
CSE 421

Introduction to Algorithms

Lecture 8:  Divide and Conquer

1



Algorithm Design Techniques

Divide & Conquer

• Divide instance into subparts.

• Solve the parts recursively.

• Conquer by combining the answers

To truly fit Divide & Conquer 

• each sub-part should be at most a constant fraction of the size of 

the original input instance

• e.g. Mergesort, Binary Search, Quicksort (sort of), etc.
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Binary search for roots (bisection method)

Given:

• Continuous function � and two points � < � with � � ≤ � and � � > �

Find:

• Approximation within 	 of 
 s.t. �(
) = � and � < 
 < �
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Bisection method

Bisection(�, �, 	)

if (� − �) ≤ 	 then  

return(�)

else {


 ←(� + �)/�

if  � 
 ≤ � then

return(Bisection(
, �, 	))

else

return(Bisection(�, 
, 	))

}
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Time Analysis

At each step we halved the size of the interval

• It started at size � − � 

• It ended at size 	

So # of calls to � is log� ((� − �)/	)
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Old Favorites

Binary search:
• One subproblem of half size plus one comparison

• Recurrence* for time in terms of # of comparisons

• � � = � �/� + � for � ≥ �

• � � = �

• Solving shows that � � = log�� + �

Mergesort:
• Two subproblems of half size plus merge cost of � − � comparisons 

• Recurrence* for time in terms of # of comparisons

• � � ≤ ��(�/�) + � − � for � ≥ �

• � � = �

• Roughly � comparisons at each of log� � levels of recursion so �(�) is roughly � log� 
�

*We will implicitly assume that every input to �(⋅) is  rounded up to the nearest integer.
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Euclidean Closest Pair

Given:

• A sequence of � points ��, … , �� with real coordinates  in � dimensions (ℝ�)

Find: 

• A pair of points � , �! s.t. the Euclidean distance �(� , �!) is minimized

What is the first algorithm you can think of?  

• Try all Θ(��) possible pairs

Can we do better if dimension � = � ?



Closest Pair in 1 Dimension

Algorithm:

• Sort points so �� ≤ �� ≤ ⋯ ≤ ��

• Find closest adjacent pair � , � $�.

Running time: %(� log �)

What about  � = � ?

8

�� �� �&�� �' �(�)



Closest Pair in 2 Dimensions
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No single direction to sort 

points to guarantee success! 

Let’s try divide & conquer…

How might we divide the points so 

that each subpart is a constant 

factor smaller?

Sorting on 1st coordinate 

doesn’t work



Closest Pair in 2 Dimensions: Divide and Conquer 
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How might we divide the points so 

that each subpart is a constant 

factor smaller?

Split using median *-coordinate!

• each subpart has size �/�.

Conquer:

• Solve both size �/� subproblems 

recursively

Recombine to get overall answer?

Take the closer of the two answers?

• works here but….



Closest Pair in 2 Dimensions: Divide and Conquer 
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How might we divide the points so 

that each subpart is a constant 

factor smaller?

Split using median *-coordinate!

• each subpart has size �/�.

Take the closer of the two answers?

• …but not always!

Closest  pair

Conquer:

• Solve both size �/� subproblems 

recursively

Recombine to get overall answer?



+
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Closest Pair in 2 Dimensions: Divide and Conquer 
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Need to worry about pairs across 

the split!

New idea to handle them

• Let + be the distance of the 

closest pair in the 2 subparts

• This pair is a candidate

• Only need to check width + band 

either side of the median

Within that band …

• only need to compare each point 

with the other points in the 

rectangle of height + above it.

How many points can that be?

+

+
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Closest Pair in 2 Dimensions: Divide and Conquer 
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How many points can there be in that + by �+ rectangle?

Key idea: We know that no pair on either side is closer 

than + apart so there can’t be too many!

• Each of the 8 squares of side +/� can 

contain at most 1 point! 

• Because diagonal has length < +

• So….only need to compare each point with 

the next 7 points above it to guarantee you’ll 

find a partner closer than + in the rectangle 

if there is one!

+

+
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Closest Pair in 2 Dimensions: Divide and Conquer

Fleshing out the algorithm:

Divide:

• At top level we need median * coordinate to split points

• At next level down we’ll need median * coordinate for each side

• Might as well sort all points by * coordinate up front to get all medians at once!

Conquer: Solve the two sub-problems to get two candidate pairs

Recombine:

• Choose closer candidate pair and let its distance be +

• Select , = all points in band with * coordinates within + of median

• Sort , by - coordinate

• Compare each point in , with next . points and update if closer pair found.

%(� log �) total 

over all calls

� �(�/�)

%(�)

%(� log �)

%(�)

%(�)

May involve repeated work for different calls
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Closest Pair in 2 Dimensions: Divide and Conquer

Fleshing out the algorithm: A better version: 

Preprocess: Compute sorted list / of points by * coordinate

• Subparts will be defined by two indices into this list

Compute sorted list 0 of points by - coordinate

Divide: Use median in / to get /1 and /2 and filter points of 0 to produce 
sorted sublists 01 and 02

Conquer: Solve the two sub-problems to get two candidate pairs

Recombine:

• Choose closer candidate pair and let its distance be +

• Filter 0 to get , = points in band w/ * coordinates within + of median

• Compare each point in , with next . points and update if closer pair found.

%(� log �)

� �(�/�)

%(�)

%(�)

%(�)

%(�)

%(� log �)



Closest Pair in 2 Dimensions: Divide and Conquer

Total runtime = Preprocessing time + Divide and Conquer time

Let �(�) be Divide and Conquer time:

Recurrence:

• � � ≤  � �(�/�)  + 3(�) for � ≥ )

• �(�) = �

Solution: �(�) is 3(� log �).

With preprocessing, total runtime is 3(� log �).

16



17

Sometimes two sub-problems aren’t enough

More general divide and conquer

• You’ve broken the problem into � different sub-problems

• Each has size at most �/�

• The cost of break-up and recombining sub-problem solutions is %(�4)

• “cost at the top level”

Recurrence

• � � = ���(�/�) + %(�4) for � ≥ �

• � is constant for inputs < �.  

• For solutions correct up to constant factors no need for exact base case
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Solving Divide and Conquer Recurrence

Master Theorem: Suppose that � � = ���(�/�) + %(�4) for � > �.

• If � < �4 then �(�) is %(�4)

• Cost is dominated by work at top level of recursion

• If � = �4 then �(�) is %(�4 log �)

• Total cost is the same for all log� � levels of recursion

• If � > �4 then �(�) is %(�567� �)

• Note that log� � > 4 in this case

• Cost is dominated by total work at lowest level of recursion 

Binary search: � = �, � = �, 4 = � so � = �4: Solution:  % ��log � = %(log �)

Mergesort: � = �, � = �, 4 = � so � = �4: Solution:  %(��log �) = %(� log �)
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Proving Master Theorem for � � = � ⋅ � �/� + 
 ⋅ ̇�4

�

problem size

� ≤ ��

�/�  ≤ ��:�

�/�� ≤ ��:�

...

�/��:� ≤  �

�/��      ≤ �

Write � = log� �  so � ≤ ��

# of problems

�

�

��

...

��:�

��

level work/problem

�4

�4/�4

�4/��4

...

�4

�
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Proving Master Theorem for � � = � ⋅ � �/� + 
 ⋅ ̇�4

Write � = log� �  so � ≤ ��

# of problems

�

�

��

...

��:�

��

level work/problem

�4

�4/�4

�4/��4

...

�4

�

total work/level

�4

(�/�4) ⋅ �4

�/�4 �
⋅ �4

...

…

�567� �

If � < �4 sum of 

geometric series with 

biggest term %(�4)

If � = �4 sum of %(log �) 

terms each %(�4)

If � > �4 sum of 

geometric series with 

biggest term %(�567� �)

total work

Claim: �567� � = �567� �

Proof: Take log� of both sides


