CSE 421
Introduction to Algorithms

Lecture 9: Divide and Conquer
Matrix & Integer Multiplication




Algorithm Design Techniques

Divide & Conquer
* Divide instance into subparts.
 Solve the parts recursively.
e Conquer by combining the answers
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Last Time: Solving Divide and Conquer Recurrences

Master Theorem: Suppose that T(n) = a-T(n/b) + O0(n*) forn > b.
‘Q ~— N S
* If a < b*then T(n) is O(nk)

e If a = b¥then T(n) is 0(n*log n)
— — -2

* If a > b*then T(n) is 0(n'°8 @)

— — (_/——_\’

Binary search:a =1,b =2,k = 0 soa = b*: Solution: O(nolog n) = O(logn)
Mergesort: a = 2, b = 2, k = 1 so a = b*: Solution: 0(nllogn) = 0(nlogn)
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Matrix Multiplication

ﬂ dp  dy;  dy b, 2 bgm by, |
dyy Ay Gy dy . by by by by
Ay Ay Ay Ay | | DY by by by,
la, a, agz ag| |b, b, by by

ab,+a,by+ab,+aub,, W

(o]

At ayby+apb, +apshy +a b ayb, +anby, +apsby, +aby,

by +ayby +ayby T ayby  ayby +apby +ayby, +ayd, o aybyt+apbyt+ayby+ayby,

3-34

|
b,+ab, ° ab,+ayb,+ab,+ab,

3734

b, +a,by +asb +a b, ab,+a,b,+a

2 27
3331 33

_a“b“ +ayb, +ab,+ab, ab,+a,b,+asb,+ab, o aub,+ayb,+ab,, +a44b44j

Multiplying n X n_matrices: Entry ¢;; = Yj—q @jbyje—
« n3 multiplications
« n3 — n? additions
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Multiplying Matrices

fori<—1ton
forj<—1ton
Cli,j]< O
fﬁ; 1ton
Cli,jl < C|i,j] + Ali, k]-B|k, j|
endfor —
endfor

endfor

Can we improve this with divide and conquer?
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Multiplying Matrices

dyy dp | G Ay by 0y | by by
—F Gy, Ay | Gy dy ':( by by | by by
Ay Ay Ay Ay | | by by by by,

| dyy dyy Ay dyy | _b41 b, bs; b, ]

ay by +aphy, rab +ayby | ayby +apbyrash, +aby, o ayby+apby, +aphy+aby, W
e V0 VBl V)

@b, +ab, i ayby +ayby | ayb, +ayby,a

3

tayby o ayby+apby,+ayb,+ayby,

_—
a b, +aby, +aby +a by, @b, +anb,+a

33731

tagb, o ab,+anb,+asb,+a b,

 a, by +apgh,+apsb+ab,  agb,+apb,+agby+ab, o ayb,+anb,+agb, +a44b4d

n_n
_X_
2 2
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Multiplying Matrices

a, a, |a; ay| |by, b, by; b,

dn G |93 9| by by by by

Ay Ay Ay Ay | (by by | by by,
| Ay Ay Ay Ay | b41 b42 b43 b44 i

ay by +aby Hapby +ayby | ayby +apby Hapb, +aby, | o ayby+apby, +apby+aub,,

Ay +apby Hayshs + by | by +anby, Hagby +ayby,| o ayby+ayby+ayby +ay by,

e 2

ayb, +apby, +agb, +ay b, ayb,+Hanb, +apb, +anb, o ayb,+anb,+asb, +ab,,

3

_a41b11 +agh, +agby+aub,  ab,+anb,+agby+audb, o anb,+anb,+asb, +a44b44_

matrix multiplications inside the n X n computation

n_n
_X_
2 2
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Multlplylng Matrlces

1 12 1 aﬂ\ b, b,
Allv Alzl ) b Bl%

1 Tl dy 24 23~V
Ay Uy Uiz Uy by, b,
AZJ? b BZ%
| Ay Ay | A3720 e i

a11b11+al’b71+a13b“ +‘é4b41 0115B+017ba»+azh y+auby o ab +a1,

33 2 s +ayby,
a°1b11+a”b°1"’aﬁ“?&Mbnbm*—avb« 1 +ayby,| o 1+al% &»,Ezzau by
a, b, +a,b+ a0 +a b +a b__+aﬂh +a,b,, | © 3]b14+a b,+ab,+a, b,

33-32 34742 33734
| Ay +aphy +ay; 12’1‘:’44341 1%;1 by +agby+auby)| o aﬁgﬂ%ﬂé@%@g&a“b“_
n_n . T I :
5 X5 matrix multiplications inside the n X n computation
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Multiplying Matrices T1N] Hof

i r D N
4 )
//\% A | Ap Bin | By H'/g 77(4)/ T (
o
A LI oiniey
o AZU/_//%% o adtiie (SN f
4 )
A11'-3’1144\12'321 A11B1,+A15B5;
- i
Az1B11+A;,By A,,B,,+A,,B,,
- J—— J

n n . . g . . . .
> X5 matrix multiplications inside the n X n computation
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Multiplying Matrices: Divide and Conquer

~ N (. N\ /. )
Ay A, B,y B,, A11B11+A1;By; | A1 BiptALB,,
S )| Ax A,, B, B,, A;1B111A2By | A,,B,+A,,B,,
- J /L 2
— X = matrix operations inside the n X n computation: I ]/
272 éé/,_
8 matrix multiplications: T(n/2) each oy I/L
4 matrix additions: (n/2)? each; total 0(n?) o (k!
.
Recurrence: T(n) = 8 T(n/2) + 0(n?) W
C
Apply Master Theorem: Mi
a=8,b=2,k=2.Nowb* =2%2=4 soa > b*andlog, a = 3. 09 b
lution: - logp @) — 3 el \Gj”,bc‘
Solution: T(n) is O(n ) 0(n>) No savings! fXVL \
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Strassen’s Divide and Conquer (1968)

4 N (. N\ (- )
A | Ap B;; | By A11B11+A15By | ApiBiytAg,By,
\Az1 A,, ) \521 B,, ) \A21311+A22821 A21B12+Azszzj

Key observations: This picture looks just like 2 X 2 matrix multiplication!
and the number of multiplications is what really matters

Strassen: Can multiply 2 X 2 matrices using only 7 multiplications!
(and many more additions)

Recurrence: T(n) = 7 T(n/2) + 0(n?)
Apply Master Theorem:
a=7,b=2,k=2sosolution T(n)is 0(n'°827) = 0(n*807%)!
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Strassen’s Divide and Conquer (1968)

P« A.3(By1 + By1); Py Ay(By; + Byy)
P;< (Ayy — Ap)Byy; Py (Ay; — Ay)By,
P (Ay; — Ag)(Byy — Byy)

Po< (A — Az1)(By; — Byy)

P; < (Az; — Ay)(Byy + Byy)

Ci,<P,+P,; C,,«<P,+P;+P, — P,
C,y«<P,+P,+P.+P,; C,p—~P,+P,
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Fast Matrix Multiplication

(o

Using Strassen’s 0 (n?%%74) algorithm: &
* Practical for exact calculations on large matrices Mm L&/
* Not numerically stable with approximations (\/@Q (\
e Stop recursion when n < 32 and use simple algorithm instead [QéM/\
 This kind of stopping of recursion is typical for divide and conquer /O
Decades of theoretical improvements since: =

e Best current time 0 (n?3728396)

* None of these improvements is practical (require n in the millions and more)

Open: Is there an 0(n?) time matrix multiplication algorithm?
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Integer Multiplication

N
695273 110110 |
x 123412 %« 101110 Elementary school algorithm
1390546 0
695273 n 110170
2781092 110110 24 4 e
2085819 110110 0O (n*) time for n-bit integers
1390546 \} 0
695273 110110
85805031476 100110110100
Decimal Binary
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Integer Multiplication: Divide and Conquer Mﬁ% 2
(

Break up each n—VkN integer (and y into two n/\% bit mteger%[ O o )
X1 X0 Y1 Yo T(M)
e x:xl-z'j2+x0andy:y1-2"/2+y0.
Thenx -y = (x1 - 2™?% + x0)(y1 - 2% + y,) //QW%)
T = &J),En + (xj,!" + %o - yq) - 2M2 + X0 * Yo —
Divide and conquer: N 7 X0 Yo
* Solve 4 size n/2 subproblems X1 Yo
* Shift answers, add results 0(n) Xo " V1
Recurrence: T(n) =4T(n/2) + 0(n) X1 V1 V\(@ﬁayg Wr)/
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Integer Multiplication: Divide and Conquer

Break up each n-bit integer x and y into two nn/2-bit integers

X1 X0 Y1 Yo

so x =x;:-2M% +xpandy =y, - 2M2 + y,.

Thenx -y = (x1 - 2™?% + x0)(y1 - 2% + y,)
=X1-Y1- 2"+ (X1 - Yo+ X0 -¥1) - 2%+ x0- ¥

Divide and conquer: Master Theorem:
* Solve 4 size n/2 subproblems T a= 4'k b=2k=1
e a>b
e Shif Its O
Shift answers, add results 0(n) So T(n) is O(nlogb a) — 0(n?)
Recurrence: T(n) =4T(n/2)+ 0(n) No savings!
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Karatsuba’s Divide and Conquer Algorithm (1963)

We want to compute x - y : 2" + (x1 - Yo + X+ Y1) - 2™/2

For divide and conquer, we already have to compute x4\ y; and xg - Vo

We just need that middle term (x4 - yo.+ xo - ¥1) which looks like two multiplications.

If we compute (x{+xp)" ;yl +v0) =x1 Y1+ (X1 Yo+ X0 Y1) HXg * yo/then
v—’?’ —_—— L_) .

we can cancel off the first and last parts to get the middle term we need and we only

use one multiplication.
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Karatsuba’s Divide and Conquer Algorithm (1963)

We want to compute x - y = x1 - ¥4 - 2™+ (X1 - Yo + X0 - V1) - 2™% + x4 - Vo
Karatsuba:
Use only 3 “half-size” multiplications by computing middle term more efficiently

* Multiplytogett, = x4 - y;. T(n/2)

* Multiply togetty = x¢ - Vp. T(n/2)

* Add to get x; + xg and y; + yp. O(n) :n/2 + 1 bit answers
* Multiply to gets = (x1 + x¢) - (y1 + Vo) T(n/2+1)

=x1 Y1+ (X1 Yo+ Xo-Y1) + X0 Yo
 Computet; = s — t, — tg whichequals x{ - yo + X¢ - V1 0O(n)

 Shift £; and t,, add results to ¢ O(n)
Recurrence: T(n) = 3T(n/2 + 1) + O(n) Solution: T(n)is 0(n'°823) = 0(n1->8%)
&__/—’\__ ~ W -
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Fast Multiplication and the Fast Fourier Transform (FFT)

Fast integer multiplication is used for multi-precision arithmetic
e Relevant input-size measure: # of 64-bit words of precision

Karatsuba’s algorithm is not the fastest for integer multiplication

* Fastestis O(nlogn) time based on the Fast Fourier Transform (FFT)
* [Schoenhage-Strassen 1971, Furer 2007, Harvey-Hoeven 2019]
* Many messy details. We'll focus on FFT itself!

Fast Fourier Transform (FFT) [Cooley-Tukey 1967]
* Efficient conversion back-and-forth between a signal and its frequencies.
* O(nlogn) time algorithm for multiplying polynomials.
* Practical variant is standard for computing the Discrete Cosine Transform (DCT)
* Workhorse of modern signal processing.
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Polynomial Multiplication

Variable x
Polynomial p(x): integer combination of powers of x
* e.g., quadratic polynomial p(x) = 3x% + 2x + 1
* Represent by a vector of integer coefficients |3, 2, 1]

Polynomial Multiplication:
Given:p(x) =a,_ x" 1 4+a,_x"*+ +a,x*+a;x+ a,
andq(x) =b,_;x" 1 +b, ;x"2+-+b,x2+b,x+b,
Compute: (Vector of coefficients of) polynomial 7(x) = p(x) q(x)

eg,B3x+1)2x+3)=6x>+9x+2x+3=6x*+11x+3

Basic algorithm: Compute all n? products a;b; and collect terms.
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Polynomial Multiplication: Degree 1 similar to Karatsuba

Givenp(z) = a4 -z + ayg q(z) = by - z + by campute
T(Z) = a1b1 . Z2 + (a1b0 + aobl) * Z aobo /

Just as Strassen’s Algorithm was based on multiplying 2 X 2 matrices with few products,

this is based on multiplying degree 1 polynomials using few products.
Have 3 coefficients of  to compute.
Idea: Evaluate each of p and q at 3 points, 0, 1, —1, and multiply results

e p(0)-q(0) =aghy

p(1)-q(1) =(ag+ay) (bg+by)

p(—1) - q(—1) = (ag — ay) (bg — by)

6ss (a1by + agb4) and a4 b as linear combinations of (0), (1), r(—1)
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Essential Idea for FFT: Polynomial Interpolation

Suppose 1 is an unknown degree n — 1 polynomial with coefficients ¢,,_1, ..., Cg

c1r(x) = x4+ x? +c1x + ¢
0

Suppose you have values of r at n distinct points: y,, ..., Yn-1
* T(Yo) -+, T(Yn-1)

This gives a system of n linear equationsin ¢,,_1, ..., Cg ) @%W['M
S CuYo Y5 teye  +co =1(Yo) MM
e 11 '+ o+ eyi teoyr +co =7(1) A

-1 2
/3cn_1y2_1 + o+ CYp1 T C1Yn-1t o =T(Yn-1)

Fact: If the points are distinct, this system has a unigue solution.
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Fast Fourier Transform: Multiplying Polynomials

FFT(p, q, n){
// Assume that p and g have degreen — 1
// Depends on good sequence of 2n points yg, V1, .-, V2n-1
Compute evaluations p(yg), ..., P(V2n—1)

Compute evaluations q(vy), ..., q(¥V25,-1)
Multiply values to compute

r(o) =PWo) - qW¥o), -, T(V2n-1) = PV2n-1) - 4V2n-1) }
Interpolate: Solvémof equations for r(x) = p(x)q(x)
given 1(yg), ..., T(¥2n-1) and yo, ¥1, ..., Yan-1

om)

}

Any set of distinct points suffice. FFT chooses them to make evaluation/interpolation easy.
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FFT: Choosing evaluation points

Computing a single evaluation takes O (n) time.

Using n unrelated points would be O (n?) total time
* No savings!

Instead use divide and conquer:
* Choose related points and do it recursively on half-size problems
* In the recursion should only have half as many points

Key FFT ideas:
* For every evaluation point w, also include —w
* For every evaluation poinﬁfusef}aj in the recursive evaluation.
* Half-size problems involve odd and even degree sub-polynomials
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Key FFT ideas

(w) = ay+a,w+ a,w?+ a,w3+a,w*+ - +a, 0" % +a, ;0" 1
p 0 1 2 3 4 n-2 n

= g + 8,07 + a0t § oty 0"
+a,w+ a;w3 + asw’ + -+ ay_qw" 2 =
— oD + v (ol
- peven(w ) +g)'podd(w ) W q__
— a0+ a,w?* a;03 + a,wt — -+ ap_ ;0" % —a,_j0"!
o + w2 + awt [+ + a,_,w" 2

(a0 + a; 3 + dw® + -+ a,_10" %) N
W?) — W Pygq(w?)
\_/

where p,,..(X) = @, + a,x + ax? + -+ a,_, x™?7!

—

and podd(x) = a, +azx + asxz + -+ a,_q xn/2—1

22— -

—
To continue recursion, need some of the squares to be the negation of othez's/!(a
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Complex Numbers Review

To multiply complex numbers
e add angles
* multiply lengths
(only need length 1 for FFT)

e+ fi = (a+ bi)(c + di)

a+bi =cosfO +ising = e%
emi = 1 - c+di =cosg +ising = e?
e™ = —1 e+ fi =cos(6+ @) +isin(0+ ¢) = e+
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Use powers of w “primitive” nt" root of 1: w" =1

2mi

- 21T .. 21T
Ww=en = cos(—)+lsm(—)
so can explicitly compute with its powers.

W
.: ...'. w0=1=w8 2 . 7 . - 1 th
3 . w* is a “primitive” n /2" root of 1.
§ Since ™% = —1 we have
5 @ : [ 4
w> e F— w’ 0", V2t ol =1 —w,.., —w"?1
wo=—i
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FFT Evaluation: Recursion for n a power of 2

Goal:
* Evaluate p at 1, w, w? w3, ..., @™ !

Recursive Algorithm

% Split coefficients of p into polynomialsp,,.,, and P, 44 0(n)
%Recu rsively evaluate p,,., at 1, w? w?*, ..., w"‘z/ owersof | T@/2)
7/Recu rsively evaluate p, , at 1, 0%, w?, ..., w™ 2 T(n/2)
« Combine to compute p at 1, w1, w?, ..., @™/?*71 om)
using p(@w") = Poyen(@*) + 0 P,gq(@*").
 Combine to compute p R T o(n)
(equivalently, —1, —w?!, —w?, ..., —w™?71)
using p(—@") = Pyentw?t) — @ Poaa(@) T(n) =2T(n/2) + 0n)

soT(n)isO(nlogn)
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Fast Fourier Transform: Multiplying Polynomials

FFT(p, q, n/2)
// Assume that p and q have degreen/2 — 1
. n-1
Compute evaluations p(1), ..., p(w™ ™) } O(nlogn)
Compute evaluations (1), ..., g(w™ 1)
ultiply values to compute } o)
n
r(1) =p)-q),.., r(0" 1) = p(w™ 1) - g™ ")

@' ater Solve systems of equations for (x) = p(x)q
given (1), ..., r(w™ 1)

}
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Polynomial Interpolation

System of n linear equationsinc,_4, ..., Cg
Cn—ll + ... + C21 + C11 + Co — T(l)
Chro1o™ !l 4+ Lt w? tow tcy =1(w)
Cn_lw(n_l)k + ... + Cszk + Clwk + Co — r(wk)

Crq - + o tCy.. +€1.. +¢g =1(0" )

Can solve this in a very slick way...
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Interpolation Algorithm

Define a new polynomial
es(x)=r(1)) +r(w) - x+ r(wz) cx2 4 T(w"_l) 1

* Run FFT evaluation for s(1), ..., s(w™ 1)

=

Claim: Setting ¢; = s(w™ /) /n for each j gives the correct answer.

O(nlogn)

Proof: Then s(w™ /) = Y1 r(w") - (w"_j)i = Y10 XR=0 Ck (wi)k_ ' (“’n_j)i

=Yg Y (@) - (w )

= b o Tisg (k)
Now w”*~/ is a solution duation yrt—1=@w-DH"1++y+1)=0
If k # j then w“%
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