CSE 421
Introduction to Algorithms

Lecture 8: Divide and Conquer

Algorithm Design Techniques

Divide & Conquer
* Divide instance into subparts.
 Solve the parts recursively.
e Conquer by combining the answers

To truly fit Divide & Conquer

e each sub-part should be at most a constant fraction of the size of
the original input instance

* e.g. Mergesort, Binary Search, Quicksort (sort of), etc.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Binary search for roots (bisection method)

Vo

Given:
* Continuous function f and two points a < b with f(a) < 0and f(b) > 0

Find:
e Approximation withingof cs.t. f(c) =0anda<c<b

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bisection method

Bisection(a, b, &)

if (b —a) < ethen
return(a)

else {
c—(a+b)/2
if f(c) < 0then

return(Bisection(c, b, €))
else
return(Bisection(a, c, €))

}

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Time Analysis

At each step we halved the size of the interval
* |t started at size b — a

* |t ended at size £

So#ofcallsto fislog, ((b—a)/¢)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Old Favorites

Binary search:
* One subproblem of half size plus one comparison

* Recurrence* for time in terms of # of comparisons
/j° Tn) =Tn/2)+1forn > 2
e T(1)=0
* Solving shows that T(n) = [log,n| + 1

Mergesort:

* Two subproblems of half size plus merge cost of n — 1 comparisons
* Recurrence* for time in terms of # of comparisons

 T(n) <2T(n/2)+n—1forn=> 2

e T(1)=0

* Roughly n comparisons at each of log, n levels of recursion so T(n) is roughly n log, n

*We will implicitly assume that every input to T(+) is rounded up to the nearest integer.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Euclidean Closest Pair

Given:
* A sequence of n points p,, ..., p,, with real coordinates in d dimensions (RY)

Find:
* A pair of points p;, p; s.t. the Euclidean distance d(p;, p;) is minimized

What is the first algorithm you can think of?
* Try all ©(n?) possible pairs

Can we do better if dimensiond = 1 7?

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Closest Pair in 1 Dimension

P1 D: P2 P3 P4 Ps Ps
Algorithm:

* Sort pointssop; < p, < - < p,
* Find closest adjacent pair p;, Pi1-

Running time: O (nlogn)

What about d = 2 ?

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Closest Pair in 2 Dimensions
o

i - -
PY Sorting on 1°* coordinate
Q_‘/ doesn’t work

® ® No single direction to sort
® points to guarantee success!

® Let’s try divide & conquer...

) How might we divide the points so
@) that each subpart is a constant
® factor smaller?

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Closest Pair in 2 Dimensions: Divide and Conquer

How might we divide the points so
Py that each subpart is a constant
factor smaller?

o) ° Split using median x-coordinate!
* each subpart has size n/2.

® Conquer:
e Solve both size n/2 subproblems
® recursively
Recombine to get overall answer?

[Take the closer of the two answers?
o « works here but....

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Closest Pair in 2 Dimensions: Divide and Conquer

How might we divide the points so
Py that each subpart is a constant
factor smaller?

o) ° Split using median x-coordinate!
* each subpart has size n/2.

® Conquer:
e Solve both size n/2 subproblems
recursively
Recombine to get overall answer?

Closest pair o Take the closer of the two answers?

e ...but not always!

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Closest Pair in 2 Dimensions: Divide and Conquer

Need to worry about pairs across
51| 6 Py the split!
New idea to handle them

e Let 6 be the distance of the
closest pair in the 2 subparts
® * This pair is a candidate
® ° Onlyneed to check width § band
o either side of the median
) ® o Within that band ...
® * only need to compare each point
°® | with the other points in the
o rectangle of height d above it.
How many points can that be?

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Closest Pair in 2 Dimensions: Divide and Conquer

How many points can there be in that d by 28 rectangle?

Key idea: We know that no pair on either side is closer
than & apart so there can’t be too many!

e Each of the 8 squares of side §/2 can
5 6/2 contain at most 1 point!
5/2 * Because diagonal has length < &
 So.. vy need to compare each point with
6/2 6/2 |8/2 6/2 thie péxt 7 points above it to guarantee you’ll
fi rtner closer than 6 in the rectangle

if there is one!

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Closest Pair in 2 Dimensions: Divide and Conquer

Fleshing out the algorithm:

Divide:
* At top level we need median x coordinate to split points O(nlogn) total
* At next level down we’ll need median x coordinate for each side over all calls

* Might as well sort all points by x coordinate up front to get all medians at once!

Conquer: Solve the two sub-problems to get two candidate pairs 2T(n/2)
Recombine:

* Choose closer candidate pair and let its distance be & 0(1)

* Select B = all points in band with x coordinates within 6 of median o(n) v

* Sort B by y coordinate | May involve repeated work for different calls O(n]og n)(

* Compare each point in B with next 7 points and update if closer pair found. O(n) —

PAUL G. ALLEN SCHOOL 14

OF COMPUTER SCIENCE & ENGINEERING

Closest Pair in 2 Dimensions: Divide and Conquer

Fleshing out the algorithm: A better version:

Preprocess: Compute sorted list X of points by x coordinate O(nlogn)y—

* Subparts will be defined by two indices into this list o

Compute sorted list Y of points by y coordinate O(nlogn)

Divide: Use median in X to get X; and Xy and filter points of Y to produce 0(n)
sorted sublists ¥; and Y

Conquer: Solve the two sub-problems to get two candidate pairs 2T(n/2)
Recombine:
* Choose closer candidate pair and let its distance be é 0(1)

* Filter Y to get B = points in band w/ x coordinates within & of median 0(n)
e Compare each pointin B with next 7 points and update if closer pair found. O(n)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Closest Pair in 2 Dimensions: Divide and Conquer

Total runtime = Preprocessing time + Divide and Conquer time

Let T(n) be Divide and Conquer time:

Recurrence:
eTn) < 2T(n/2) + 0(n) forn >3
cT(2)=1

Solution: T(n) is O(n logn).

With preprocessing, total runtime is O (n logn).

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Sometimes two sub-problems aren’t enough

£ le_
More general divide and conquer Tl &T(m/’ﬁ F CIA

* You’'ve broken the problem into a different sub-problems

e Each has size at most n/b

* The cost of break-up and recombining sub-problem solutions is 0 (%)
e “cost at the top level”

Recurrence
T(n) =aTn/b)+0m)forn=>b
* T is constant for inputs < b.
* For solutions correct up to constant factors no need for exact base case

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Solving Divide and Conquer Recurrence

Master Theorem: Suppose that T(n) = a-T(n/b) + 0 (nk) forn > b.
* If a < b*then T(n) is O(nk)

e Cost is dominated by work at top level of recursion

>+ Ifa=Dbkthen T(n)is O(n*logn) <

* Total cost is the same for all logy, n levels of recuxsion

« Ifa > b¥then T(n) is 0(n'°8» @) =

S Note that log, a > kin this case

e Cost is dominated by total work at lowest level offecursion

Binary search:a =1, b = 2, k = 0 so a = b*: Solution: 0(n’logn) = 0(logn)
— L -
Mergesort:a=2,b=2,k=1soa = b" Solution: O(n'logn) = 0(nlogn)

J

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Proving Master Theorem for T(n) = a- T(n/b) +c\-';%;
Write d = [log, n] son < b

problem size # of problems level work/problem

n < bd -- @ e 1 nk
(— a L4 - * \) r
< .0 . 7 /@ =
L4] *
‘n/b < bd_l -- P S— “ .. a B nk/bk
~_
@ KA KA
o ’0‘ o ’0‘
2 -2 - . -
n/b? < b2 . O @ @ @ a®* ____ nk/pZk
RIMRR RIMRR
e .O. . "0‘ .O. . "0‘
L 4 ~ * L 4 ™ * _
n/bd—l S b @ [Y— @i T I— ad 1 ~ bk
RIRX RIRX
d S S, d
n/b <1 [Y S— 0 SO S S— 7 Y— a/ /’—"’[1

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Proving Master Theorem for T(n) = a-T(n/b) + c -'nk

Write d = [log, n] son < b total Wof@
2 If a < b*'Sdm of

of problems level work/problem total work/level geometric series with

1 nk Q/(/ e nk biggest term 0 (n¥)
If a = b* sum of O(logn)
a k /pk ky . 2k
n"/b (a/b%) - m terms each O (n")
2
a’ nk /p2k (a/b*)” - n* If a > b* sum of
geometric series with
a1 bk biggest term O (a'°8b ™

Claim: al°8p ™
sides

a® 1 Proof: Take log, o

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

