
CSE 421

Introduction to Algorithms

Lecture 9: Divide and Conquer
Matrix & Integer Multiplication

1

Algorithm Design Techniques

Divide & Conquer

• Divide instance into subparts.

• Solve the parts recursively.

• Conquer by combining the answers

2

3

Last Time: Solving Divide and Conquer Recurrences

Master Theorem: Suppose that � � = ���(�/�) +
(��) for � > �.

• If � < �� then �(�) is
(��)

• If � = �� then �(�) is
(�� log �)

• If � > �� then �(�) is
(����� �)

Binary search: � = �, � = �, � = � so � = ��: Solution:
 ��log � =
(log �)

Mergesort: � = �, � = �, � = � so � = ��: Solution:
(��log �) =
(� log �)

Matrix Multiplication

4

Multiplying � � � matrices: Entry ��� = ∑ ������
�
���

• �� multiplications

• �� �� additions

5

Multiplying Matrices

for � ← � to �

for � ← � to �

![�, �] ← �

for � ← � to �

![�, �] ← ![�, �] + %[�, �]�&[�, �]

endfor

endfor

endfor

Can we improve this with divide and conquer?

Multiplying Matrices

6

�

�
�

�

�
matrix multiplications inside the � � � computation

Multiplying Matrices

7

�

�
�

�

�
matrix multiplications inside the � � � computation

Multiplying Matrices

8

A11 A12

A21 A22

B11 B12

B21 B22

A11B12+A12B22A11B11+A12B21

A21B12+A22B22
A21B11+A22B21

�

�
�

�

�
matrix multiplications inside the � � � computation

A11 A12

A21 A22

B11 B12

B21 B22

Multiplying Matrices

9

A11B12+A12B22A11B11+A12B21

A21B12+A22B22
A21B11+A22B21

=

�

�
�

�

�
matrix multiplications inside the � � � computation

A11 A12

A21 A22

B11 B12

B21 B22

Multiplying Matrices: Divide and Conquer

�

�
�

�

�
matrix operations inside the � � � computation:

' matrix multiplications: � �/� each

(matrix additions: �/� � each; total
(��)

Recurrence: � � = ' �(�/�) +
(��)

Apply Master Theorem:

� = ', � = �, � = �. Now �� = �� = (so � > �� and log� � = �.

Solution: � � is
 ����� � =
(��) No savings!

10

A11B12+A12B22A11B11+A12B21

A21B12+A22B22
A21B11+A22B21

=

A11 A12

A21 A22

B11 B12

B21 B22

Strassen’s Divide and Conquer (1968)

Key observations: This picture looks just like � � � matrix multiplication!

and the number of multiplications is what really matters

Strassen: Can multiply � � � matrices using only) multiplications!

(and many more additions)

Recurrence: � � =) �(�/�) +
(��)

Apply Master Theorem:

� =), � = �, � = � so solution � � is
 �����) =
(��.'�)()!

11

A11B12+A12B22A11B11+A12B21

A21B12+A22B22
A21B11+A22B21

=

12

Strassen’s Divide and Conquer (1968)

+�
← %��(&�� + &��); +� ← %��(&�� + &��)

+� ← (%��
 %��)&��; +(← (%��

 %��)&��

+, ← (%��
 %��)(&��

 &��)

+- ← (%��
 %��)(&��

 &��)

+) ← (%��
 %��)(&�� + &��)

!�� ← +� + +� ; !�� ← +� + +� + +-
 +)

!�� ← +� + +(+ +, + +) ; !�� ← +� + +(

13

Fast Matrix Multiplication

Using Strassen’s
(��.'�)() algorithm:

• Practical for exact calculations on large matrices

• Not numerically stable with approximations

• Stop recursion when � < �� and use simple algorithm instead

• This kind of stopping of recursion is typical for divide and conquer

Decades of theoretical improvements since:

• Best current time
(��.�)�',.-)

• None of these improvements is practical (require � in the millions and more)

Open: Is there an
(��) time matrix multiplication algorithm?

