CSE 421Introduction to Algorithms

Lecture 9: Divide and Conquer Matrix & Integer Multiplication

Ø

Algorithm Design Techniques

Divide & Conquer

- Divide instance into subparts.
- Solve the parts recursively.
- Conquer by combining the answers

Last Time: Solving Divide and Conquer Recurrences

Master Theorem: Suppose that $\bm{T}(\bm{n}) = \bm{a}\cdot\bm{T}(\bm{n}/\bm{b}) + O(\bm{n}^k)$ $\binom{k}{0}$ for $n > b$.

• If $a < b^k$ then $\bm{T}(\bm{n})$ is $O(\bm{n}^k)$

• If $a = b^k$ then $T(n)$ is $O(n^k \log n)$

• If $\bm{a} > \bm{b^k}$ then $\bm{T}(\bm{n})$ is $O(\bm{n}^{\text{log} \bm{b}})$ a $\binom{a}{ }$

Binary search: $\bm{a} = \bm{1}$, $\bm{b} = \bm{2}$, $\bm{k} = \bm{0}$ so $\bm{a} = \bm{b}^{\bm{k}}$: Solution: $\mathit{O}\big(\bm{n^0} \text{log} \, \bm{n}\big) = \mathit{O}(\text{log} \, \bm{n})$ **Mergesort:** $a = 2$, $b = 2$, $k = 1$ so $a = b^k$: Solution: $O(n^1 \log n) = O(n \log n)$

Matrix Multiplication

 $=\begin{bmatrix} \overbrace{a_{11}}\overbrace{b_{11}}+\overbrace{a_{12}}\overbrace{b_{21}}+\overbrace{a_{13}}\overbrace{b_{31}}+\overbrace{a_{14}}\overbrace{b_{41}} & a_{11}\overbrace{b_{12}}+\overbrace{a_{12}}\overbrace{b_{22}}+\overbrace{a_{13}}\overbrace{b_{32}}+\overbrace{a_{14}}\overbrace{b_{42}} & \circ & a_{11}\overline{b_{14}}+\overbrace{a_{12}}\overline{b_{24}}+\overbrace{a_{13}}\overline{b_{34}}+\overbrace{a_{14}}\overline{b_{44}}\\ \over$ $a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41}$ $a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42}$ \circ $a_{41}b_{14} + a_{42}b_{24} + a_{43}b_{34} + a_{44}b_{44}$

Multiplying $n \times n$ matrices: Entry $c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}$ $k = 1$

- n^3 multiplications
- n^3-n^2 additions

 \curvearrowright

```
for \boldsymbol{i} \leftarrow \boldsymbol{1} to \boldsymbol{n}for \boldsymbol{j} \leftarrow \boldsymbol{1} to \boldsymbol{n}\textcolor{red}{\mathcal{C}[i,j]}\leftarrow 0for k \leftarrow 1 to n\mathcal{C}[i,j] \leftarrow \mathcal{C}[i,j] + A[i,k] \cdot B[k,j]endforendforendfor
```
Can we improve this with divide and conquer?

$$
a_{11} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \ a_{21} & a_{22} & a_{23} & a_{24} \ a_{31} & a_{32} & a_{33} & a_{34} \ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \ b_{21} & b_{22} & b_{23} & b_{24} \ b_{31} & b_{32} & b_{33} & b_{34} \ b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix}
$$

