
CSE 421

Introduction to Algorithms

Lecture 8: Divide and Conquer

1

Algorithm Design Techniques

Divide & Conquer

• Divide instance into subparts.

• Solve the parts recursively.

• Conquer by combining the answers

To truly fit Divide & Conquer

• each sub-part should be at most a constant fraction of the size of

the original input instance

• e.g. Mergesort, Binary Search, Quicksort (sort of), etc.

2

3

Binary search for roots (bisection method)

Given:

• Continuous function � and two points � < � with � � ≤ � and � � > �

Find:

• Approximation within 	 of
 s.t. �(
) = � and � <
 < �

4

Bisection method

Bisection(�, �,)

if (� − �) ≤ 	 then

return(�)

else {

 ←(� + �)/�

if �
 ≤ � then

return(Bisection(
, �,))

else

return(Bisection(�,
,))

}

5

Time Analysis

At each step we halved the size of the interval

• It started at size � − �

• It ended at size 	

So # of calls to � is log� ((� − �)/)

6

Old Favorites

Binary search:
• One subproblem of half size plus one comparison

• Recurrence* for time in terms of # of comparisons

• � � = � �/� + � for � ≥ �

• � � = �

• Solving shows that � � = log�� + �

Mergesort:
• Two subproblems of half size plus merge cost of � − � comparisons

• Recurrence* for time in terms of # of comparisons

• � � ≤ ��(�/�) + � − � for � ≥ �

• � � = �

• Roughly � comparisons at each of log� � levels of recursion so �(�) is roughly � log�
�

*We will implicitly assume that every input to �(⋅) is rounded up to the nearest integer.

7

Euclidean Closest Pair

Given:

• A sequence of � points ��, … , �� with real coordinates in � dimensions (ℝ�)

Find:

• A pair of points � , �! s.t. the Euclidean distance �(� , �!) is minimized

What is the first algorithm you can think of?

• Try all Θ(��) possible pairs

Can we do better if dimension � = � ?

Closest Pair in 1 Dimension

Algorithm:

• Sort points so �� ≤ �� ≤ ⋯ ≤ ��

• Find closest adjacent pair � , � $�.

Running time: %(� log �)

What about � = � ?

8

�� �� �&�� �' �(�)

Closest Pair in 2 Dimensions

9

No single direction to sort

points to guarantee success!

Let’s try divide & conquer…

How might we divide the points so

that each subpart is a constant

factor smaller?

Sorting on 1st coordinate

doesn’t work

Closest Pair in 2 Dimensions: Divide and Conquer

10

How might we divide the points so

that each subpart is a constant

factor smaller?

Split using median *-coordinate!

• each subpart has size �/�.

Conquer:

• Solve both size �/� subproblems

recursively

Recombine to get overall answer?

Take the closer of the two answers?

• works here but….

Closest Pair in 2 Dimensions: Divide and Conquer

11

How might we divide the points so

that each subpart is a constant

factor smaller?

Split using median *-coordinate!

• each subpart has size �/�.

Take the closer of the two answers?

• …but not always!

Closest pair

Conquer:

• Solve both size �/� subproblems

recursively

Recombine to get overall answer?

+
+

Closest Pair in 2 Dimensions: Divide and Conquer

12

Need to worry about pairs across

the split!

New idea to handle them

• Let + be the distance of the

closest pair in the 2 subparts

• This pair is a candidate

• Only need to check width + band

either side of the median

Within that band …

• only need to compare each point

with the other points in the

rectangle of height + above it.

How many points can that be?

+

+

+/�

+/�

+/�+/�+/�+/�

+

Closest Pair in 2 Dimensions: Divide and Conquer

13

How many points can there be in that + by �+ rectangle?

Key idea: We know that no pair on either side is closer

than + apart so there can’t be too many!

• Each of the 8 squares of side +/� can

contain at most 1 point!

• Because diagonal has length < +

• So….only need to compare each point with

the next 7 points above it to guarantee you’ll

find a partner closer than + in the rectangle

if there is one!

+

+

14

Closest Pair in 2 Dimensions: Divide and Conquer

Fleshing out the algorithm:

Divide:

• At top level we need median * coordinate to split points

• At next level down we’ll need median * coordinate for each side

• Might as well sort all points by * coordinate up front to get all medians at once!

Conquer: Solve the two sub-problems to get two candidate pairs

Recombine:

• Choose closer candidate pair and let its distance be +

• Select , = all points in band with * coordinates within + of median

• Sort , by - coordinate

• Compare each point in , with next . points and update if closer pair found.

%(� log �) total

over all calls

� �(�/�)

%(�)

%(� log �)

%(�)

%(�)

May involve repeated work for different calls

15

Closest Pair in 2 Dimensions: Divide and Conquer

Fleshing out the algorithm: A better version:

Preprocess: Compute sorted list / of points by * coordinate

• Subparts will be defined by two indices into this list

Compute sorted list 0 of points by - coordinate

Divide: Use median in / to get /1 and /2 and filter points of 0 to produce
sorted sublists 01 and 02

Conquer: Solve the two sub-problems to get two candidate pairs

Recombine:

• Choose closer candidate pair and let its distance be +

• Filter 0 to get , = points in band w/ * coordinates within + of median

• Compare each point in , with next . points and update if closer pair found.

%(� log �)

� �(�/�)

%(�)

%(�)

%(�)

%(�)

%(� log �)

Closest Pair in 2 Dimensions: Divide and Conquer

Total runtime = Preprocessing time + Divide and Conquer time

Let �(�) be Divide and Conquer time:

Recurrence:

• � � ≤ � �(�/�) + 3(�) for � ≥)

• �(�) = �

Solution: �(�) is 3(� log �).

With preprocessing, total runtime is 3(� log �).

16

17

Sometimes two sub-problems aren’t enough

More general divide and conquer

• You’ve broken the problem into � different sub-problems

• Each has size at most �/�

• The cost of break-up and recombining sub-problem solutions is %(�4)

• “cost at the top level”

Recurrence

• � � = ���(�/�) + %(�4) for � ≥ �

• � is constant for inputs < �.

• For solutions correct up to constant factors no need for exact base case

18

Solving Divide and Conquer Recurrence

Master Theorem: Suppose that � � = ���(�/�) + %(�4) for � > �.

• If � < �4 then �(�) is %(�4)

• Cost is dominated by work at top level of recursion

• If � = �4 then �(�) is %(�4 log �)

• Total cost is the same for all log� � levels of recursion

• If � > �4 then �(�) is %(�567� �)

• Note that log� � > 4 in this case

• Cost is dominated by total work at lowest level of recursion

Binary search: � = �, � = �, 4 = � so � = �4: Solution: % ��log � = %(log �)

Mergesort: � = �, � = �, 4 = � so � = �4: Solution: %(��log �) = %(� log �)

19

Proving Master Theorem for � � = � ⋅ � �/� +
 ⋅ ̇�4

�

problem size

� ≤ ��

�/� ≤ ��:�

�/�� ≤ ��:�

...

�/��:� ≤ �

�/�� ≤ �

Write � = log� � so � ≤ ��

of problems

�

�

��

...

��:�

��

level work/problem

�4

�4/�4

�4/��4

...

�4

�

20

Proving Master Theorem for � � = � ⋅ � �/� +
 ⋅ ̇�4

Write � = log� � so � ≤ ��

of problems

�

�

��

...

��:�

��

level work/problem

�4

�4/�4

�4/��4

...

�4

�

total work/level

�4

(�/�4) ⋅ �4

�/�4 �
⋅ �4

...

…

�567� �

If � < �4 sum of

geometric series with

biggest term %(�4)

If � = �4 sum of %(log �)

terms each %(�4)

If � > �4 sum of

geometric series with

biggest term %(�567� �)

total work

Claim: �567� � = �567� �

Proof: Take log� of both sides