Integer Multiplication

14

695273

� 123412
--

1390546

695273

2781092

2085819

1390546

695273
--

85805031476

110110

� 101110
--

0

110110

110110

110110

0

110110
--

100110110100

Decimal Binary

Elementary school algorithm

(��) time for �-bit integers

Integer Multiplication: Divide and Conquer

Break up each �-bit integer / and 0 into two �/�-bit integers

so / = /� ⋅ ��/� + /� and 0 = 0� ⋅ ��/� + 0�.

Then / ⋅ 0 = (/� ⋅ ��/� + /�)(0� ⋅ ��/� + 0�)

= /� ⋅ 0� ⋅ �� + /� ⋅ 0� + /� ⋅ 0� ⋅ ��/� + /� ⋅ 0�

Divide and conquer:

• Solve (size �/� subproblems

• Shift answers, add results
(�)

Recurrence: �(�) = (�(�/�) +
(�)

15

/� /� 0� 0�

/� ⋅ 0�

/� ⋅ 0�

/� ⋅ 0�

/� ⋅ 0�

Integer Multiplication: Divide and Conquer

Break up each �-bit integer / and 0 into two �/�-bit integers

so / = /� ⋅ ��/� + /� and 0 = 0� ⋅ ��/� + 0�.

Then / ⋅ 0 = (/� ⋅ ��/� + /�)(0� ⋅ ��/� + 0�)

= /� ⋅ 0� ⋅ �� + /� ⋅ 0� + /� ⋅ 0� ⋅ ��/� + /� ⋅ 0�

Divide and conquer:

• Solve (size �/� subproblems

• Shift answers, add results
(�)

Recurrence: �(�) = (�(�/�) +
(�)

16

/� /� 0� 0�

Master Theorem:

• � = (, � = �, � = �

• � > ��

So �(�) is
 ����� � =
(��)

No savings!

Karatsuba’s Divide and Conquer Algorithm (1963)

We want to compute / ⋅ 0 = /� ⋅ 0� ⋅ �� + /� ⋅ 0� + /� ⋅ 0� ⋅ ��/� + /� ⋅ 0�

For divide and conquer, we already have to compute /� ⋅ 0� and /� ⋅ 0�

We just need that middle term /� ⋅ 0� + /� ⋅ 0� which looks like two multiplications.

If we compute (/�+/�) ⋅ 0� + 0� = /� ⋅ 0� + /� ⋅ 0� + /� ⋅ 0� + /� ⋅ 0� then

we can cancel off the first and last parts to get the middle term we need and we only

use one multiplication.

17

Karatsuba’s Divide and Conquer Algorithm (1963)

We want to compute / ⋅ 0 = /� ⋅ 0� ⋅ �� + /� ⋅ 0� + /� ⋅ 0� ⋅ ��/� + /� ⋅ 0�

Karatsuba:

Use only � “half-size” multiplications by computing middle term more efficiently

• Multiply to get 2� = /� ⋅ 0�. �(�/�)

• Multiply to get 2� = /� ⋅ 0�. �(�/�)

• Add to get /� + /� and 0� + 0�.
(�) : �/� + � bit answers

• Multiply to get 3 = (/� + /�) ⋅ 0� + 0� �(�/� + �)

= /� ⋅ 0� + /� ⋅ 0� + /� ⋅ 0� + /� ⋅ 0�

• Compute 2� = 3 2� 2� which equals /� ⋅ 0� + /� ⋅ 0�
(�)

• Shift 2� and 2�, add results to 2�
(�)

Recurrence: �(�) = � �(�/� + �) +
(�) Solution: �(�) is
 ����� � =
(��.,',)

18

Fast Multiplication and the Fast Fourier Transform (FFT)

Fast integer multiplication is used for multi-precision arithmetic

• Relevant input-size measure: # of 64-bit words of precision

Karatsuba’s algorithm is not the fastest for integer multiplication

• Fastest is
(� log �) time based on the Fast Fourier Transform (FFT)

• [Schoenhage-Strassen 1971, Fürer 2007, Harvey-Hoeven 2019]

• Many messy details. We’ll focus on FFT itself!

Fast Fourier Transform (FFT) [Cooley-Tukey 1967]

• Efficient conversion back-and-forth between a signal and its frequencies.

•
(� log �) time algorithm for multiplying polynomials.

• Practical variant is standard for computing the Discrete Cosine Transform (DCT)

• Workhorse of modern signal processing.

19

20

Polynomial Multiplication

Variable 4

Polynomial 5(4): integer combination of powers of 4

• e.g., quadratic polynomial 5 4 = �46 + �4 + �

• Represent by a vector of integer coefficients [�, �, �]

Polynomial Multiplication:

Given: 5 4 = �789 4789 + �789 4786 + ⋯ + �6 46 + �9 4 + �;

and < 4 = �789 4789 + �789 4786 + ⋯ + �6 46 + �9 4 + �;

Compute: (Vector of coefficients of) polynomial =(/) = 5(/) <(/)

e.g., �4 + � �4 + � = 646 + 94 + 24 + 3 = -46 + ��4 + �

Basic algorithm: Compute all �� products �B�C and collect terms.

21

Polynomial Multiplication: Degree 1 similar to Karatsuba

Given 5(D) = �� ⋅ D + �� < D = �� ⋅ D + �� compute

= D = ���� ⋅ D6 + ���� + ���� ⋅ D + ����

Just as Strassen’s Algorithm was based on multiplying � � � matrices with few products,

this is based on multiplying degree � polynomials using few products.

Have � coefficients of = to compute.

Idea: Evaluate each of 5 and < at � points, �, �, �, and multiply results

• = � = 5 � ⋅ < � = ����

• = � = 5 � ⋅ < � = (�� + ��) (�� + ��)

• = � = 5 � ⋅ < � = (�� ��) (�� ��)

Can express ���� + ���� and ���� as linear combinations of = � , = � , = �

22

Essential Idea for FFT: Polynomial Interpolation

Suppose = is an unknown degree � � polynomial with coefficients ��8�, … , ��

• = 4 = ��8�4789 + ⋯ + ��46 + ��4 + ��

Suppose you have values of = at � distinct points: 0�, … , 0�8�

• =(0�), … , =(0�8�)

This gives a system of � linear equations in ��8�, … , ��

��8�0�
�8� + … + ��0�

� + ��0� + �� = =(0�)

��8�0�
�8� + … + ��0�

� + ��0� + �� = =(0�)

…

��8�0�8�
�8� + … + ��0�8�

� + ��0�8� + �� = =(0�8�)

Fact: If the points are distinct, this system has a unique solution.

Fast Fourier Transform: Multiplying Polynomials

FFT(5, <, �){

// Assume that 5 and < have degree � �

// Depends on good sequence of �� points 0�, 0�, … , 0��8�

Compute evaluations 5 0� , … , 5(0��8�)

Compute evaluations < 0� , … , <(0��8�)

Multiply values to compute

= 0� = 5 0� ⋅ < 0� , … , = 0��8� = 5 0��8� ⋅ <(0��8�)

Interpolate: Solve systems of equations for = 4 = 5 4 <(4)

given = 0� , … , = 0��8� and 0�, 0�, … , 0��8�

}

Any set of distinct points suffice. FFT chooses them to make evaluation/interpolation easy.

23

(�)

FFT: Choosing evaluation points

Computing a single evaluation takes
(�) time.

Using � unrelated points would be
(��) total time

• No savings!

Instead use divide and conquer:

• Choose related points and do it recursively on half-size problems

• In the recursion should only have half as many points

Key FFT ideas:

• For every evaluation point F, also include F

• For every evaluation point F, use F� in the recursive evaluation.

• Half-size problems involve odd and even degree sub-polynomials

24

25

Key FFT ideas

5 F = �� + ��F + ��F� + ��F� + �(F(+ ⋯ + ��8�F�8� + ��8�F�8�

• = ��
+ ��F�

+ �(F(

+ ⋯ + ��8�F�8�

• + ��F + ��F�
+ �,F,

+ ⋯ + ��8�F�8�

• = 5GHG�(F�) + F 5IJJ(F�)

5 F = �� ��F + ��F� ��F� + �(F(⋯ + ��8�F�8� ��8�F�8�

• = ��
+ ��F�

+ �(F(

+ ⋯ + ��8�F�8�

• (��F + ��F�
+ �,F,

+ ⋯ + ��8�F�8�)