$$
=\begin{bmatrix} \frac{a_1b_{11}+a_1b_{21}}{a_2b_{11}+a_2b_{21}}+a_1b_{31} & \frac{a_1b_{12}+a_1b_{22}}{a_2b_{12}+a_1b_{22}}+a_1b_{32} & a_1b_{14}+a_1b_{24}+a_1b_{34}+a_1b_{44} \\ \frac{a_2b_{11}+a_2b_{21}}{a_3b_{11}+a_3b_{21}+a_3b_{31}+a_2b_{41}} & \frac{a_1b_{12}+a_1b_{22}}{a_3b_{12}+a_3b_{22}}+a_2b_{32}+a_2b_{42} & a_1b_{14}+a_2b_{24}+a_2b_{24}+a_2b_{34}+a_2b_{44} \\ \frac{a_3b_{11}+a_3b_{21}+a_3b_{31}+a_3b_{41}}{a_3b_{12}+a_3b_{22}+a_3b_{22}+a_3b_{32}+a_3b_{42}} & a_3b_{14}+a_{32}b_{24}+a_{33}b_{34}+a_{34}b_{44} \\ \frac{a_4b_{11}+a_4b_{21}+a_4b_{31}}{a_4b_{12}+a_4b_{41}} & a_4b_{12}+a_4b_{22}+a_4b_{32}+a_4b_{42} & a_4b_{14}+a_4b_{24}+a_4b_{34}+a_4b_{44}.\end{bmatrix}
$$

$$
\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \ a_{21} & a_{22} & a_{23} & a_{24} \ a_{31} & a_{32} & a_{33} & a_{34} \ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \ b_{21} & b_{22} & b_{23} & b_{24} \ b_{31} & b_{32} & b_{33} & b_{34} \ b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix}
$$

$$
=\begin{bmatrix} a_1b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} & a_1b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} & a_1b_{14} + a_{12}b_{24} + a_{13}b_{34} + a_{14}b_{44} \\ a_2b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} & a_2b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} & a_2b_{14} + a_{22}b_{24} + a_{23}b_{34} + a_{24}b_{44} \\ a_3b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} & a_3b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} & a_3b_{14} + a_{32}b_{24} + a_{33}b_{34} + a_{34}b_{44} \\ a_4b_{11} + a_4b_{21} + a_4b_{31} + a_4b_{41} & a_4b_{12} + a_4b_{22} + a_{43}b_{32} + a_{44}b_{42} & a_4b_{14} + a_{42}b_{24} + a_{43}b_{34} + a_{44}b_{44}.\end{bmatrix}
$$

Multiplying Matrices: Divide and Conquer

=

A11B11+A12B21 ^A11B12+A12B²²

 A_{21} **A**₂₂ **B21 ^B²²** \boldsymbol{n} $\overline{2}$ \times $\frac{n}{-}$ $\overline{2}$ $\frac{\pi}{2}$ matrix operations inside the $n \times n$ computation: **8** matrix multiplications: $T(n/2)$ each ${\bf 4}$ matrix additions: $\; ({\bm n}/2)^{\bf 2}$ each; total $O({\bm n}^{\bf 2})$ Recurrence: $\bm{T}(\bm{n}) = \bm{8}\,\bm{T}(\bm{n}/2) + O(\bm{n}^2)$ $\mathsf{A}_{21}\mathsf{B}_{11} + \mathsf{A}_{22}\mathsf{B}_{21}$ $\mathsf{A}_{21}\mathsf{B}_{12} + \mathsf{A}_{22}\mathsf{B}_{22}$

B11 ^B¹²

Apply Master Theorem:

A11 ^A¹²

 $a = 8, b = 2, k = 2.$ Now $b^k = 2^2 = 4$ so $a > b^k$ and $\log_b a = 3$. Solution: $\bm{T}(\bm{n})$ is $O\big(\bm{n}^{\log_{\bm{b}}\bm{a}}\big)=O(\bm{n^3})$ No savings!

Strassen's Divide and Conquer (1968)

$$
\begin{pmatrix}\nA_{11} & A_{12} \\
A_{21} & A_{22}\n\end{pmatrix}\n\begin{pmatrix}\nB_{11} & B_{12} \\
B_{21} & B_{22}\n\end{pmatrix} = \n\begin{pmatrix}\nA_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}\n\end{pmatrix}
$$

Key observations: This picture looks just like 2×2 matrix multiplication! and the number of multiplications is what really matters

Strassen: Can multiply 2 \times 2 matrices using only 7 multiplications! (and many more additions)

Recurrence: $\bm{T}(\bm{n}) = \bm{7}\,\bm{T}(\bm{n}/2) + O(\bm{n}^2)$

Apply Master Theorem:

 $\bm{a} = \bm{7}$, $\bm{b} = \bm{2}$, $\bm{k} = \bm{2}$ so solution $\bm{T}(\bm{n})$ is $O\big(\bm{n}^{\text{log}_2 \, \mathbf{7}}\big) = O\big(\bm{n}^{\mathbf{2.8074}}\big)$!

Strassen's Divide and Conquer (1968)

```
P_1 \leftarrow A_{12}(B_{11} + B_{21}); \qquad P_2 \leftarrow A_{21}(B_{12} + B_{22})P_3 \leftarrow (A_{11} - A_{12})B_{11}; P_4 \leftarrow (A_{22} - A_{21})B_{22}P_5 \leftarrow (A_{22} - A_{12})(B_{21} - B_{22})P_6 \leftarrow (A_{11} - A_{21})(B_{12} - B_{11})P_7 \leftarrow (A_{21} - A_{12})(B_{11} + B_{22})C_{11} \leftarrow P_1 + P_3; C_{12} \leftarrow P_2 + P_3 + P_6 - P_7C_{21} \leftarrow P_1 + P_4 + P_5 + P_7; C_{22} \leftarrow P_2 + P_4
```
Fast Matrix Multiplication

Using Strassen's $\mathit{O}(n^{2.8074})$ $\mathbf{f}^{\mathbf{4}}$) algorithm:

- Practical for exact calculations on large matrices
	- Not numerically stable with approximations
- Stop recursion when $n < 32$ and use simple algorithm instead
	- This kind of stopping of recursion is typical for divide and conquer

Decades of theoretical improvements since:

- Best current time $O(n^{2.3728596})$ $\stackrel{\mathbf{b}}{\rightarrow}$
- None of these improvements is practical (require \boldsymbol{n} in the millions and more)

Open: Is there an $O(n^2)$ \sim) time matrix multiplication algorithm?

See
Marver

Integer Multiplication

Elementary school algorithm

 $O(n^2$ \sim 1 time for \bm{n} -bit integers

Decimal Binary

I EN SCHOOL

Integer Multiplication: Divide and Conquer

Integer Multiplication: Divide and Conquer

Break up each \boldsymbol{n} -bit integer \boldsymbol{x} and \boldsymbol{y} into two $\boldsymbol{n}/2$ -bit integers

$$
x_1 \qquad x_0 \qquad y_1 \qquad y_0
$$

so $x = x_1$ $\mathbf{1} \cdot \mathbf{2}^{n/2} + x_0$ and $\mathbf{y} = \mathbf{y}_1$ $1 \cdot 2^{n/2} + y_0.$

Then
$$
x \cdot y = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)
$$

= $x_1 \cdot y_1 \cdot 2^n + (x_1 \cdot y_0 + x_0 \cdot y_1) \cdot 2^{n/2} + x_0 \cdot y_0$

Divide and conquer:

- Solve 4 size $n/2$ subproblems
- \bullet • Shift answers, add results $|O(\bm{n})|$ Recurrence: $\bm{T}(\bm{n}) = \bm{4}\,\bm{T}(\bm{n}/\mathbf{2}) + O(\bm{n})$

Master Theorem:

•
$$
a = 4, b = 2, k = 1
$$

\n• $a > b^k$
\nSo $T(n)$ is $O(n^{\log_b a}) = O(n^2)$
\nNo savings!

Karatsuba's Divide and Conquer Algorithm (1963)

We want to compute $\pmb{x}\cdot\pmb{y}=\pmb{(}x_{\pmb{1}}\cdot\pmb{y}_{\pmb{1}}\pmb{)}$ $\pmb{2^n}$ $"$ + $\boldsymbol{\mathcal{X}}$ $\mathbf{1} \cdot \mathbf{y_0}$ + $\boldsymbol{\mathcal{X}}$ $\frac{0}{2} \cdot y_1$ $_{1})\cdot 2^{n/2}$ \leftarrow $\boldsymbol{\mathcal{X}}$ $\mathbf{0} \cdot \mathbf{y_0}$ For divide and conquer, we already h<mark>ave to compute</mark> $\boldsymbol{\mathcal{X}}$ $\frac{1}{2}$ $\frac{y}{4}$ and x $\overline{0} \cdot \overline{y}_0$ We just need that middle term $(x_1 \cdot y_0 + x_0 \cdot y_1)$ which <mark>\</mark>ooks like two multiplications. If we compute (x) $_1+x$ \mathbf{x}_0 \mathbf{y} $\frac{1 + y_0}{\sqrt{1 + y_1}} = x_1 \cdot y_1$ $+$ (x we can cancel off the first and last parts to get the middle term we need and we only $\mathbf{1} \cdot \mathbf{y_0}$ $+\,\pmb{x}$ $\mathbf{0} \cdot \mathbf{y_1}$ $+\!\!/\mathrm{x}$ $\overline{\mathfrak{g}} \cdot \overline{\mathcal{Y}}$ hen use one multiplication.

Karatsuba's Divide and Conquer Algorithm (1963)

We want to compute $\boldsymbol{x}\cdot\boldsymbol{y} = x_{1}\cdot y_{1}\cdot\boldsymbol{2^{n}}$ $'' + (x_1 \cdot y_0 + x_0 \cdot y_1)$ $_{1})\cdot 2^{n/2}+x_{0}\cdot y_{0}$

Karatsuba:

Use only $\bf 3$ "half-size" multiplications by computing middle term more efficiently

- Multiply to get $t_2 = x_1 \cdot y_1$. $T(n/2)$
- Multiply to get $t_0 = x_0 \cdot y_0$. . $T(n/2)$
- Add to get $x_1 + x_0$ and $y_1 + y_0$.
- Multiply to get $s = (x_1 + y_2)$. $O(n): n/2 + 1$ bit answers $(y_1 + x_0) \cdot (y_1 + y_0)$ $= x_1 \cdot y_1 + (x_1 \cdot y_0 + x_0 \cdot y_1) + x_0 \cdot y_0$ (a) $T(n/2 + 1)$
- Compute $t_1 = s t_2 t_0$ which equals $x_1 \cdot y_0 + x_0 \cdot y_1 = 0$ (\bm{n})
- Shift t_1 and t_2 , add results to $t_{\rm 0}$ $\overline{0}$ 0

Recurrence: $\bm{T}(\bm{n}) = \bm{3}\ \bm{T}(\bm{n}/2 + \bm{1}) + O(\bm{n})$ Solution: $\bm{T}(\bm{n})$ is $O\big(\bm{n}^{\text{log}}2\big)$ $\frac{3}{2}$ = 0(n^{1.585}))

 (\bm{n})

Fast Multiplication and the Fast Fourier Transform (FFT)

Fast integer multiplication is used for multi-precision arithmetic

• Relevant input-size measure: # of 64-bit words of precision

Karatsuba's algorithm is not the fastest for integer multiplication

- Fastest is $O(n\log n)$ time based on the Fast Fourier Transform (FFT)
	- [Schoenhage-Strassen 1971, Fürer 2007, Harvey-Hoeven 2019]
	- Many messy details. We'll focus on FFT itself!

Fast Fourier Transform (FFT) [Cooley-Tukey 1967]

- Efficient conversion back-and-forth between a signal and its frequencies.
- $O(n\log n)$ time algorithm for multiplying polynomials.
- Practical variant is standard for computing the Discrete Cosine Transform (DCT)
	- Workhorse of modern signal processing.

Polynomial Multiplication

Variable x

Polynomial $\boldsymbol{p}(x)$: integer combination of powers of x

- e.g., quadratic polynomial $p(x) = 3x^2 + 2x + 1$
- Represent by a vector of integer coefficients $[\bf 3, \bf 2, \bf 1]$

Polynomial Multiplication:

Given: $p(x) = a_{n-1} x^{n-1} + a_{n-1} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0$ and $q(x) = b_{n-1} x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x^2 + b_1 x + b_0$ 0 **Compute:** (Vector of coefficients of) polynomial $r(x) = p(x) q(x)$

e.g., $(3x + 1)(2x + 3) = 6x^2 + 9x + 2x + 3 = 6x^2 + 11x + 3$

Basic algorithm: Compute all $\bm{n^2}$ products $\bm{a}_i\bm{b}_j$ and collect terms.

Polynomial Multiplication: Degree 1 similar to Karatsuba

Given $p(z) =$ а $1 \cdot Z +$ а 0 $q(z) =$ \bm{b} $1 \cdot Z +$ \bm{b} $\int\limits_{\mathbb{R}}$ compute

 $r(z) = a_1 b_1 \cdot z^2$ $\frac{1}{2} + (a_1b_0 + a_0b_1) \cdot z + a_0b_0$

Just as Strassen's Algorithm was based on multiplying 2×2 matrices with few products, this is based on multiplying degree $\boldsymbol{1}$ polynomials using few products.

Have $\overline{\bf 3}$ coefficients of $\overline{\bf r}$ to compute.

Idea: Evaluate each of \boldsymbol{p} and \boldsymbol{q} at $\boldsymbol{3}$ points, $\boldsymbol{0}$, $\boldsymbol{1}$, $-\boldsymbol{1}$, and multiply results • $\mathbf{r}(0) = p(0) \cdot q(0) =$ а 0 \bm{b} 0 • $r(1) + n(1) \cdot a(1) - (a_2)$ • $r(1) = p(1) \cdot q(1) = (a$ $\frac{1}{a+b}$ (b) 0 $\frac{1}{10} + b$ 1 $\sum_{ }$ •• $r(-1)$ = $p(-1) \cdot q(-1) = (a_0 - a)$ $_{\mathbf{1}})$ $(\bm{b}%)_{\mathbf{A}}$ $\boldsymbol{_{0}}-\boldsymbol{b}$ $_{1})$

Can express $(a_1b_0 + a_0b_1)$ and a_1b_1 as linear combinations of $r(0)$, $r(1)$, $r(-1)$

Essential Idea for FFT: Polynomial Interpolation

Suppose r is an unknown degree $n-1$ polynomial with coefficients $c_{n-1},...,c_0$

• $r(x) = c_{n-1}x^{n-1} + \cdots + c_2x^2$ $^{2} + c_{1}x + c_{0}$

Suppose you have values of \bm{r} at \bm{n} distinct points: $\bm{y_0}$, ... , $\bm{y_{n-1}}$

• $r(y_0)$, ..., $r(y_n)$ $_{-1})$

This gives a system of \boldsymbol{n} linear equations in $\boldsymbol{c}_{\boldsymbol{n-1}}$, ... , $\boldsymbol{c}_{\boldsymbol{0}}$

$$
c_{n-1}y_0^{n-1} + ... + c_2y_0^2 + c_1y_0 + c_0 = r(y_0)
$$

$$
c_{n-1}y_1^{n-1} + ... + c_2y_1^2 + c_1y_1 + c_0 = r(y_1)
$$

$$
\int_{0}^{1} c_{n-1} y_{n-1}^{n-1} + \ldots + c_2 y_{n-1}^2 + c_1 y_{n-1} + c_0 = r(y_{n-1})
$$

Fact: If the points are distinct, this system has a unique solution.

…

22

Fast Fourier Transform: Multiplying Polynomials

$\mathsf{FFT}(\boldsymbol{p},\,\boldsymbol{q},\,\boldsymbol{n})\{$

// Assume that \boldsymbol{p} and \boldsymbol{q} have degree $\boldsymbol{n-1}$ // Depends on good sequence of ${\bf 2n}$ points ${\bf y_0}$, ${\bf y_1}$, …, ${\bf y_{2n-1}}$ Compute evaluations $\boldsymbol{p}(\boldsymbol{y_0}),...$, $\boldsymbol{p}(\boldsymbol{y_{2n-1}})$ Compute evaluations $\bm{q}(\bm{y_0}),...$, $\bm{q}(\bm{y_{2n-1}})$ Multiply values to compute $r(y_0) = p(y_0) \cdot q(y_0), ..., r(y_{2n-1}) = p(y_{2n-1})$ Interpolate: Solve systems of equations for $\bm{r}(x) = \bm{p}(x)\bm{q}(x)$ $_{1})\cdot q(y_{2n}$ $_{-1})$ given $r(y_0)$, ..., $r(y_{2n-1})$ and $y_0, y_1, ..., y_{2n-1}$ } $O(\bm{n})$

Any set of distinct points suffice. FFT chooses them to make evaluation/interpolation easy.

FFT: Choosing evaluation points

Computing a single evaluation takes $O(\boldsymbol{n})$ time.

Using \boldsymbol{n} unrelated points would be $O(\boldsymbol{n^2})$ \sim total time

• *No savings!*

Instead use divide and conquer:

- Choose related points and do it recursively on half-size problems
- In the recursion should only have half as many points

Key FFT ideas:

- For every evaluation point $\boldsymbol{\omega}$, also include $-\boldsymbol{\omega}$
- For every evaluation point ω , use ω^2 in the recursive evaluation.
- Half-size problems involve *odd* and *even* degree sub-polynomials

Key FFT ideas

$$
p(\omega) = a_0 + a_1 \omega + a_2 \omega^2 + a_3 \omega^3 + a_4 \omega^4 + \dots + a_{n-2} \omega^{n-2} + a_{n-1} \omega^{n-1}
$$

\n
$$
= a_0 + a_2 \omega^2 + a_4 \omega^4 + \dots + a_{n-2} \omega^{n-2}
$$

\n
$$
= a_0 + a_2 \omega^2 + a_4 \omega^4 + \dots + a_{n-2} \omega^{n-2}
$$

\n
$$
= p_{even}(\omega^2) + \omega p_{odd}(\omega^2)
$$

\n
$$
p(-\omega) = a_0^{\omega} - a_1 \omega + a_2 \omega^2 - a_3 \omega^3 + a_4 \omega^4 - \dots + a_{n-2} \omega^{n-2} - a_{n-1} \omega^{n-1}
$$

\n
$$
= a_0 + a_2 \omega^2 + a_4 \omega^4 + \dots + a_{n-2} \omega^{n-2}
$$

\n
$$
= a_0 + a_2 \omega^2 + a_4 \omega^4 + \dots + a_{n-1} \omega^{n-2}
$$

\n
$$
= a_0 + a_2 \omega^2 - a_1 \omega^2
$$

\n
$$
= a_0 + a_2 \omega^2 + a_4 \omega^4 + \dots + a_{n-1} \omega^{n-2}
$$

\n
$$
= a_0 + a_2 \omega^2 + a_4 \omega^2 + \dots + a_{n-1} \omega^{n-2}
$$

\nwhere $p_{even}(x) = a_0 + a_2 x + a_4 x^2 + \dots + a_{n-1} x^{n/2-1}$
\nand $p_{odd}(x) = a_1 + a_3 x + a_5 x^2 + \dots + a_{n-1} x^{n/2-1}$

To continue recursion, need some of the squares to be the negation of others! **Complex numbers**

Complex Numbers Review

 $i^2 = -1$

$\bm{\mathsf{Use}}$ powers of $\bm{\omega}$ "primitive" n^th root of 1: $\bm{\omega}^n = \bm{1}$ 2π

 $\boldsymbol{\omega} = \boldsymbol{e}$ $\frac{2\pi i}{n} = \cos$ $\left(\frac{2\pi}{n}\right) + i \sin\left(\frac{2\pi}{n}\right)$ so can explicitly compute with its powers.

 $\boldsymbol{\omega}^{\mathbf{2}}$ is a "primitive" $\boldsymbol{n}/\mathbf{2}^{\mathsf{th}}$ root of $\mathbf{1}.$

Since $\boldsymbol{\omega}^{\boldsymbol{n}/2} = -\boldsymbol{1}$ we have $\omega^{n/2}$, $\omega^{n/2+1}$,..., $\omega^{n-1} = -1$, $-\omega$, ..., $-\omega^{n/2-1}$

FFT Evaluation: Recursion for n **a power of** 2

Goal:

• Evaluate \boldsymbol{p} at $\boldsymbol{1}, \boldsymbol{\omega}, \boldsymbol{\omega}^2, \boldsymbol{\omega}^3, ..., \boldsymbol{\omega}^{n-1}$

Recursive Algorithm

Fast Fourier Transform: Multiplying Polynomials

 $\mathsf{FFT}(\bm{p},\,\bm{q},\,\bm{n}/2)\{$ // Assume that \boldsymbol{p} and \boldsymbol{q} have degree $\boldsymbol{n}/2 - 1$ Compute evaluations $\boldsymbol{p}(1)$ Compute evaluations $q(1)$, ..., $1)$, ..., $p(\omega^{n-1})$ \mathbf{I} Multiply values to compute $(1), ..., q(\omega^{n-1})$ \mathbf{I} $\bm{r(1)} = \bm{p(1)} \cdot \bm{q(1)}, ..., \bm{r(\omega^{n-1})}$ Interpolate: Solve systems of equations for $r(x) = p(x)q(x)$ $\boldsymbol{\mu}^{(n)} = p(\boldsymbol{\omega}^{n-1})$ $\binom{n}{1} \cdot q(\omega^{n-1})$ $\mathbf{1)}$ given $\; \pmb{r(1)},...,\pmb{r(\omega^{n-1}})$ } $O(\bm{n})$ $O(n\log n)$

Polynomial Interpolation

System of \boldsymbol{n} linear equations in $\boldsymbol{c}_{\boldsymbol{n-1}}$, ... , $\boldsymbol{c}_{\boldsymbol{0}}$

$$
c_{n-1}1 + ... + c_21 + c_11 + c_0 = r(1)
$$

\n
$$
c_{n-1}\omega^{n-1} + ... + c_2\omega^2 + c_1\omega + c_0 = r(\omega)
$$

\n...
\n
$$
c_{n-1}\omega^{(n-1)k} + ... + c_2\omega^{2k} + c_1\omega^k + c_0 = r(\omega^k)
$$

\n...
\n
$$
c_{n-1} + ... + c_2 + c_1 + c_1 + c_0 = r(\omega^{n-1})
$$

Can solve this in a very slick way...

Interpolation Algorithm

Define a new polynomial

- $s(x) = r(1) + r(\omega) \cdot x + r(\omega^2) \cdot x^2 + \dots + r(\omega^{n-1}) \cdot x^{n-1}$
- Run FFT evaluation for $s(1)$, .. $(1), ..., S(\omega^{n-1})$ \mathbf{L}

Claim: Setting $c_j = s(\omega^{n-j})/n$ for each j gives the correct answer.

Proof: Then
$$
s(\omega^{n-j}) = \sum_{i=0}^{n-1} r(\omega^i) \cdot (\omega^{n-j})^i = \sum_{i=0}^{n-1} \sum_{k=0}^{n-1} c_k (\omega^i)^k \cdot (\omega^{n-j})^i
$$

$$
= \sum_{k=0}^{n-1} c_k \sum_{i=0}^{n-1} (\omega^k)^i \cdot (\omega^{-j})^i
$$

$$
= \sum_{k=0}^{n-1} c_k \sum_{i=0}^{n-1} (\omega^{k-j})^i
$$
Now ω^{k-j} is a solution of equation $y^n - 1 = (y - 1)(y^{n-1} + \dots + y + 1) = 0$
If $k \neq j$ then $\omega^{k-j} \neq 1$ so $\sum_{i=0}^{n-1} (\omega^{k-j})^i = 0$; if $k = j$ then $\sum_{i=0}^{n-1} (\omega^{k-j})^i = n$

 $O(n\log n)$