CSE 421 Introduction to Algorithms

Lecture 7: Minimum Spanning Trees Prim, Kruskal and more

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's

Structural: Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

Exchange argument: Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.

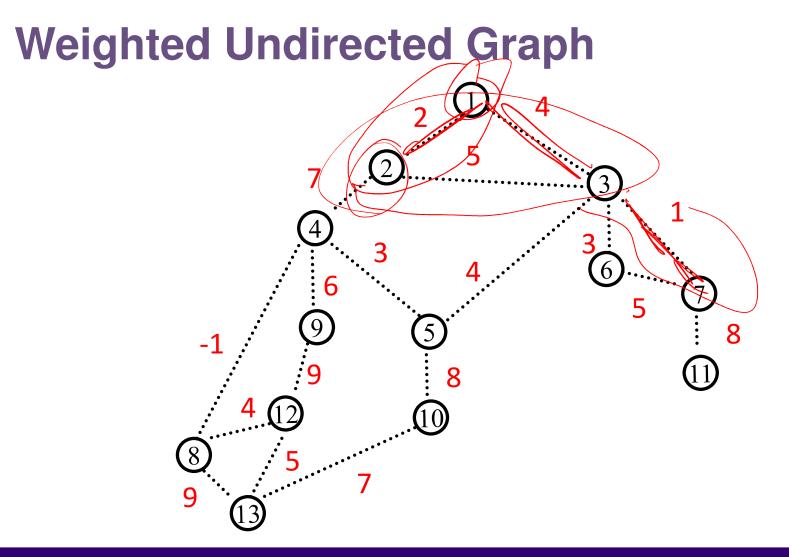
Minimum Spanning Trees (Forests)

Given: an undirected graph G = (V, E) with each edge *e* having a weight w(e)

Find: a subgraph **T** of **G** of minimum total weight s.t. every pair of vertices connected in **G** are also connected in **T**

If **G** is connected then **T** is a tree

• Otherwise, **T** is still a forest



Greedy Algorithm

Prim's Algorithm:

- start at a vertex s
- add the cheapest edge adjacent to s
- repeatedly add the cheapest edge that joins the vertices explored so far to the rest of the graph

Exactly like Dijsktra's Algorithm but with a different objective

Dijsktra's Algorithm

```
Dijkstra(G,w,s)

S \leftarrow \{s\}

d[s] \leftarrow 0

while S \neq V {

among all edges e = (u, v) s.t. v \notin S and u \in S select* one with the minimum value of d[u] + w(e)

S \leftarrow S \cup \{v\}

d[v] \leftarrow d[u] + w(e)

pred[v] \leftarrow u

}
```

*For each $v \notin S$ maintain d'[v] = minimum value of d[u] + w(e)over all vertices $u \in S$ s.t. e = (u, v) is in G

Prim's Algorithm

```
Prim(G,w,s)

S \leftarrow \{s\}

while S \neq V {

among all edges e = (u, v) s.t. v \notin S and u \in S select* one with the minimum value of w(e)

S \leftarrow S \cup \{v\}

pred[v] \leftarrow u

}
```

*For each $v \notin S$ maintain small[v] = minimum value of w(e)over all vertices $u \in S$ s.t. e = (u, v) is in G

Second Greedy Algorithm

Kruskal's Algorithm:

- Start with the vertices and no edges
- Repeatedly add the cheapest edge that joins two different components.
 - i.e. cheapest edge that doesn't create a cycle

Proving Greedy MST Algorithms Correct

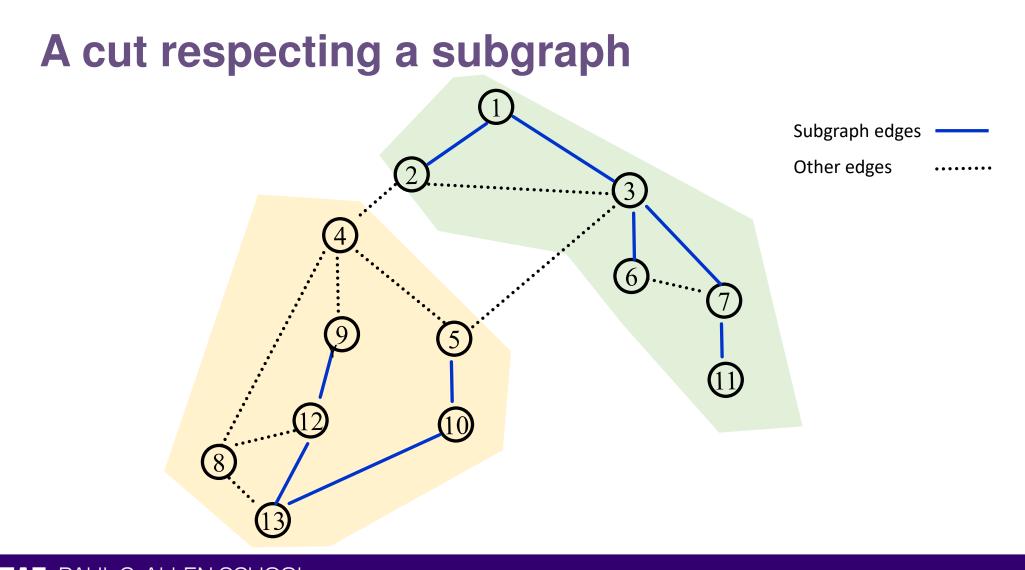
Instead of specialized proofs for each one we'll have one unified argument ...

Cuts

Defn: Given a graph G = (V, E), a cut of G is a partition of V into two non-empty pieces, S and $V \setminus S$. We write this cut as $(S, V \setminus S)$.

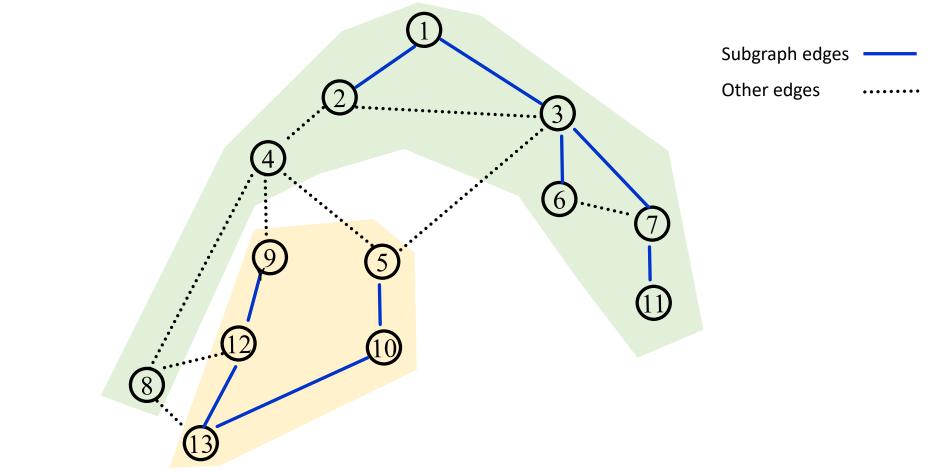
Defn: Edge *e* crosses cut $(S, V \setminus S)$ iff one endpoint of *e* is in *S* and the other is in $V \setminus S$

Defn: Given a graph G = (V, E), and a subgraph G' of G we say that a cut $(S, V \setminus S)$ respects G' iff no edge of G' crosses $(S, V \setminus S)$



PAUL G. ALLEN SCHOOL of computer science & engineering

Another cut respecting the subgraph



PAUL G. ALLEN SCHOOL of computer science & engineering

Generic Greedy MST Algorithms and Safe Edges

Greedy algorithms for MST build up the tree/forest edge-by-edge as follows:

 $T \leftarrow \emptyset$ while (*T* isn't spanning) Sufe for the spanning of the spanni choose* some "best" edge e (that won't create a cycle) $T \leftarrow T \cup \{e\}$

Defn: An edge *e* of *G* is called **safe** for *T* iff there is *some* cut $(S, V \setminus S)$ that respects *T* s.t *e* is a *cheapest* edge crossing $(S, V \setminus S)$

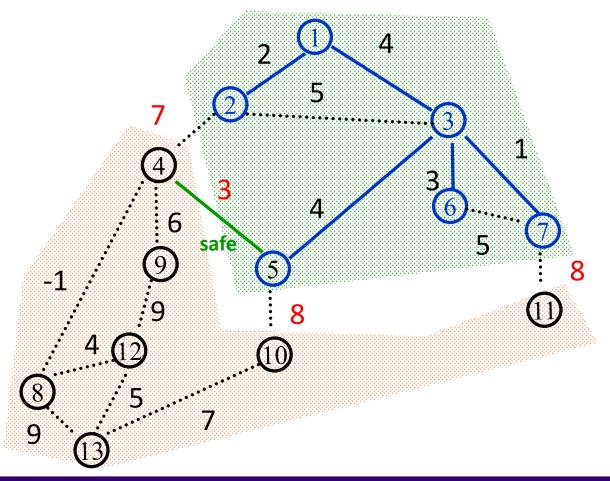
Theorem: Any greedy algorithm that always chooses* an edge *e* that is safe for *T* correctly computes an MST

Greedy algorithms: Choose safe edges that don't create cycles

Prim's Algorithm:

- Always chooses cheapest edge from current tree to rest of the graph
- This is cheapest edge across a cut that has all the vertices of current tree on one side.

Prim's Algorithm

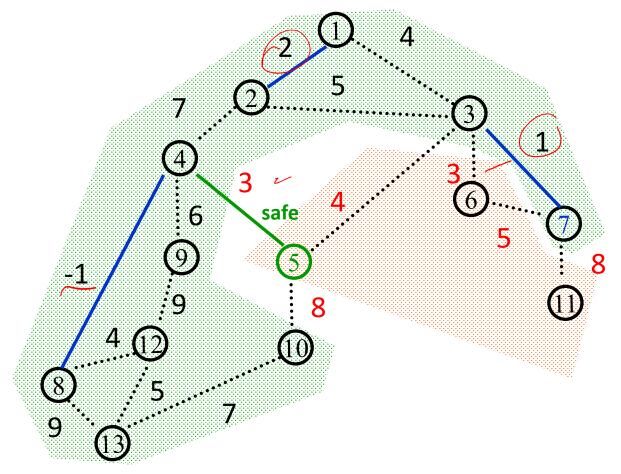


Greedy algorithms: Choose safe edges that don't create cycles

Kruskal's Algorithm:

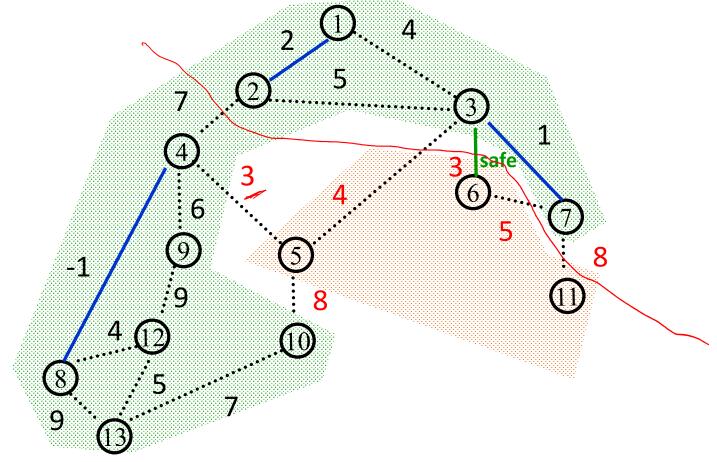
- Always choose cheapest edge connecting two pieces of the graph that aren't yet connected
- This is the cheapest edge across any cut that has those two pieces on different sides and doesn't split any other current pieces (respects the cut).