• = 5GHG�(F�) F 5IJJ(F�)

where 5GHG�(4) = ��
+ ��4

+ �(4�

+ ⋯ + ��8� 47/689

and 5IJJ(4) = ��
+ ��4

+ �,4�

+ ⋯ + ��8� 47/689

To continue recursion, need some of the squares to be the negation of others! Complex numbers

Complex Numbers Review

�6 = 1

�

L + M�

To multiply complex numbers

• add angles

• multiply lengths

(only need length 1 for FFT)

N
O

1

P + Q�

N + OR + S�

R + S� = (L + M�)(P + Q�)

L + M� = cos N + � sin N = RN�

P + Q� = cos O + � sin O = RO�

R + S� = cos (N + O) + � sin (N + O) = R XYZ �
R2[�

= 1

R[�
= −1

−1

−�

26

Use powers of F “primitive” �th root of �: F� = �

27

F = G
�[�

� = cos
�[

�
+ � sin

�[

�

so can explicitly compute with its powers.

F(=−�

F-=−�

F�=�

F�=�=F'

F�

F, F)

F

Since F�/� = −� we have

F�/�, F�/�Y�,… , F�8� = −�, −F, … , −F�/�8�

F� is a “primitive” �/�th root of �.

FFT Evaluation: Recursion for � a power of �

Goal:

• Evaluate 5 at �, F, F�, F�, … , F�8�

Recursive Algorithm

• Split coefficients of 5 into polynomials 5GHG� and 5IJJ

• Recursively evaluate 5GHG� at �, F�, F(, … , F�8�

• Recursively evaluate 5IJJ at �, F�, F(, … , F�8�

• Combine to compute 5 at �, F�, F�, … , F�/�8�

using 5 F� = 5GHG�(F��) + F�
5IJJ(F��).

• Combine to compute 5 at F�/�, F�/�Y�,… , F�8�

(equivalently, −�, −F�, −F�, … , −F�/�8�)

using 5 −F� = 5GHG� F�� − F�
5IJJ(F��)

28

Powers of F� �(�/�)

� � = � �(�/�) + \(�)

so �(�) is
(� log �)

\(�)

�(�/�)

\(�)

\(�)

Fast Fourier Transform: Multiplying Polynomials

FFT(5, <, �/�){

// Assume that 5 and < have degree �/� − �

Compute evaluations 5 � , … , 5(F�8�)

Compute evaluations < � , … , <(F�8�)

Multiply values to compute

= � = 5 � ⋅ < � , … , = F�8� = 5 F�8� ⋅ <(F�8�)

Interpolate: Solve systems of equations for = 4 = 5 4 <(4)

given = � , … , = F�8�

}

29

(�)

(� log �)

30

Polynomial Interpolation

System of � linear equations in ��8�, … , ��:

��8�� + … + ��� + ��� + �� = =(�)

��8�F�8� + … + ��F� + ��F + �� = =(F)

...

��8�F �8� � + … + ��F�� + ��F� + �� = = F�

...

��8� … + … + �� … + �� … + �� = =(F�8�)

Can solve this in a very slick way...

Interpolation Algorithm

Define a new polynomial

• 3 / =] � +] F ⋅ / +] F� ⋅ /� + ⋯ +] F�8� ⋅ /�8�

• Run FFT evaluation for 3 � , … , 3(F�8�)

Claim: Setting �� = 3(F�8�)/� for each � gives the correct answer.

Proof: Then 3 F�8� = ∑](F�)789
B�; ⋅ F�8� �

= ∑ ∑ ��
789
^�; F� ^789

B�; ⋅ F�8� �

 = ∑ ��
789
^�; ∑ F� B789

B�; ⋅ F8� �

= ∑ ��
789
^�; ∑ F�8� �789

B�;

31

(� log �)

Now F�8� is a solution to equation _7 − 1 = _ − 1 _789 + ⋯ + _ + 1 = 0

If � ≠ � then F�8� ≠ � so ∑ F�8� �789
B�; = � ; if � = � then ∑ F�8� �789

B�; = �

