
CSE 421

Introduction to Algorithms

Lecture 7: Minimum Spanning Trees

Prim, Kruskal and more

1

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy

algorithm, its solution is at least as good as any other algorithm's

Structural: Discover a simple "structural" bound asserting that every possible

solution must have a certain value. Then show that your algorithm always

achieves this bound.

Exchange argument: Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.

2

3

Minimum Spanning Trees (Forests)

Given: an undirected graph � = (�, �) with each edge 	 having a weight
()

Find: a subgraph � of � of minimum total weight s.t.

every pair of vertices connected in � are also connected in �

If � is connected then � is a tree

• Otherwise, � is still a forest

3

Weighted Undirected Graph

4

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
7

9

8

5

Greedy Algorithm

Prim’s Algorithm:

• start at a vertex �

• add the cheapest edge adjacent to �

• repeatedly add the cheapest edge that joins the vertices

explored so far to the rest of the graph

Exactly like Dijsktra’s Algorithm but with a different objective

5

6

Dijsktra’s Algorithm

Dijkstra(�,
,�)

 ← {�}

�[�] ← �

while �� {

among all edges 	 = (�, �) s.t. �� and �� select* one with the minimum value of �[�] +
()
 ← ∪ �

�[�] ←� � +
 	

��	�[�]←�

}

*For each �� maintain �’ � = minimum value of �[�] +
()
over all vertices �� s.t. 	 = (�, �) is in �

7

Prim’s Algorithm

Prim(�,
,�)

 ← {�}

�[�] ← �

while �� {

among all edges 	 = (�, �) s.t. �� and �� select* one with the minimum value of
()
 ← ∪ �

�[�] ←� � +
 	

��	�[�]←�

}

*For each �� maintain ����� � = minimum value of
()
over all vertices �� s.t. 	 = (�, �) is in �

8

Second Greedy Algorithm

Kruskal’s Algorithm:

• Start with the vertices and no edges

• Repeatedly add the cheapest edge that joins two different components.

• i.e. cheapest edge that doesn’t create a cycle

8

Proving Greedy MST Algorithms Correct

Instead of specialized proofs for each one we’ll have one
unified argument ...

9

10

Cuts

Defn: Given a graph � = (�, �), a cut of � is a partition of � into two non-empty

pieces, and � ∖ .

We write this cut as , � ∖ .

Defn: Edge 	 crosses cut , � ∖ iff one endpoint of 	 is in
and the other is in � ∖

Defn: Given a graph � = (�, �), and a subgraph �′ of � we say that a cut

, � ∖ respects �′ iff no edge of �′ crosses , � ∖

10

11

A cut respecting a subgraph

11

Subgraph edges

Other edges

12

Another cut respecting the subgraph

12

Subgraph edges

Other edges

13

Generic Greedy MST Algorithms and Safe Edges

Greedy algorithms for MST build up the tree/forest edge-by-edge as follows:

� ← ∅

while (� isn’t spanning)

choose* some “best” edge 	 (that won’t create a cycle)

� ← � ∪ {	}

Defn: An edge 	 of � is called safe for �
iff there is some cut , � ∖ that respects �

s.t 	 is a cheapest edge crossing , � ∖

Theorem: Any greedy algorithm that always chooses* an edge 	 that is safe for �
correctly computes an MST

13

14

Greedy algorithms: Choose safe edges that don’t create cycles

Prim’s Algorithm:

• Always chooses cheapest edge from current tree to rest of the graph

• This is cheapest edge across a cut that has all the vertices of current tree on one
side.

14

15

Prim’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
7

9

8

safe

15

16

Greedy algorithms: Choose safe edges that don’t create cycles

Kruskal’s Algorithm:

• Always choose cheapest edge connecting two pieces of the graph that aren’t yet

connected

• This is the cheapest edge across any cut that has those two pieces on different

sides and doesn’t split any other current pieces (respects the cut).

16

17

Kruskal’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
7

9

8

safe

17

18

Kruskal’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
7

9

8

safe

18

19

Kruskal’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
7

9

8

19

20

Generic Greedy MST Algorithms and Safe Edges

Defn: An edge 	 of � is called safe for �
iff there is some cut , � ∖ that respects �

s.t 	 is a cheapest edge crossing , � ∖

Theorem: Any greedy algorithm that always chooses* an edge 	 that is safe for �
correctly computes an MST

Proof: We prove via induction and an exchange argument that at every step,

the subgraph � is contained in some MST of �.

Base Case: � = ∅. This is trivially true since ∅ is contained in every set.

IH: Suppose that � is contained in some MST of �.

IS: We need to show that if 	 is safe for � then � ∪ {	} is contained

in an MST of �.

20

� ∖

IS: 	 is a safe edge for � so 	 must be a cheapest edge crossing some cut
(, � ∖) respecting �

By IH, � is contained in an MST. If this MST contains 	 = (�, �) we’re done.

Otherwise, this MST must contain a path from � to �.

Proof of Lemma: An Exchange Argument

21

	
� �

Edges of �

Edges added to

� to make MST

21

IS: 	 is a safe edge for � so 	 must be a cheapest edge crossing some cut
(, � ∖) respecting �

By IH, � is contained in an MST. If this MST contains 	 = (�, �) we’re done.

Otherwise, this MST must contain a path from � to �.

Proof of Lemma: An Exchange Argument

22

	
� �

 � ∖ Edges of �

Edges added to

� to make MST

This must contain some

edge ! crossing the cut.

!

Since 	 was cheapest

 	 ≤
(!)

Exchange 	 for ! to get a

new spanning subgraph

that is at least as cheap

and contains � ∪ {	}.

