CSE 421Introduction to Algorithms

Lecture 8: Divide and Conquer

I EN SCHOOL

Algorithm Design Techniques

Divide & Conquer

- Divide instance into subparts.
- Solve the parts recursively.
- Conquer by combining the answers

To truly fit Divide & Conquer

- each sub-part should be at most a constant fraction of the size of the original input instance
	- e.g. Mergesort, Binary Search, Quicksort (sort of), etc.

Binary search for roots (bisection method)

Given:

• Continuous function f and two points $a < b$ with $f(a) \le 0$ and $f(b) > 0$

Find:

• Approximation within $\boldsymbol{\varepsilon}$ of \boldsymbol{c} s.t. $f(\boldsymbol{c}) = \boldsymbol{0}$ and $\boldsymbol{a} < \boldsymbol{c} < \boldsymbol{b}$

Bisection method

```
Bisection(<mark>a, b, ɛ</mark>)
 if (b - a) \leq \varepsilon then
       return(\boldsymbol{a})else {c \leftarrow (a + b)/2if f(c) \leq 0 then
              return(Bisection(c, b, ɛ))
      elsereturn(Bisection(a, c, ɛ))
}
```
Time Analysis

At each step we halved the size of the interval

- It started at size $\bm{b}-\bm{a}$
- \bullet It ended at size $\boldsymbol{\varepsilon}$

So # of calls to f is $\log_2\left((b-a)/\varepsilon \right)$

Old Favorites

Binary search:

- One subproblem of half size plus one comparison
- Recurrence* for time in terms of # of comparisons
	- $T(n) = T(n/2) + 1$ for $n \ge 2$
	- $T(1) = 0$
- Solving shows that $T(n) = \lceil \log_2 n \rceil + 1$

Mergesort:

- Two subproblems of half size plus merge cost of $n-1$ comparisons
- Recurrence* for time in terms of # of comparisons
	- $T(n) \leq 2T(n/2) + n 1$ for $n \geq 2$
	- $T(1) = 0$
- Roughly \bm{n} comparisons at each of $\log_2 \bm{n}$ levels of recursion so $\bm{T}(\bm{n})$ is roughly $\bm{n} \log_2 \bm{n}$

*We will implicitly assume that every input to $\boldsymbol{T}(\cdot)$ is $\,$ rounded up to the nearest integer.

Euclidean Closest Pair

Given:

• A sequence of \boldsymbol{n} points $\boldsymbol{p}_1,...,\boldsymbol{p}_n$ \pmb{n} $_n$ with real coordinates $% \mathcal{M}(n)$ in \boldsymbol{d} dimensions (\mathbb{R}^d $\binom{a}{ }$

Find:

• A pair of points $\boldsymbol{p_i}, \boldsymbol{p_j}$ s.t. the Euclidean distance $\boldsymbol{d}(\boldsymbol{p_i}, \boldsymbol{p_j})$ is minimized

What is the first algorithm you can think of?

• Try all $\Theta(\boldsymbol{n}^{\textbf{2}}$ ²) possible pairs

Can we do better if dimension $\bm{d}=\bm{1}$?

Closest Pair in 1 Dimension

Algorithm:

- Sort points so $\boldsymbol{p}_\mathbf{1}$ $1 \leq p_2 \leq \cdots \leq p_n$ \boldsymbol{n}
- Find closest adjacent pair $\boldsymbol{p}_{i\boldsymbol{\cdot}}\, \boldsymbol{p}_{i+1}$.

Running time: $O(n \log n)$

What about $\boldsymbol{d} = 2$?

Sorting on 1st coordinate doesn't work

- No single direction to sort points to guarantee success!
- Let's try divide & conquer…
- How might we divide the points so that each subpart is a constant factor smaller?

How might we divide the points so that each subpart is a constant factor smaller?

Split using median x -coordinate!

• each subpart has size $\bm{n}/\bm{2}.$

Conquer:

• Solve both size $n/2$ subproblems recursively

Recombine to get overall answer?

- Take the closer of the two answers?
	- •works here but….

How might we divide the points so that each subpart is a constant factor smaller?

Split using median x -coordinate!

• each subpart has size $\bm{n}/\bm{2}.$

Conquer:

• Solve both size $n/2$ subproblems recursively

Recombine to get overall answer?

- Take the closer of the two answers?
	- •…but not always!

Need to worry about pairs across the split!

New idea to handle them

- Let δ be the distance of the closest pair in the 2 subparts
- •This pair is a candidate
- Only need to check width $\boldsymbol{\delta}$ band •either side of the medianWithin that band …
	- only need to compare each point with the other points in the

rectangle of height δ above it. How many points can that be?

How many points can there be in that $\boldsymbol{\delta}$ by ${\bf 2} \boldsymbol{\delta}$ rectangle?

Key idea: We know that no pair on either side is closer than $\boldsymbol{\delta}$ apart so there can't be too many!

- •• Each of the 8 squares of side $\delta/2$ can contain at most 1 point!
	- •Because diagonal has length $< \delta$
- So….only need to compare each point with the next 7 points above it to guarantee you'll find a partner closer than $\boldsymbol{\delta}$ in the rectangle if there is one!

Fleshing out the algorithm:

Divide:

- At top level we need median \bm{x} coordinate to split points $\theta(n \log n)$ total
- At next level down we'll need median \bm{x} coordinate for each side
- Might as well sort all points by \pmb{x} coordinate up front to get all medians at once!

Conquer: Solve the two sub-problems to get two candidate pairs

Recombine:

- $\bullet\,$ Choose closer candidate pair and let its distance be $\boldsymbol{\delta}$ $\mathcal{O}(1)$
- Select \boldsymbol{B} = all points in band with x coordinates within $\boldsymbol{\delta}$ of median
- Sort B by y coordinate \lfloor May involve repeated work for different calls
- Compare each point in \bm{B} with next $\bm{7}$ points and update if closer pair found. $\bm{\mathit{O}}(\bm{n})$

over all calls

 $2T(n/2)$

 $O(n \log n)$

 $O(n)$

Fleshing out the algorithm: A better version:

Total runtime = Preprocessing time + Divide and Conquer time

Let $T(n)$ be Divide and Conquer time:

Recurrence:

- $T(n) \leq 2 T(n/2) + O(n)$ for $n \geq 3$
- $T(2) = 1$

Solution: $\bm{T}(\bm{n})$ is $\bm{O}(\bm{n} \log \bm{n}).$

With preprocessing, total runtime is $\bm{O}(\bm{n} \log \bm{n})$.

Sometimes two sub-problems aren't enough

More general divide and conquer

- You've broken the problem into \boldsymbol{a} different sub-problems
- Each has size at most \bm{n}/\bm{b}
- The cost of break-up and recombining sub-problem solutions is $O(\bm{n^k})$
	- "cost at the top level"

Recurrence

- $T(n) = a \cdot T(n/b) + O(n^k)$ for $n \ge b$
- T is constant for inputs $< b$.
	- For solutions correct up to constant factors no need for exact base case

Solving Divide and Conquer Recurrence

Master Theorem: Suppose that $\bm{T}(\bm{n}) = \bm{a}\!\cdot\!\bm{T}(\bm{n}/\bm{b}) + O(\bm{n}^{\bm{k}})$ $\binom{k}{0}$ for $n > b$.

- If $a < b^k$ then $\bm{T}(\bm{n})$ is $O(\bm{n}^k)$
	- Cost is dominated by work at top level of recursion
- If $\boldsymbol{a} = \boldsymbol{b^k}$ then $\boldsymbol{T}(\boldsymbol{n})$ is $O(\boldsymbol{n^k}\log \boldsymbol{n})$
	- Total cost is the same for all $\log_b n$ levels of recursion
- If $a > b^k$ then $\bm{T}(\bm{n})$ is $O(\bm{n}^{\log_{\bm{b}}\bm{a}})$ $\binom{a}{ }$
	- Note that $\log_{\boldsymbol{b}}\boldsymbol{a} > \boldsymbol{k}$ in this case
	- Cost is dominated by total work at lowest level of recursion

Binary search: $\bm{a} = \bm{1}$, $\bm{b} = \bm{2}$, $\bm{k} = \bm{0}$ so $\bm{a} = \bm{b}^{\bm{k}}$: Solution: $\mathit{O}\big(\bm{n^0} \text{log} \, \bm{n}\big) = \mathit{O}(\text{log} \, \bm{n})$

Mergesort: $a = 2$, $b = 2$, $k = 1$ so $a = b^k$: Solution: $O(n^1 \log n) = O(n \log n)$

Proving Master Theorem for $T(n) = a \cdot T(n/b) + c \cdot n^k$

Write $\boldsymbol{d} = \lceil \log_{\boldsymbol{b}} \boldsymbol{n} \rceil$ so $\boldsymbol{n} \leq \boldsymbol{b^d}$

Proving Master Theorem for $T(n) = a \cdot T(n/b) + c \cdot n^k$

Write $\boldsymbol{d} = \lceil \log_{\boldsymbol{b}} \boldsymbol{n} \rceil$ so $\boldsymbol{n} \leq \boldsymbol{b^d}$

total work

If $\boldsymbol{a} < \boldsymbol{b}^{\boldsymbol{k}}$ sum of geometric series with biggest term $\mathit{O}(\bm{n^k})$ $\binom{k}{k}$

If $\boldsymbol{a} = \boldsymbol{b}^{\boldsymbol{k}}$ sum of $O(\log n)$ terms each $O(n^{\bm{k}}$ $\binom{k}{k}$

If $a > b^k$ sum of geometric series with biggest term $O(\boldsymbol{a}^{\log_{\boldsymbol{b}}\boldsymbol{n}})$

Claim: $a^{\log_b n} = n^{\log_b a}$ **Proof:** Take $\log_{\bm{b}}$ of both sides