
CSE 421

Introduction to Algorithms

Lecture 5: Greedy Algorithms

1

Greedy Algorithms

Hard to define exactly but can give general properties

• Solution is built in small steps

• Decisions on how to build the solution are made to
maximize some criterion without looking to the future

• Want the ‘best’ current partial solution as if the current step were the
last step

May be more than one greedy algorithm using different criteria to
solve a given problem

• Not obvious which criteria will actually work

2

Greedy Algorithms

• Greedy algorithms

• Easy to produce

• Fast running times

• Work only on certain classes of problems

• Hard part is showing that they are correct

• Focus on methods for proving that greedy algorithms do work

3

Interval Scheduling

Interval Scheduling:

• Single resource

• Reservation requests of form:

“Can I reserve it from start time � to finish time �?”
� < �

4

Interval Scheduling

Interval scheduling:

• Job � starts at �� and finishes at �� > ��.

• Two jobs � and � are compatible if they don't overlap: ��
≤ �� or ��

≤ ��

• Goal: find maximum size subset of mutually compatible jobs.

5

Time0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

Greedy Algorithms for Interval Scheduling

• What criterion should we try?

6

Greedy Algorithms for Interval Scheduling

• What criterion should we try?
• Earliest start time ��

• Shortest request time �� − ��

• Fewest conflicts

7

Greedy Algorithms for Interval Scheduling

• What criterion should we try?
• Earliest start time ��

• Doesn’t work

• Shortest request time �� − ��

• Doesn’t work

• Fewest conflicts

• Doesn’t work

• Earliest finish time ��

• Works!

8

Greedy (by finish time) Algorithm for Interval Scheduling

� � set of all requests

� � �

while � � � do

Choose request ��� with smallest finish time ��

Add request � to �

Delete all requests in � not compatible with request �

return �

9

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy

algorithm, its solution is at least as good as any other algorithm's

10

Interval Scheduling: Analysis

Claim: � is a compatible set of requests and

requests are added to � in order of finish time

• When we add a request to � we delete all incompatible ones from �

Name the finish times of requests in � as a, a�, ..., a� in order.

Claim: Let � ⊆ � be a set of compatible requests whose finish times in order are
o, o�, ..., o�. Then for every integer � ≥ 1 we have:

a) if � contains a �th request then � does too, and

b) a� ≤ o� “� is ahead of �”

Note that a) alone implies that � ≥ � which means that � is optimal but we also
need b) “stays ahead” to keep the induction going.

11

Base Case � = : � includes the request with smallest finish time, so
if � is not empty then a ≤ o

Inductive Step: Suppose that a� ≤ o� and there is a �+1st request in �.

Then �+1st request in � is compatible with a, a�, ..., a� since a� ≤ o�

and o� ≤ start time of �+1st request in � whose finish time is o�+1

⇒ There is a �+1st request in � whose finish time is named a�+1.

Also, since � would have considered both requests and chosen the one

with the earlier finish time, a�+1 ≤ o�+1.

Inductive Proof of Claim

12

. . .o�+1o1 o2 o�

a1 a2 a�
Greedy:

OPT:

a�+1

Interval Scheduling: Greedy Algorithm Implementation

13

Sort jobs by finish times so that 0 ≤≤≤≤ f1 ≤≤≤≤ f2 ≤≤≤≤ ... ≤≤≤≤ fn.

A ←←←← φφφφ

last ←←←← 0

for j = 1 to n {

if (last ≤≤≤≤ sj)

A ←←←← A ∪∪∪∪ {j}

last ←←←← fj
}

return A

��� log ��

����

Scheduling All Intervals: Interval Partitioning

Interval Partitioning:

• Lecture � starts at �� and finishes at ��.

Goal: find minimum number of rooms to schedule all lectures so that

no two occur at the same time in the same room.

Example: This schedule uses 4 rooms to schedule 10 lectures.

14

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Can you do better?

Scheduling All Intervals: Interval Partitioning

Interval Partitioning:

• Lecture � starts at �� and finishes at ��.

Goal: find minimum number of rooms to schedule all lectures so that

no two occur at the same time in the same room.

Example: This schedule uses only 3 rooms.

15

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

Scheduling All Intervals: Interval Partitioning

Defn: The depth of a set of open intervals is the maximum number that contain any given time.

Key observation: # of rooms needed ≥ depth.

Example: This schedule uses only � rooms. Since depth ≥ � this is optimal.

16

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

depth ≥ �

A simple greedy algorithm

Sort requests in increasing order of start times ��, ��, … , ���, ���

!"��
← # // finish time of last request currently scheduled in room

for � � to � {

� �

while (request � not scheduled) {

if ��
� !"��� then

schedule request � in room �

!"���
← ��

� � � +

if !"���
undefined then !"���

← #

}

}

17

Look for the first room where the request

will fit, opening a new room if all the

others used so far are full.

Interval Partitioning: Greedy Analysis

Observation: Greedy algorithm never schedules two incompatible lectures in the
same room

• Only schedules request � in room � if �� ≥ !"���

Theorem: Greedy algorithm is optimal.

Proof:

Let % = number of rooms that the greedy algorithm allocates.

• Room % is allocated because we needed to schedule a request, say �, that is incompatible with

some request in each of the other % − rooms.

• Since we sorted by start time, these incompatibilities are caused by requests that start no later

than �� and finish after ��.

So… we have % requests overlapping at time �� + � for some tiny � > #.

Key observation all schedules use � % rooms.

18

Sort requests in increasing order of start times ��, ��, … , ���, ���

!"��
← # // finish time of last request currently scheduled in room

for � � to � {

� �

while (request � not scheduled) {

if ��
� !"��� then

schedule request � in room �

!"���
← ��

� � � +

if !"���
undefined then !"���

← #

}

}

A simple greedy algorithm

19

Runtime analysis

��� log �)

Might need to try all %
rooms to schedule a

request

��� %)

% might be as big as �

Worst case &����

Sort requests in increasing order of start times �, � , … , ��, ��

% �

schedule request in room

!"�� � �

insert into priority queue ' with key = !"��

for � � � to � {

� ← findmin(')

if ��
� !"��� then {

schedule request � in room �

!"��� ←←←← ��

increasekey(�,') to !"��� }

else {

% ←←←← % +

schedule request � in room %

!"��% ←←←← ��

insert % into priority queue ' with key = !"��%
}

}

A more efficient implementation: Priority queue

20

��� log �)

��� log %)

Θ�� log �) total

��log %)

��log %)

��)

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy

algorithm, its solution is at least as good as any other algorithm's

Structural: Discover a simple "structural" bound asserting that every possible

solution must have a certain value. Then show that your algorithm always

achieves this bound.

Exchange argument: Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.

21

Interval Scheduling: Analysis (Contradiction form)

Theorem: Greedy (by-finish-time) algorithm produces an optimal solution

Proof: (By contradiction)

Assume that that greedy algorithm is not optimal.

• Let a, a�, ... a� denote set of jobs selected by greedy algorithm.

• Let o, o�, ... o� denote set of jobs in an optimal solution with

a = o, a� = o�, ..., a� = o� for the largest possible value of �.

• Since greedy is not optimal we have � ≥ � + .

22

a�+1

. . .o�+1o1 o2 o�

a1 a2 a�
Greedy:

OPT:

Compatible job a�+1 must exist since job o�+1 is a candidate for a compatible job after a�

Interval Scheduling: Analysis (Contradiction form)

Theorem: Greedy (by-finish-time) algorithm produces an optimal solution

Proof: (By contradiction)

Assume that that greedy algorithm is not optimal.

• Let a, a�, ... a� denote set of jobs selected by greedy algorithm.

• Let o, o�, ... o� denote set of jobs in an optimal solution with

a = o, a� = o�, ..., a� = o� for the largest possible value of �.

• Since greedy is not optimal we have � ≥ � + .

23

o1 o2 o�

a1 a2 a� a�+1

. . .

Greedy:

OPT: o�+1

Since � is largest, job a�+1≠ o�+1 and a�+1 finishes at least as early as o�+1 does.

Can come up with another optimal schedule agreeing with Greedy for �+1 steps: Replace o�+1 by a�+1.

Theorem: Greedy (by-finish-time) algorithm produces an optimal solution

Proof: (By contradiction)

Assume that that greedy algorithm is not optimal.

• Let a, a�, ... a� denote set of jobs selected by greedy algorithm.

• Let o, o�, ... o� denote set of jobs in an optimal solution with

a = o, a� = o�, ..., a� = o� for the largest possible value of �.

• Since greedy is not optimal we have � ≥ � + .

o’�+1

Interval Scheduling: Analysis (Contradiction form)

24

o1 o2 o�

a1 a2 a� a�+1

. . .

Greedy:

OPT:

Since � is largest, job a�+1≠ o�+1 and a�+1 finishes at least as early as o�+1 does.

Can come up with another optimal schedule agreeing with Greedy for �+1 steps: Replace o�+1 by a�+1.

Contradiction

Scheduling to Minimize Lateness

Scheduling to minimize lateness:

• Single resource as in interval scheduling but, instead of start and finish times,

request � has

• Time requirement �� which must be scheduled in a contiguous block

• Target deadline %� by which time the request would like to be finished

• Overall start time � for all jobs

Requests are scheduled by the algorithm into time intervals [��, ��] s.t. �� = �� − ��

• Lateness of schedule for request � is

• If �� > %� then request � is late by ,� = �� − %� ; otherwise its lateness ,� = #

• Maximum lateness , = max� ,�

Goal: Find a schedule for all requests (values of �� and �� for each request �) to

minimize the maximum lateness, ,.

