
CSE 421

Introduction to Algorithms

Lecture 9:  Divide and Conquer 
Matrix & Integer Multiplication
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Algorithm Design Techniques

Divide & Conquer

• Divide instance into subparts.

• Solve the parts recursively.

• Conquer by combining the answers
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Last Time: Solving Divide and Conquer Recurrences

Master Theorem: Suppose that � � = ���(�/�) + 
(��) for � > �.

• If � < �� then �(�) is 
(��)

• If � = �� then �(�) is 
(�� log �)

• If � > �� then �(�) is 
(����� �)

Binary search: � = �, � = �, � = � so � = ��: Solution:  
 ��log � = 
(log �)

Mergesort: � = �, � = �, � = � so � = ��: Solution:  
(��log �) = 
(� log �)



Matrix Multiplication
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Multiplying � � � matrices:   Entry ��� = ∑ ������
�
���

• �� multiplications

• ��  �� additions
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Multiplying Matrices

for � ← � to �

for � ← � to �

![�, �] ← �

for � ← � to �

![�, �] ← ![�, �] + %[�, �]�&[�, �]

endfor

endfor

endfor

Can we improve this with divide and conquer?



Multiplying Matrices
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matrix multiplications inside the � � � computation 



Multiplying Matrices
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Multiplying Matrices
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A11 A12

A21 A22

B11 B12

B21 B22

A11B12+A12B22A11B11+A12B21

A21B12+A22B22
A21B11+A22B21
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A11 A12

A21 A22

B11 B12

B21 B22

Multiplying Matrices
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A11B12+A12B22A11B11+A12B21

A21B12+A22B22
A21B11+A22B21
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matrix multiplications inside the � � � computation 



A11 A12

A21 A22

B11 B12

B21 B22

Multiplying Matrices: Divide and Conquer

�

�
�

�

�
matrix operations inside the � � � computation:

' matrix multiplications:  � �/� each   

( matrix additions:   �/� � each; total 
(��)

Recurrence:  � � = ' �(�/�) + 
(��)

Apply Master Theorem:

� = ', � = �, � = �. Now �� = �� = ( so � > �� and log� � = �.

Solution: � � is 
 ����� � = 
(��) No savings!
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A11B12+A12B22A11B11+A12B21

A21B12+A22B22
A21B11+A22B21

=



A11 A12

A21 A22

B11 B12

B21 B22

Strassen’s Divide and Conquer (1968)

Key observations: This picture looks just like � � � matrix multiplication!  

and the number of multiplications is what really matters

Strassen: Can multiply � � � matrices using only ) multiplications! 

(and many more additions)

Recurrence:  � � = ) �(�/�) + 
(��)

Apply Master Theorem:

� = ), � = �, � = � so solution � � is 
 ����� ) = 
(��.'�)()!
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A11B12+A12B22A11B11+A12B21

A21B12+A22B22
A21B11+A22B21

=
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Strassen’s Divide and Conquer (1968)

+� 
← %��(&�� + &��);       +� ← %��(&�� + &��)

+� ← (%�� 
  %��)&��;      +( ← (%�� 

  %��)&��

+, ← (%�� 
  %��)(&�� 

  &��)

+- ← (%�� 
  %��)(&�� 

  &��)

+) ← (%�� 
  %��)(&�� + &��)

!�� ← +� + +� ;              !�� ← +� + +� + +- 
  +)

!�� ← +� + +( + +, + +) ;  !�� ← +� + +(
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Fast Matrix Multiplication

Using Strassen’s 
(��.'�)() algorithm: 

• Practical for exact calculations on large matrices

• Not numerically stable with approximations

• Stop recursion when � < �� and use simple algorithm instead

• This kind of stopping of recursion is typical for divide and conquer

Decades of theoretical improvements since:

• Best current time 
(��.�)�',.-)

• None of these improvements is practical (require � in the millions and more)

Open: Is there an 
(��) time matrix multiplication algorithm?



Integer Multiplication
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695273

� 123412
--------------------------------------------

1390546

695273  

2781092    

2085819      

1390546        

695273          
--------------------------------------------------

85805031476

110110

� 101110
--------------------------------------------

0

110110  

110110    

110110      

0        

110110          
--------------------------------------------------

100110110100

Decimal Binary

Elementary school algorithm


(��) time for �-bit integers



Integer Multiplication:  Divide and Conquer

Break up each �-bit integer / and 0 into two �/�-bit integers

so  / = /� ⋅ ��/� + /� and 0 = 0� ⋅ ��/� + 0�.

Then / ⋅ 0 = (/� ⋅ ��/� + /�)(0� ⋅ ��/� + 0�)

= /� ⋅ 0� ⋅ �� + /� ⋅ 0� + /� ⋅ 0� ⋅ ��/� + /� ⋅ 0�

Divide and conquer:

• Solve ( size �/� subproblems

• Shift answers, add results   
(�)

Recurrence: �(�) = ( �(�/�) + 
(�)
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/� /� 0� 0�

/� ⋅ 0�

/� ⋅ 0�

/� ⋅ 0�

/� ⋅ 0�



Integer Multiplication:  Divide and Conquer

Break up each �-bit integer / and 0 into two �/�-bit integers

so  / = /� ⋅ ��/� + /� and 0 = 0� ⋅ ��/� + 0�.

Then / ⋅ 0 = (/� ⋅ ��/� + /�)(0� ⋅ ��/� + 0�)

= /� ⋅ 0� ⋅ �� + /� ⋅ 0� + /� ⋅ 0� ⋅ ��/� + /� ⋅ 0�

Divide and conquer:

• Solve ( size �/� subproblems

• Shift answers, add results   
(�)

Recurrence: �(�) = ( �(�/�) + 
(�)
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/� /� 0� 0�

Master Theorem:

• � = (,  � = �, � = � 

• � > ��

So �(�) is 
 ����� � = 
(��)

No savings!



Karatsuba’s Divide and Conquer Algorithm (1963)

We want to compute / ⋅ 0 = /� ⋅ 0� ⋅ �� + /� ⋅ 0� + /� ⋅ 0� ⋅ ��/� + /� ⋅ 0�

For divide and conquer, we already have to compute /� ⋅ 0� and /� ⋅ 0�

We just need that middle term /� ⋅ 0� + /� ⋅ 0� which looks like two multiplications.

If we compute  (/�+/�) ⋅ 0� + 0� = /� ⋅ 0� + /� ⋅ 0� + /� ⋅ 0� + /� ⋅ 0� then

we can cancel off the first and last parts to get the middle term we need and we only 

use one multiplication.
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Karatsuba’s Divide and Conquer Algorithm (1963)

We want to compute / ⋅ 0 = /� ⋅ 0� ⋅ �� + /� ⋅ 0� + /� ⋅ 0� ⋅ ��/� + /� ⋅ 0�

Karatsuba:

Use only � “half-size”  multiplications by computing middle term more efficiently

• Multiply to get 2� = /� ⋅ 0�. �(�/�)

• Multiply to get 2� = /� ⋅ 0�. �(�/�)

• Add to get /� + /� and 0� + 0�. 
(�) : �/� + � bit answers

• Multiply to get 3 = (/� + /�) ⋅ 0� + 0� �(�/� + �) 

= /� ⋅ 0� + /� ⋅ 0� + /� ⋅ 0� + /� ⋅ 0�

• Compute 2� = 3  2�  2� which equals /� ⋅ 0� + /� ⋅ 0� 
(�)

• Shift 2� and 2�, add results to 2� 
(�)

Recurrence: �(�) = � �(�/� + �) + 
(�) Solution:  �(�) is 
 ����� � = 
(��.,',)
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Fast Multiplication and the Fast Fourier Transform (FFT) 

Fast integer multiplication is used for multi-precision arithmetic

• Relevant input-size measure: # of 64-bit words of precision

Karatsuba’s algorithm is not the fastest for integer multiplication

• Fastest is 
(� log �) time based on the Fast Fourier Transform (FFT)

• [Schoenhage-Strassen 1971, Fürer 2007, Harvey-Hoeven 2019]

• Many messy details.  We’ll focus on FFT itself!

Fast Fourier Transform (FFT) [Cooley-Tukey 1967]

• Efficient conversion back-and-forth between a signal and its frequencies.

• 
(� log �) time algorithm for multiplying polynomials.

• Practical variant is standard for computing the Discrete Cosine Transform (DCT)

• Workhorse of modern signal processing.
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Polynomial Multiplication

Variable 4

Polynomial 5(4):  integer combination of powers of 4

• e.g., quadratic polynomial 5 4 = �46 + �4 + �

• Represent by a vector of integer coefficients [�, �, �]

Polynomial Multiplication: 

Given: 5 4 = �789 4789 + �789 4786 + ⋯ + �6 46 + �9 4 + �;

and < 4 = �789 4789 + �789 4786 + ⋯ + �6 46 + �9 4 + �;

Compute:  (Vector of coefficients of) polynomial =(/) = 5(/) <(/)

e.g., �4 + � �4 + � = 646 + 94 + 24 + 3 = -46 + ��4 + �

Basic algorithm:  Compute all �� products �B�C and collect terms.
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Polynomial Multiplication: Degree 1 similar to Karatsuba

Given 5(D) = �� ⋅ D + ��         < D = �� ⋅ D + �� compute

= D = ���� ⋅ D6 + ���� + ���� ⋅ D + ����

Just as Strassen’s Algorithm was based on multiplying � � � matrices with few products, 

this is based on multiplying degree � polynomials using few products.

Have � coefficients of = to compute.

Idea: Evaluate each of 5 and < at � points,  �, �,  �, and multiply results

• = �    =       5 � ⋅ < �    = ����

• = �    =       5 � ⋅ < �     = (�� + ��) (�� + ��)

• =  � =    5  � ⋅ <  � = (��  ��) (��  ��)

Can express ���� + ���� and ���� as linear combinations of = � , = � , =  �
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Essential Idea for FFT: Polynomial Interpolation

Suppose = is an unknown degree �  � polynomial with coefficients ��8�, … , ��

• = 4 =  ��8�4789 + ⋯ + ��46 + ��4 + ��

Suppose you have values of = at � distinct points: 0�, … , 0�8�

• =(0�), … , =(0�8�)

This gives a system of � linear equations in ��8�, … , ��

��8�0�
�8� +  … + ��0�

�     + ��0�      + ��  = =(0�)

��8�0�
�8� +  … + ��0�

�     + ��0�      + ��  = =(0�)

…

��8�0�8�
�8� +  … + ��0�8�

� + ��0�8� + ��  = =(0�8�)

Fact: If the points are distinct, this system has a unique solution.



Fast Fourier Transform:  Multiplying Polynomials

FFT(5, <, �){

// Assume that 5 and < have degree �  �

// Depends on good sequence of �� points 0�, 0�, … , 0��8� 

Compute evaluations 5 0� , … , 5(0��8�)

Compute evaluations < 0� , … , <(0��8�)

Multiply values to compute 

= 0� = 5 0� ⋅ < 0� , … , = 0��8� = 5 0��8� ⋅ <(0��8�)

Interpolate: Solve systems of equations for = 4 = 5 4 <(4)

given  = 0� , … , = 0��8� and 0�, 0�, … , 0��8� 

}

Any set of distinct points suffice.  FFT chooses them to make evaluation/interpolation easy.
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FFT:  Choosing evaluation points

Computing a single evaluation takes 
(�) time.   

Using � unrelated points would be 
(��) total time

• No savings!

Instead use divide and conquer:  

• Choose related points and do it recursively on half-size problems 

• In the recursion should only have half as many points

Key FFT ideas: 

• For every evaluation point F, also include  F

• For every evaluation point F, use F� in the recursive evaluation.

• Half-size problems involve odd and even degree sub-polynomials
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Key FFT ideas

5 F =  �� + ��F + ��F� + ��F� + �(F( + ⋯ + ��8�F�8�  + ��8�F�8�      

• =  �� 
+ ��F�

 
+ �(F(

 
+ ⋯ + ��8�F�8�                                  

• + ��F + ��F� 
+ �,F, 

+ ⋯ + ��8�F�8�                       

•  = 5GHG�(F�)  + F 5IJJ(F�)

5  F =  ��  ��F + ��F�  ��F� + �(F(  ⋯ + ��8�F�8�   ��8�F�8�      

• =  �� 
+ ��F�

 
+ �(F(

 
+ ⋯ + ��8�F�8�                                  

•  (��F + ��F� 
+ �,F, 

+ ⋯ + ��8�F�8� )                      

•  = 5GHG�(F�)  F 5IJJ(F�)

where 5GHG�(4)  =  �� 
+ ��4

 
+ �(4�

 
+ ⋯ + ��8� 47/689

and     5IJJ(4)  =  �� 
+ ��4

 
+ �,4�

 
+ ⋯ + ��8� 47/689

To continue recursion, need some of the squares to be the negation of others! Complex numbers



Complex Numbers Review

�6 =  1

�

L + M�

To multiply complex numbers 

• add angles

• multiply lengths

(only need length 1 for FFT)

N
O

1

P + Q�

N + OR + S�

R + S� =  (L + M�)(P + Q�)

L + M� = cos N + � sin N =  RN�

P + Q� = cos O + � sin O =  RO�

R + S� = cos (N + O)  + � sin (N + O)  = R XYZ �
R2[� 

=  1

R[� 
=  −1

−1

−�
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Use powers of F “primitive” �th root of �:  F� = �
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F = G
�[�

� = cos
�[

�
+ � sin

�[

�

so can explicitly compute with its powers.

F(=−�

F-=−�

F�=�

F�=�=F'

F�

F, F)

F

Since F�/� = −� we have

F�/�, F�/�Y�,… , F�8� = −�, −F, … , −F�/�8�

F� is a “primitive”  �/�th root of �.



FFT Evaluation: Recursion for � a power of �

Goal:

• Evaluate 5 at �, F, F�, F�, … , F�8�

Recursive Algorithm

• Split coefficients of  5 into polynomials 5GHG� and 5IJJ

• Recursively evaluate 5GHG� at �, F�, F(, … , F�8�

• Recursively evaluate 5IJJ at �, F�, F(, … , F�8�

• Combine to compute 5 at �, F�, F�, … , F�/�8�

using 5 F� = 5GHG�(F��) + F� 
5IJJ(F��).

• Combine to compute 5 at  F�/�, F�/�Y�,… , F�8�

(equivalently, −�, −F�, −F�, … , −F�/�8�) 

using 5 −F� = 5GHG� F�� − F� 
5IJJ(F��)
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Powers of F� �(�/�)

� � = � �(�/�) + \(�)

so �(�) is 
(� log �)

\(�)

�(�/�)

\(�)

\(�)



Fast Fourier Transform:  Multiplying Polynomials

FFT(5, <, �/�){

// Assume that 5 and < have degree �/� − �

Compute evaluations 5 � , … , 5(F�8�)

Compute evaluations < � , … , <(F�8�)

Multiply values to compute 

= � = 5 � ⋅ < � , … , = F�8� = 5 F�8� ⋅ <(F�8�)

Interpolate: Solve systems of equations for = 4 = 5 4 <(4)

given  = � , … , = F�8�

}
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Polynomial Interpolation

System of � linear equations in ��8�, … , ��:

��8��             +  … + ���      + ���   + ��  = =(�)

��8�F�8�      +  … + ��F�    + ��F  + ��  = =(F)

...

��8�F �8� � + … + ��F�� + ��F� + ��  = = F�

...

��8� …          +  … + �� …     + �� …  + ��  = =(F�8�)

Can solve this in a very slick way...



Interpolation Algorithm

Define a new polynomial 

• 3 / = ] � + ] F ⋅  / + ] F� ⋅ /� + ⋯ +  ] F�8� ⋅ /�8�

• Run FFT evaluation for 3 � , … , 3(F�8�)

Claim: Setting �� = 3(F�8�)/� for each � gives the correct answer.

Proof: Then 3 F�8� = ∑ ](F�)789
B�; ⋅ F�8� �

= ∑ ∑ ��
789
^�; F� ^789

B�; ⋅ F�8� �

 = ∑ ��
789
^�;  ∑ F� B789

B�; ⋅ F8� �

= ∑ ��
789
^�;  ∑ F�8� �789

B�;
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(� log �)

Now F�8� is a solution to equation _7 − 1 = _ − 1 _789 + ⋯ + _ + 1 = 0

If � ≠ � then F�8� ≠ � so ∑ F�8� �789
B�; = � ; if � = � then ∑ F�8� �789

B�; = �


