root of 1: w" =1

Zmi 21T .. 21T
Ww=en = cos(—)+lsm(—)
n n
so can explicitly compute with its powers.

W
.: ...'. w0=1=w8 2 . 7 . - 1 th
3 . w* is a “primitive” n /2" root of 1.
§ Since ™% = —1 we have
5 @ : [ 4
w> e F— w’ 0", V2t ol =1 —w,.., —w"?1
wo=—i

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING



FFT Evaluation: Recursion for n a power of 2

Goal:

* Evaluate p at 1, w, w? w3, ..., @™ !

Recursive Algorithm

* Split coefficients of p into polynomials p,,.,, and p 44
o i 2 4 n—2

Recursively evaluate p,,,.,, at 1, w*, w*, ..., w __powers of ? T(n/2)
* Recursively evaluate p, , at 1, w2, w?, ..., @™ 2

Oo(n)

T(n/2)
« Combine to compute p at 1, w1, w?, ..., @™/?*71 om)
using (") = Peyen(@?) + 0*Pyga(@*).
* Combine to compute p at w™?, w™/?*1,.. 0™ 1 0(n)
(equivalently, —1, —w?!, —w?, ..., —w™?71)
using p(_wk) = Peven(w?*) — w* podd(ka) T =2Tn/2)+ 0(n)

soT(n)isO(nlogn)
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Fast Fourier Transform: Multiplying Polynomials

FFT(p, q, n/2){
// Assume that p and g have degreen/2 — 1
Compute evaluations p(1), ..., p(w™ 1) } 0(nlogn)
Compute evaluations q(1), ..., qg(w™ 1)
Multiply values to compute
r(1) =p)-qQ@),.., r(@" 1) =plo™!) q0" ) } otm)
Interpolate: Solve systems of equations for r(x) = p(x)q(x)
given (1), ..., r(w™ 1)
}
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Polynomial Interpolation

System of n linear equationsinc,_4, ..., Cg
Cn—ll + ... + C21 + C11 + Co — T(l)
Chro1o™ !l 4+ Lt w? tow tcy =1(w)
Cn_lw(n_l)k + ... + Cszk + Clwk + Co — r(wk)

Crq - + o tCy.. +€1.. +¢g =1(0" )

Can solve this in a very slick way...
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Interpolation Algorithm

Define a new polynomial
es(x)=r(1) +r(w) - x+ r(wz) cx2 4 T(w"_l) 1

* Run FFT evaluation for s(1), ..., s(w™ 1) O(nlogn)

Claim: Setting ¢; = s(w™ /) /n for each j gives the correct answer.

Proof: Then s(w" /) = X r(w!) - (0™ ) = 10 Xzt e (@) - (o)
= Yot e X5 (@) - (07)’
= TR e 25 (k)

Now w7 is a solution to equation y* — 1 = (y — )(y* * + -+ y+1) =0

If k # j then kT = 150 Y7o (") = 0;ifk = j then Y (w*7) =n
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