
CSE 421

Introduction to Algorithms

Lecture 6: More Greedy Algorithms

1

Last time: Greedy Algorithms

Hard to define exactly but can give general properties

• Solution is built in small steps

• Decisions on how to build the solution are made to
maximize some criterion without looking to the future

• Want the ‘best’ current partial solution as if the current step were the
last step

May be more than one greedy algorithm using different criteria to
solve a given problem

• Not obvious which criteria will actually work

2

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy

algorithm, its solution is at least as good as any other algorithm's

• Example: Interval Scheduling analysis

Structural: Discover a simple "structural" bound asserting that every possible

solution must have a certain value. Then show that your algorithm always

achieves this bound.

• Example: Interval Partitioning analysis

Exchange argument: Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.

3

Scheduling to Minimize Lateness

Scheduling to minimize lateness:

• Single resource as in interval scheduling but, instead of start and finish times,

request � has

• Time requirement �� which must be scheduled in a contiguous block

• Target deadline �� by which time the request would like to be finished

• Overall start time � for all jobs

Requests are scheduled by the algorithm into time intervals [��, ��] s.t. �� = �� − ��

• Lateness of schedule for request � is

• If �� > �� then request � is late by � = �� − �� ; otherwise its lateness � = �

• Maximum lateness = max� �

Goal: Find a schedule for all requests (values of �� and �� for each request �) to

minimize the maximum lateness, .

4

Scheduling to Minimizing Lateness

• Example:

5

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2 max lateness = 6

6

Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order of
processing time ��.

[Earliest deadline first] Consider jobs in ascending order of deadline ��.

[Smallest slack] Consider jobs in ascending order of slack �� − ��.

7

Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order of
processing time ��.

[Smallest slack] Consider jobs in ascending order of slack �� − ��.

counterexample
dj

tj

2

1

1

10

10

2

counterexample

dj

tj

100

1

1

10

10

2 Will schedule 1 (length 1) before 2 (length 10).

2 can only be scheduled at time 1

1 will finish at time 11 >10. Lateness 1.

Lateness 0 possible If 1 goes last.

Will schedule 2 (slack 0) before 1 (slack 1).

1 can only be scheduled at time 10

1 will finish at time 11 >10. Lateness 9.

Lateness 1 possible if 1 goes first.

8

Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Earliest deadline first] Consider jobs in ascending order of deadline ��.

Greedy Algorithm: Earliest Deadline First

Consider requests in increasing order of deadlines

Schedule the request with the earliest deadline as soon as the resource is available

9

Minimizing Lateness: Greedy EDF Algorithm

• Greedy Earliest Deadline First (EDF).

10

Sort deadlines in increasing order (�� ≤ �� ≤ ⋯ ≤ ��)

� ← �

for � ←←←← � to � {

�� ←←←←�

�� ←←←← �� + ��

� ←←←← ��

}

Scheduling to Minimizing Lateness

• Example:

11

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2 max lateness = 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Original Schedule

EDF Schedule

12

Proof for Greedy EDF Algorithm: Exchange Argument

Show that if there is another schedule O (think optimal schedule)

then we can gradually change O so that…

• at each step the maximum lateness in O never gets worse

• it eventually becomes the same cost as A

This means that A is at least as good as O, so A is also optimal!

13

Minimizing Lateness: No Idle Time

Observation: There exists an optimal schedule with no idle time

Observation: The greedy EDF schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12At least as good

Defn: An inversion in schedule � is a pair of jobs � and �
such that �� < �� but � is scheduled before �.

Observation: Greedy EDF schedule has no inversions.

Observation: If schedule � (with no idle time) has an inversion

it has two adjacent jobs that are inverted

• Any job in between would be inverted w.r.t. one of the two ends

14

Minimizing Lateness: Inversions

ij

inversion�� ��

Defn: An inversion in schedule � is a pair of jobs � and �
such that �� < �� but � is scheduled before �.

Claim: Swapping two adjacent, inverted jobs

• reduces the # of inversions by �

• does not increase the max lateness.

15

Minimizing Lateness: Inversions

ij

i j

before swap

after swap

�′�

��
inversion�� ��

��
�

Defn: An inversion in schedule � is a pair of jobs � and �
such that �� < �� but � is scheduled before �.

Claim: Maximum lateness does not increase

16

Minimizing Lateness: Inversions

ij

i j

before swap

after swap

��
�

��

��
�

��

�� ��

old lateness �

new lateness �
�

17

Optimal schedules and inversions

Claim: There is an optimal schedule with no idle time and no inversions

Proof:

By previous argument there is an optimal schedule O with no idle time

If O has an inversion then it has an adjacent pair of requests in its schedule

that are inverted and can be swapped without increasing lateness

… we just need to show one more claim that eventually this swapping stops

18

Optimal schedules and inversions

Claim: Eventually these swaps will produce an optimal schedule with no inversions.

Proof:

Each swap decreases the # of inversions by �

There are a bounded # of inversions possible in the worst case

• at most �(� − �)/� but we only care that this is finite.

The # of inversions can’t be negative so this must stop.

19

Idleness and Inversions are the only issue

Claim: All schedules with no inversions and no idle time have the same maximum

lateness.

Proof:

Schedules can differ only in how they order requests with equal deadlines

Consider all requests having some common deadline �.

• Maximum lateness of these jobs is based only on finish time of the last one …

and the set of these requests occupies the same time segment in both schedules.

⇒ The last of these requests finishes at the same time in any such schedule.