Kruskal's Algorithm

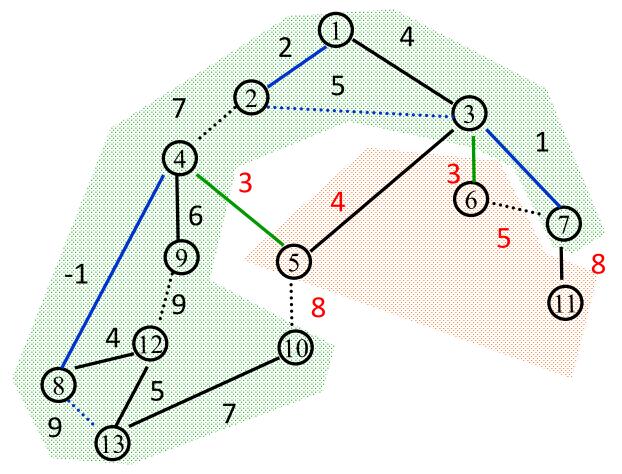


W PAUL G. ALLEN SCHOOL of computer science & engineering

Kruskal's Algorithm



Kruskal's Algorithm



PAUL G. ALLEN SCHOOL of computer science & engineering

Generic Greedy MST Algorithms and Safe Edges

Defn: An edge *e* of *G* is called **safe** for *T* iff there is *some* cut $(S, V \setminus S)$ that respects *T* s.t *e* is a *cheapest* edge crossing $(S, V \setminus S)$

Theorem: Any greedy algorithm that always chooses* an edge *e* that is safe for *T* correctly computes an MST

Proof: We prove via induction and an exchange argument that at every step, the subgraph T is contained in some MST of G.

<u>Base Case</u>: $T = \emptyset$. This is trivially true since \emptyset is contained in every set.

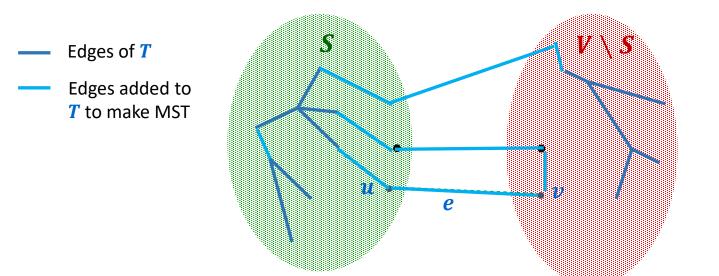
<u>IH</u>: Suppose that T is contained in some MST of G.

<u>IS</u>: We need to show that if e is safe for T then $T \cup \{e\}$ is contained in an MST of G.

Proof of Lemma: An Exchange Argument

<u>IS</u>: *e* is a safe edge for *T* so *e* must be a cheapest edge crossing some cut $(S, V \setminus S)$ respecting *T*

By IH, *T* is contained in an MST. If this MST contains e = (u, v) we're done. Otherwise, this MST must contain a path from *u* to *v*.



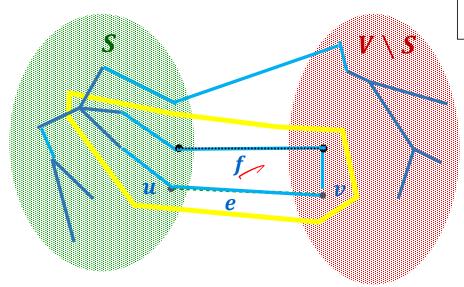
Proof of Lemma: An Exchange Argument

<u>IS</u>: *e* is a safe edge for *T* so *e* must be a cheapest edge crossing some cut $(S, V \setminus S)$ respecting *T*

By IH, T is contained in an MST. If this MST contains e = (u, v) we're done.

Otherwise, this MST must contain a path from \boldsymbol{u} to \boldsymbol{v} .

Edges added to
 T to make MST



This must contain some edge *f* crossing the cut.

Since e was cheapest $w(e) \le w(f)$

Exchange e for f to get a new spanning subgraph that is at least as cheap and contains $T \cup \{e\}$.

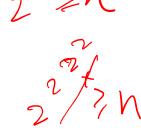
Kruskal's Algorithm: Implementation & Analysis

- First sort the edges by weight $O(m \log m)$
- Go through edges from smallest to largest
 - if endpoints of edge *e* are currently in different components
 - then add to the graph
 - else skip

Union-Find data structure handles test for different components

• Total cost of union find: $O(m \cdot \alpha(n))$ where $\alpha(n) \ll \log m$

Overall $O(m \log m)$ which is $O(m \log n)$



Union-Find disjoint sets data structure

Maintaining components

- start with *n* different components
 - one per vertex
- find components of the two endpoints of *e*
 - 2*m* finds
- union two components when edge connecting them is added
 - *n* 1 unions

Prim's Algorithm with Priority Queues

- For each vertex *u* not in tree maintain current cheapest edge from tree to *u*
 - Store \boldsymbol{u} in priority queue with key = weight of this edge
- Operations:
 - *n* 1 insertions (each vertex added once)
 - *n* 1 delete-mins (each vertex deleted once)
 - pick the vertex of smallest key, remove it from the p.q. and add its edge to the graph
 - < m decrease-keys (each edge updates one vertex)

Prim's Algorithm with Priority Queues

Priority queue implementations: same complexity as Dijkstra

- Array
 - insert 0(1), delete-min 0(n), decrease-key 0(1)
 - total $0(n + n^2 + m) = 0(n^2)$
- Heap
 - insert, delete-min, decrease-key all O(log n)
 - total *O*(*m* log *n*)
- *d*-Heap (*d* = *m/n*)
- **m** insert, decrease-key $O(\log_{m/n} n)$
- n-1 delete-min $O((m/n)\log_{m/n} n)$
 - total $O(m \log_{m/n} n)$

Worse if $m = \Theta(n^2)$

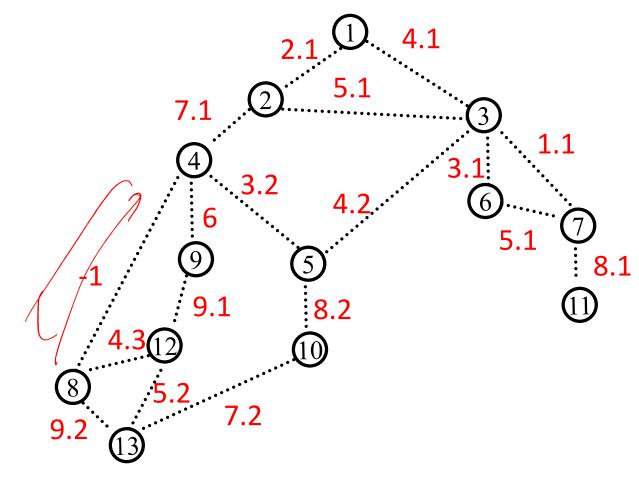
Better for all values of *m*

Boruvka's Algorithm (1927)

- A bit like Kruskal's Algorithm
 - Start with n components consisting of a single vertex each
 - At each step:
 - Each component chooses to add its cheapest outgoing edge
 - Two components may choose to add the same edge
 - Need to add a tiebreaker on edge weights (no equal weights) to avoid cycles

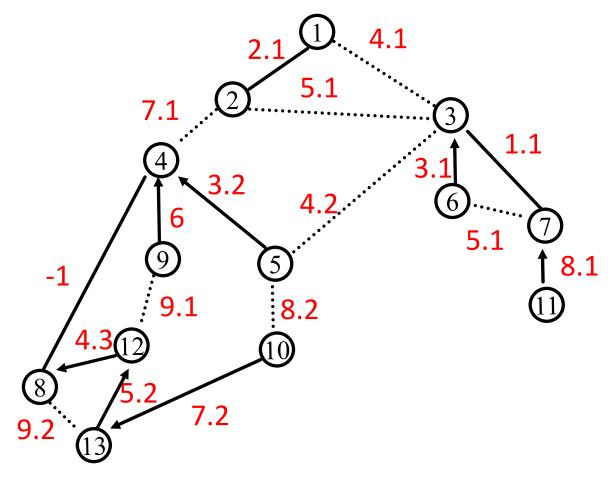
Useful for parallel algorithms since components may be processed (almost) independently

Boruvka



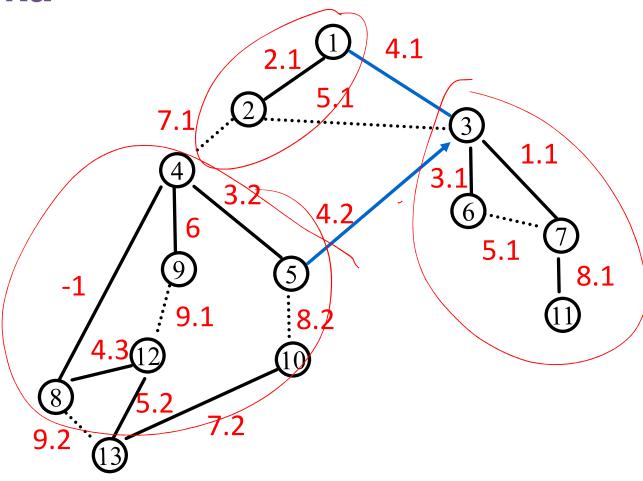
PAUL G. ALLEN SCHOOL of computer science & engineering

Boruvka



PAUL G. ALLEN SCHOOL of computer science & engineering

Boruvka



W PAUL G. ALLEN SCHOOL of computer science & engineering

Many other minimum spanning tree algorithms, most of them greedy

Cheriton & Tarjan

- Use a queue of components
 - Component at head chooses cheapest outgoing edge
 - New merged component goes to tail of the queue.
- *O*(*m* loglog *n*) time

Chazelle

- $O(\boldsymbol{m} \cdot \boldsymbol{\alpha}(\boldsymbol{m}) \cdot \log(\boldsymbol{\alpha}(\boldsymbol{m})))$ time
 - Incredibly hairy algorithm

Karger, Klein & Tarjan

• O(m + n) time randomized algorithm that works most of the time

Applications of Minimum Spanning Tree Algorithms

MST is a fundamental problem with diverse applications

- Network design
 - telephone, electrical, hydraulic, TV cable, computer, road
- Approximation algorithms
 - travelling salesperson problem, Steiner tree
- Indirect applications
 - max bottleneck paths
 - LDPC codes for error correction
 - image registration with Renyi entropy
 - reducing data storage in sequencing amino acids
 - model locality of particle interactions in turbulent fluid flows
 - autoconfig protocol for Ethernet bridging to avoid network cycles
- Clustering

Applications of Minimum Spanning Tree Algorithms

Minimum cost network design:

- Build a network to connect all locations $\{v_1, \dots, v_n\}$
- Cost of connecting v_i to v_j is $w(v_i, v_j) > 0$.
- Choose a collection of links to create that will be as cheap as possible
- Any minimum cost solution is an MST
 - If there is a solution containing a cycle then we can remove any edge and get a cheaper solution

Applications of Minimum Spanning Tree Algorithms

Maximum Spacing Clustering:

Given:

- Collection U of n points $\{p_1, \dots, p_n\}$
- Distance measure $d(p_i, p_j)$ satisfying
 - Zero base: $d(p_i, p_i) = 0$
 - Nonnegativity: $d(p_i, p_j) \ge 0$ for $i \ne j$
 - Symmetry: $d(p_i, p_j) = d(p_j, p_i)$
- Positive integer $k \leq n$

Find: a *k*-clustering, i.e. partition of *U* into *k* clusters $C_1, ..., C_k$, s.t. the spacing between the clusters is as large possible where spacing = min{ $d(p_i, p_j)$: p_i and p_j are in different clusters}

Greedy Algorithm for Maximum Spacing Clustering

- Start with n clusters each consisting of a single point
- Repeat until only k clusters remain
 - find the closest pair of points in different clusters under distance d
 - merge their clusters

Gets the same components as Kruskal's Algorithm does if we stop early!

- The sequence of closest pairs is exactly the MST
- Alternatively...
 - we could run any MST algorithm once and for any k we could get the maximum spacing k-clustering by deleting the k - 1 most expensive edges in the MST

Proof that this works

• Removing the k - 1 most expensive edges from an MST yields k components C_1, \ldots, C_k and the spacing for them is precisely the cost d^* of the $k - 1^{st}$ most expensive edge in the tree

 C'_s

- Consider any other k-clustering C'_1, C'_2, \dots, C'_k
 - There is some pair of points p_i, p_j s.t. p_i, p_j are in some cluster C_r but p_i, p_j are in different clusters C'_s and C'_t

< **d***

 p_i

pi

 C_r

- Since both are in C_r, points p_i and p_j are joined by a path with each hop of distance at most d*
- This path must have some *adjacent* pair in different clusters of $C'_1, C'_2, ..., C'_k$ so the spacing of $C'_1, C'_2, ..., C'_k$ must be at most d^*

 C_t'