25

Scheduling to Minimizing Lateness

• Example:

26

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2 max lateness = 6

27

Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order of
processing time ��.

[Earliest deadline first] Consider jobs in ascending order of deadline %�.

[Smallest slack] Consider jobs in ascending order of slack %� − ��.

28

Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order of
processing time ��.

[Smallest slack] Consider jobs in ascending order of slack %� − ��.

counterexample
dj

tj

2

1

1

10

10

2

counterexample

dj

tj

100

1

1

10

10

2 Will schedule 1 (length 1) before 2 (length 10).

2 can only be scheduled at time 1

1 will finish at time 11 >10. Lateness 1.

Lateness 0 possible If 1 goes last.

Will schedule 2 (slack 0) before 1 (slack 1).

1 can only be scheduled at time 10

1 will finish at time 11 >10. Lateness 9.

Lateness 1 possible if 1 goes first.

29

Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Earliest deadline first] Consider jobs in ascending order of deadline %�.

Greedy Algorithm: Earliest Deadline First

Consider requests in increasing order of deadlines

Schedule the request with the earliest deadline as soon as the resource is available

30

Minimizing Lateness: Greedy EDF Algorithm

• Greedy Earliest Deadline First (EDF).

31

Sort deadlines in increasing order (% ≤ %� ≤ ⋯ ≤ %�)

� ← �

for � ←←←← to � {

�� ←←←←�

�� ←←←← �� + ��

� ←←←← ��

}

More on Monday!

Scheduling to Minimizing Lateness

• Example:

32

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2 max lateness = 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Original Schedule

EDF Schedule

33

Proof for Greedy EDF Algorithm: Exchange Argument

Show that if there is another schedule O (think optimal schedule)

then we can gradually change O so that…

• at each step the maximum lateness in O never gets worse

• it eventually becomes the same cost as A

This means that A is at least as good as O, so A is also optimal!

34

Minimizing Lateness: No Idle Time

Observation: There exists an optimal schedule with no idle time

Observation: The greedy EDF schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12At least as good

Defn: An inversion in schedule 1 is a pair of jobs � and �
such that %� < %� but � is scheduled before �.

Observation: Greedy EDF schedule has no inversions.

Observation: If schedule 1 (with no idle time) has an inversion

it has two adjacent jobs that are inverted

• Any job in between would be inverted w.r.t. one of the two ends

35

Minimizing Lateness: Inversions

ij

inversion%� %�

Defn: An inversion in schedule 1 is a pair of jobs � and �
such that %� < %� but � is scheduled before �.

Claim: Swapping two adjacent, inverted jobs

• reduces the # of inversions by

• does not increase the max lateness.

36

Minimizing Lateness: Inversions

ij

i j

before swap

after swap

�′�

��
inversion%� %�

��
3

Defn: An inversion in schedule 1 is a pair of jobs � and �
such that %� < %� but � is scheduled before �.

Claim: Maximum lateness does not increase

37

Minimizing Lateness: Inversions

ij

i j

before swap

after swap

��
3

��

��
3

��

%� %�

old lateness ,�

new lateness ,�
3

38

Optimal schedules and inversions

Claim: There is an optimal schedule with no idle time and no inversions

Proof:

By previous argument there is an optimal schedule O with no idle time

If O has an inversion then it has an adjacent pair of requests in its schedule

that are inverted and can be swapped without increasing lateness

… we just need to show one more claim that eventually this swapping stops

39

Optimal schedules and inversions

Claim: Eventually these swaps will produce an optimal schedule with no inversions.

Proof:

Each swap decreases the # of inversions by

There are a bounded # of inversions possible in the worst case

• at most ��� − �/� but we only care that this is finite.

The # of inversions can’t be negative so this must stop.

40

Idleness and Inversions are the only issue

Claim: All schedules with no inversions and no idle time have the same maximum

lateness.

Proof:

Schedules can differ only in how they order requests with equal deadlines

Consider all requests having some common deadline %.

• Maximum lateness of these jobs is based only on finish time of the last one …

and the set of these requests occupies the same time segment in both schedules.

⇒ The last of these requests finishes at the same time in any such schedule.

41

Earliest Deadline First is optimal

We know that

• There is an optimal schedule with no idle time or inversions

• All schedules with no idle time or inversions have the same maximum lateness

• EDF produces a schedule with no idle time or inversions

So …

• EDF produces an optimal schedule

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy

algorithm, its solution is at least as good as any other algorithm's

Structural: Discover a simple "structural" bound asserting that every possible

solution must have a certain value. Then show that your algorithm always

achieves this bound.

Exchange argument: Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.

42