20

Earliest Deadline First is optimal

We know that

• There is an optimal schedule with no idle time or inversions

• All schedules with no idle time or inversions have the same maximum lateness

• EDF produces a schedule with no idle time or inversions

So …

• EDF produces an optimal schedule

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy

algorithm, its solution is at least as good as any other algorithm's

Structural: Discover a simple "structural" bound asserting that every possible

solution must have a certain value. Then show that your algorithm always

achieves this bound.

Exchange argument: Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.

21

Interval Scheduling: Exchange Argument

Theorem: Greedy (by-finish-time) algorithm produces an optimal solution

Proof: Consider the first request (in the sequence order) chosen by that other

algorithm O that doesn’t include a compatible request with the earliest finish time.

Replace that request by the one with the earliest finish time.

22

a!+1

. . .o!+1o1 o2 o!O:

a!+1 . . .o1 o2 o!O’:

Repeat at most � times to get greedy schedule. # of requests is at least as good.

23

Single-source shortest paths

Given: an (un)directed graph " = (#, $) with each edge %
having a non-negative weight &(%) and a vertex �

Find: (length of) shortest paths from � to each vertex in "

24

A Greedy Algorithm

Dijkstra’s Algorithm:
• Maintain a set � of vertices whose shortest paths are known

• initially � = {�}

• Maintaining current best lengths of paths that only go through � to
each of the vertices in "

• path-lengths to elements of � will be right, to # ∖ � they might
not be right

• Repeatedly add vertex * to � that has the shortest path-length of
any vertex in # ∖ �

• update path lengths based on new paths through *

25

Dijsktra’s Algorithm

Dijkstra(",&,ssss)

� ← {�}

�[�] ← �

while ��# {

among all edges % = (+, *) s.t. *�� and +�� select* one with the minimum value of �[+] + &(%)
� ← � ∪ *

�[*] ←� + + & %

-.%�[*]←+

}

*For each *�� maintain �’ * = minimum value of �[+] + &(%)
over all vertices +�� s.t. % = (+, *) is in "

26

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Add to �

27

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Update distances

28

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Add to �

29

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Update distances

30

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Add to �

31

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Update distances

32

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Add to �

33

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Update distances

34

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Add to S

35

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Update distances

36

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Add to �

37

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Update distances

38

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Add to �

39

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Update distances

40

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Add to �

41

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8
Update

distances

42

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Add to �

43

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Update distances

44

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8Add to �

45

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8Update

distances

46

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Add to �

47

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Update

distances

48

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Add to �

49

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Update distances

50

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
2

10

8

Add to �

Dijkstra’s Algorithm Correctness

51

Suppose that all distances to vertices in � are correct

and * has smallest current value ��[*] in # ∖ �

Since * was smallest, �’ * ≤ �’[0]

0-* path length ≥≥≥≥ 0

⇒ ��[*] = length of shortest path from � to * with only last edge leaving �

�

*

0
� Suppose some other path 1 to *.

Let 0 = 1st vertex on this path not in �

⇒ length of 1 is at least �’[*]

Therefore adding * to � maintains that all distances inside � are correct

∖ �

edge

52

Dijkstra’s Algorithm

• Algorithm also produces a tree of shortest paths to *
following the inverse of -.%� links

• From * follow its ancestors in the tree back to � reversing edges
along the path

• If all you care about is the shortest path from � to *
simply stop the algorithm when * is added to �

53

Dijsktra’s Algorithm

Dijkstra(",&,ssss)

� ← {�}

�[�] ← �

while ��# {

among all edges % = (+, *) s.t. *�� and +�� select* one with the minimum value of �[+] + &(%)
� ← � ∪ *

�[*] ←� + + & %

-.%�[*]←+

}

*For each *�� maintain �’ * = minimum value of �[+] + &(%)
over all vertices +�� s.t. % = (+, *) is in "

Implementing Dijkstra’s Algorithm

Need to

• keep current distance values �’ ⋅ for nodes in # ∖ �

• find minimum current distance value �’ *

• reduce distances in �’ ⋅ when vertex * moved to �

54

55

Data Structure Review

Priority Queue:

• Elements each with an associated key

• Operations

• Insert

• Find-min

• Return the element with the smallest key

• Delete-min

• Return the element with the smallest key and delete it from the data structure

• Decrease-key

• Decrease the key value of some element

Implementations

• Arrays: 3(�) time find/delete-min, 3(�) time insert/decrease-key

• Heaps: 3(log �) time insert/decrease-key/delete-min, 3(�) time find-min

56

Dijkstra’s Algorithm with Priority Queues

• For each vertex * not in tree maintain cost ��[*] of current
cheapest path through tree to *

• Store * in priority queue with key = length of this path

• Operations:

• � − � insertions (each vertex added once)

• � − � delete-mins (each vertex deleted once)

• pick the vertex of smallest key, remove it from the priority
queue and add its edge to the graph

• < 7 decrease-keys (each edge updates one vertex)

57

Dijskstra’s Algorithm with Priority Queues

Priority queue implementations

• Array

• insert 3(�), delete-min 3(�), decrease-key 3(�)

• total 3(� + �� + 7) = 3(�2)

• Heap

• insert, delete-min, decrease-key all 3(log �)

• total 3(7 log �)

• �-Heap (� = 7/�)

• insert, decrease-key 3(log7/��)

• delete-min 3((7/�)log7/� �)

• total 3(7 log7/��)

Worse if 7 = 9(��)

Better for all values of 7

7

� − �

