CSE 421 Introduction to Algorithms

Lecture 8: Divide and Conquer

W PAUL G. ALLEN SCHOOL of computer science & engineering

Algorithm Design Techniques

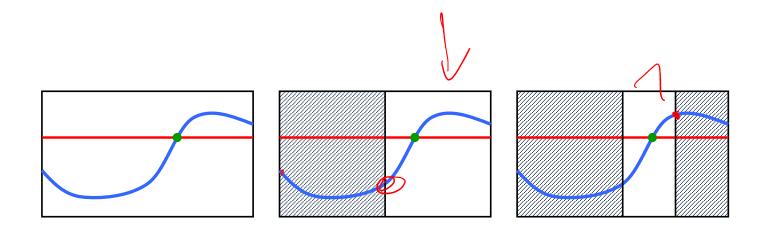
Divide & Conquer

- Divide instance into subparts.
- Solve the parts recursively.
- Conquer by combining the answers

To truly fit Divide & Conquer

- each sub-part should be at most a constant fraction of the size of the original input instance
 - e.g. Mergesort, Binary Search, Quicksort (sort of), etc.

Binary search for roots (bisection method)



Given:

• Continuous function f and two points a < b with $f(a) \le 0$ and f(b) > 0

Find:

• Approximation within ε of c s.t. f(c) = 0 and a < c < b

Bisection method

```
Bisection(a, b, ɛ)
   if (b - a) \leq \varepsilon then
        return(a)
   else {
        c \leftarrow (a+b)/2
       if f(c) \leq 0 then
              return(Bisection(c, b, ɛ))
        else
            return(Bisection(a, c, ɛ))
   }
```

Time Analysis

At each step we halved the size of the interval

- It started at size b a
- It ended at size *ɛ*

So # of calls to **f** is $\log_2((b-a)/\epsilon)$

Old Favorites

Binary search:

- One subproblem of half size plus one comparison
- Recurrence* for time in terms of # of comparisons

```
• T(n) = T(n/2) + 1 for n \ge 2
```

- T(1) = 0
- Solving shows that $T(n) = \lceil \log_2 n \rceil + 1$

Mergesort:

- Two subproblems of half size plus merge cost of n-1 comparisons
- Recurrence* for time in terms of # of comparisons
 - $T(n) \le 2T(n/2) + n 1$ for $n \ge 2$
 - T(1) = 0
- Roughly *n* comparisons at each of $\log_2 n$ levels of recursion so T(n) is roughly $n \log_2 n$

*We will implicitly assume that every input to $T(\cdot)$ is rounded up to the nearest integer.

Euclidean Closest Pair

Given:

• A sequence of *n* points p_1, \dots, p_n with real coordinates in *d* dimensions (\mathbb{R}^d)

Find:

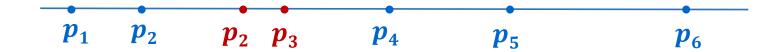
• A pair of points p_i, p_j s.t. the Euclidean distance $d(p_i, p_j)$ is minimized

What is the first algorithm you can think of?

• Try all $\Theta(n^2)$ possible pairs

Can we do better if dimension d = 1?

Closest Pair in 1 Dimension

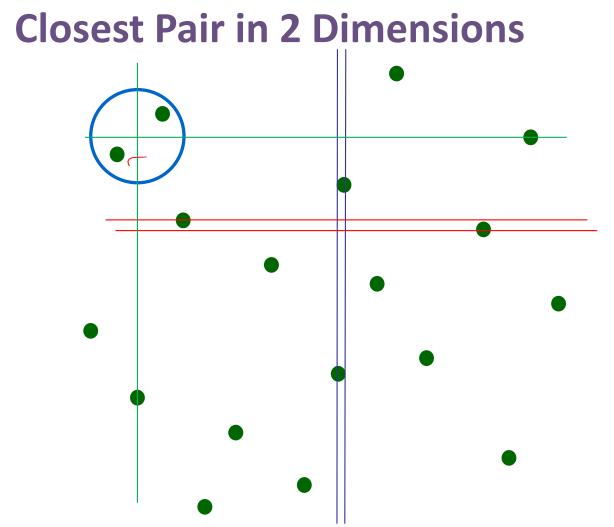


Algorithm:

- Sort points so $p_1 \leq p_2 \leq \cdots \leq p_n$
- Find closest adjacent pair p_i, p_{i+1} .

Running time: $O(n \log n)$

What about d = 2?

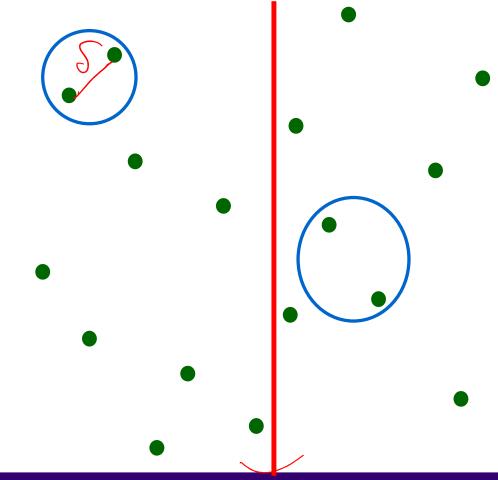


Sorting on 1st coordinate doesn't work

No single direction to sort points to guarantee success!

Let's try divide & conquer...

How might we divide the points so that each subpart is a constant factor smaller?



How might we divide the points so that each subpart is a constant factor smaller?

Split using median *x*-coordinate!

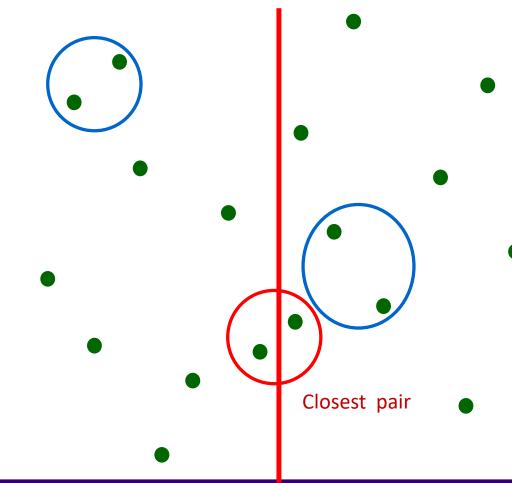
• each subpart has size n/2.

Conquer:

Solve both size n/2 subproblems recursively

Recombine to get overall answer?

- Take the closer of the two answers?
 - works here but....



How might we divide the points so that each subpart is a constant factor smaller?

Split using median *x*-coordinate!

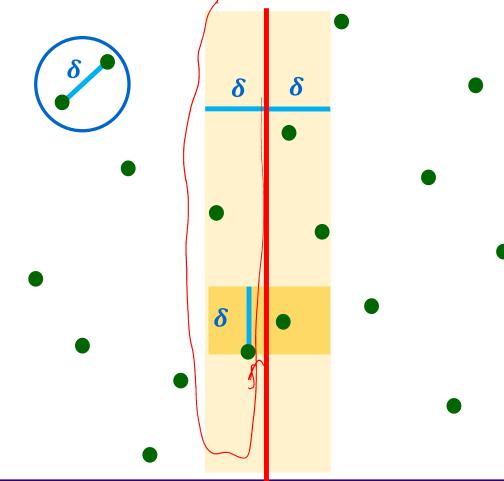
• each subpart has size n/2.

Conquer:

• Solve both size n/2 subproblems recursively

Recombine to get overall answer?

- Take the closer of the two answers?
 - ...but not always!

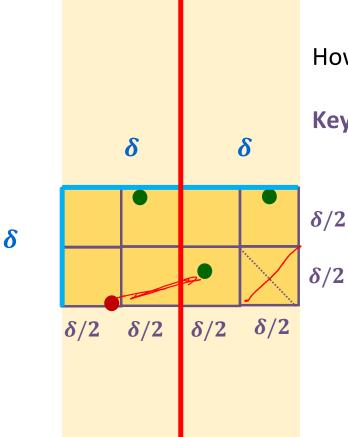


Need to worry about pairs across the split!

New idea to handle them

- Let δ be the distance of the closest pair in the 2 subparts
- This pair is a candidate
- Only need to check width δ band either side of the median Within that band ...
 - only need to compare each point with the other points in the

rectangle of height δ above it. How many points can that be?



How many points can there be in that δ by 2δ rectangle?

Key idea: We know that no pair on either side is closer than δ apart so there can't be too many!

- Each of the 8 squares of side δ/2 can contain at most 1 point!
 - Because diagonal has length $< \delta$
- So....only need to compare each point with the next 7 points above it to guarantee you'll find a partner closer than δ in the rectangle if there is one!

Fleshing out the algorithm:

Divide:

- At top level we need median x coordinate to split points $O(n \log n)$ total
- At next level down we'll need median x coordinate for each side
- Might as well sort all points by *x* coordinate up front to get all medians at once!

<u>Conquer:</u> Solve the two sub-problems to get two candidate pairs

Recombine:

- Choose closer candidate pair and let its distance be δ
- Select **B** = all points in band with x coordinates within δ of median
- Sort *B* by *y* coordinate May involve repeated work for different calls
- Compare each point in B with next 7 points and update if closer pair found. $O(n) \sim$

over all calls

2T(n/2)

0(1)

 $0(\mathbf{n}) \sim$

 $O(\boldsymbol{n} \log \boldsymbol{n})$

Fleshing out the algorithm: A better version:

 <u>Preprocess</u>: Compute sorted list X of points by x coordinate Subparts will be defined by two indices into this list 	0(n log n)
Compute sorted list Y of points by y coordinate	$0(\mathbf{n}\log\mathbf{n})$
<u>Divide</u> : Use median in X to get X_L and X_R and filter points of Y to produce sorted sublists Y_L and Y_R	$O(\mathbf{n})$
<u>Conquer:</u> Solve the two sub-problems to get two candidate pairs	2T(n/2)
 <u>Recombine:</u> Choose closer candidate pair and let its distance be δ Filter Y to get B = points in band w/ x coordinates within δ of median 	$ \begin{array}{c} 0(1)\\ 0(\mathbf{n})\\ \end{array} $
• Compare each point in B with next 7 points and update if closer pair found. $O(n)$	

Total runtime = Preprocessing time + Divide and Conquer time

Let T(n) be Divide and Conquer time:

Recurrence:

- $T(n) \le 2 T(n/2) + O(n)$ for $n \ge 3$
- T(2) = 1

Solution: T(n) is $O(n \log n)$.

With preprocessing, total runtime is $O(n \log n)$.

Sometimes two sub-problems aren't enough

More general divide and conquer

- You've broken the problem into a different sub-problems
- Each has size at most n/b
- The cost of break-up and recombining sub-problem solutions is $O(n^k)$
 - "cost at the top level"

Recurrence

- $T(n) = a \cdot T(n/b) + O(n^k)$ for $n \ge b$
- **T** is constant for inputs < **b**.
 - For solutions correct up to constant factors no need for exact base case

 $T(n) = aT(n/b) + cn^{k}$

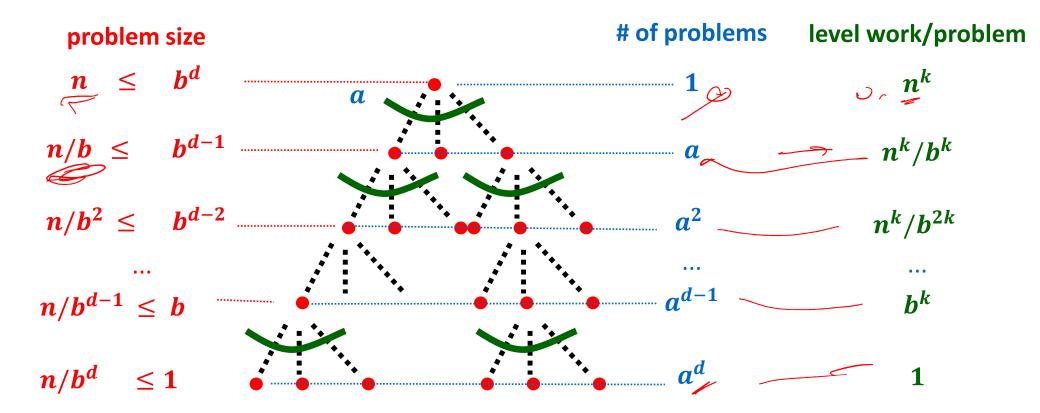
Solving Divide and Conquer Recurrence

Master Theorem: Suppose that $T(n) = a \cdot T(n/b) + O(n^k)$ for n > b.

- If $a < b^k$ then T(n) is $O(n^k)$
 - Cost is dominated by work at top level of recursion
- If $a = b^k$ then T(n) is $O(n^k \log n)$
 - Total cost is the same for all $\log_b n$ levels of recursion
 - If $a > b^k$ then T(n) is $O(n^{\log_b a})$
 - Note that $\log_b a > k$ in this case
 - Cost is dominated by total work at lowest level of recursion

Binary search: a = 1, b = 2, k = 0 so $a = b^k$: Solution: $O(n^0 \log n) = O(\log n)$ Mergesort: a = 2, b = 2, k = 1 so $a = b^k$: Solution: $O(n^1 \log n) = O(n \log n)$

Proving Master Theorem for $T(n) = a \cdot T(n/b) + c \cdot n^k$ Write $d = [\log_b n]$ so $n \le b^d$



Proving Master Theorem for $T(n) = a \cdot T(n/b) + c \cdot n^k$

total work Write $d = [\log_b n]$ so $n \le b^d$ If $a < b^k$ sum of **# of problems** level work/problem total work/level geometric series with $\begin{array}{c} Q / (p^{k} n^{k}) \\ (a/b^{k}) \cdot n^{k} \\ (a/b^{k})^{2} \cdot n^{k} \end{array}$ biggest term $O(n^k)$ n^k 1 If $a = b^k$ sum of $O(\log n)$ n^k/b^k a terms each $O(n^k)$ a^2 n^k/b^{2k} If $a > b^k$ sum of geometric series with biggest term $O(a^{\log_b n})$ a^{d-1} **b**^k Claim: $a^{\log_b n} \neq n^{\log_b a}$ $a^{\log_b n}$ a^d **Proof:** Take log_b of both sides 1