22

23

Kruskal’s Algorithm: Implementation & Analysis

• First sort the edges by weight #(� log �)

• Go through edges from smallest to largest

• if endpoints of edge 	 are currently in different components

• then add to the graph

• else skip

Union-Find data structure handles test for different components

• Total cost of union find: #(� ⋅ (())) where () ≪ log �

Overall #(� log �) which is #(� log))

23

24

Union-Find disjoint sets data structure

Maintaining components

• start with) different components

• one per vertex

• find components of the two endpoints of 	

• +� finds

• union two components when edge connecting them is added

•) − - unions

24

25

Prim’s Algorithm with Priority Queues

• For each vertex � not in tree maintain current cheapest edge

from tree to �

• Store � in priority queue with key = weight of this edge

• Operations:

•) − - insertions (each vertex added once)

•) − - delete-mins (each vertex deleted once)

• pick the vertex of smallest key, remove it from the p.q. and add its

edge to the graph

• < � decrease-keys (each edge updates one vertex)

25

26

Prim’s Algorithm with Priority Queues

Priority queue implementations: same complexity as Dijkstra

• Array

• insert #(-), delete-min #()), decrease-key #(-)

• total #() +)+ + �) = #()2)

• Heap

• insert, delete-min, decrease-key all #(log))

• total #(� log))

• �-Heap (� = �/))

• insert, decrease-key #(log�/)))

• delete-min #((�/))log�/)))

• total #(� log�/)))

Worse if � = 1()+)

Better for all values of �

�

) − -

27

Boruvka’s Algorithm (1927)

A bit like Kruskal’s Algorithm

• Start with) components consisting of a single vertex each

• At each step:

• Each component chooses to add its cheapest outgoing edge

• Two components may choose to add the same edge

• Need to add a tiebreaker on edge weights (no equal weights)

to avoid cycles

Useful for parallel algorithms since components may be processed

(almost) independently

27

28

Boruvka

2.1

7.1

-1

4.2
3.2

4.1

5.1

1.1
3.1

5.1
8.1

6

9.1
4.3

5.2
7.2

9.2

8.2

28

29

Boruvka

2.1

7.1

-1

4.2
3.2

4.1

5.1

1.1
3.1

5.1
8.1

6

9.1
4.3

5.2
7.2

9.2

8.2

29

30

Boruvka

2.1

7.1

-1

4.2
3.2

4.1

5.1

1.1
3.1

5.1
8.1

6

9.1
4.3

5.2
7.2

9.2

8.2

30

31

Many other minimum spanning tree algorithms, most of them greedy

Cheriton & Tarjan

• Use a queue of components

• Component at head chooses cheapest outgoing edge

• New merged component goes to tail of the queue.

• #(� loglog)) time

Chazelle

• #(� ⋅ (� ⋅ log (((�))) time

• Incredibly hairy algorithm

Karger, Klein & Tarjan

• #(� +)) time randomized algorithm that works most of the time

31

Applications of Minimum Spanning Tree Algorithms

MST is a fundamental problem with diverse applications

• Network design

• telephone, electrical, hydraulic, TV cable, computer, road

• Approximation algorithms

• travelling salesperson problem, Steiner tree

• Indirect applications

• max bottleneck paths

• LDPC codes for error correction

• image registration with Renyi entropy

• reducing data storage in sequencing amino acids

• model locality of particle interactions in turbulent fluid flows

• autoconfig protocol for Ethernet bridging to avoid network cycles

• Clustering

32

33

Applications of Minimum Spanning Tree Algorithms

Minimum cost network design:

• Build a network to connect all locations {�-, … , �)}

• Cost of connecting �3 to �4 is
 �3, �4 > 0.

• Choose a collection of links to create that will be as cheap as possible

• Any minimum cost solution is an MST

• If there is a solution containing a cycle then we can remove any

edge and get a cheaper solution

33

34

Applications of Minimum Spanning Tree Algorithms

Maximum Spacing Clustering:
Given:

• Collection 8 of) points {�-, … , �)}

• Distance measure �(�3, �4) satisfying

• Zero base: � �3, �3 = �

• Nonnegativity: � �3, �4 ≥ � for 3 ≠ 4

• Symmetry: � �3, �4 = �(�4, �3)

• Positive integer ; ≤)

Find: a ;-clustering, i.e. partition of 8 into ; clusters <-, … , <;, s.t.

the spacing between the clusters is as large possible where

spacing = min{�(�3, �4): �3 and �4 are in different clusters}

34

35

Greedy Algorithm for Maximum Spacing Clustering

• Start with) clusters each consisting of a single point

• Repeat until only ; clusters remain

• find the closest pair of points in different clusters under distance �

• merge their clusters

Gets the same components as Kruskal’s Algorithm does if we stop early!

• The sequence of closest pairs is exactly the MST

• Alternatively...

• we could run any MST algorithm once and for any ; we could get the

maximum spacing ;-clustering by deleting the ; − - most expensive

edges in the MST

35

• Removing the ; − - most expensive edges from an MST yields ; components

<-, … , <; and the spacing for them is precisely the cost �∗ of the ; − -st most

expensive edge in the tree

• Consider any other ;-clustering <-
> , <+

> , … , <;
>

• There is some pair of points �3, �4 s.t. �3, �4 are in some cluster <� but �3, �4

are in different clusters <�
> and <?

>

• Since both are in <�, points �3 and �4 are joined by a path with each hop of

distance at most �∗

• This path must have some adjacent pair in different clusters of <-
> , <+

> , … , <;
>

so the spacing of <-
> , <+

> , … , <;
> must be at most �∗

<?
><�

>

<�

�4�3

36

Proof that this works

≤ �∗ ≤ �∗≤ �∗

36

