
CSE 421

Introduction to Algorithms

Lecture 5:  Greedy Algorithms
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Greedy Algorithms

Hard to define exactly but can give general properties

• Solution is built in small steps

• Decisions on how to build the solution are made to 
maximize some criterion without looking to the future

• Want the ‘best’ current partial solution as if the current step were the 
last step

May be more than one greedy algorithm using different criteria to 
solve a given problem

• Not obvious which criteria will actually work
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Greedy Algorithms

• Greedy algorithms

• Easy to produce

• Fast running times

• Work only on certain classes of problems

• Hard part is showing that they are correct

• Focus on methods for proving that greedy algorithms do work 
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Interval Scheduling

Interval Scheduling: 

• Single resource

• Reservation requests of form:

“Can I reserve it from start time � to finish time �?”
� <  �
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Interval Scheduling

Interval scheduling:

• Job � starts at �� and finishes at �� > ��.

• Two jobs � and � are compatible if they don't overlap: �� 
≤  �� or �� 

≤  ��

• Goal: find maximum size subset of mutually compatible jobs.
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Greedy Algorithms for Interval Scheduling

• What criterion should we try?
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Greedy Algorithms for Interval Scheduling

• What criterion should we try?
• Earliest start time ��

• Shortest request time �� − ��

• Fewest conflicts
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Greedy Algorithms for Interval Scheduling

• What criterion should we try?
• Earliest start time ��

• Doesn’t work

• Shortest request time �� − ��

• Doesn’t work

• Fewest conflicts

• Doesn’t work

• Earliest finish time ��

• Works!
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Greedy (by finish time) Algorithm for Interval Scheduling

� � set of all requests

� � �

while � � � do

Choose request ��� with smallest finish time ��

Add request � to �

Delete all requests in � not compatible with request �

return �
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Greedy Analysis Strategies

Greedy algorithm stays ahead:  Show that after each step of the greedy 

algorithm, its solution is at least as good as any other algorithm's
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Interval Scheduling:  Analysis

Claim: � is a compatible set of requests and 

requests are added to � in order of finish time

• When we add a request to � we delete all incompatible ones from �

Name the finish times of requests in � as a, a�, ..., a� in order.

Claim: Let � ⊆ � be a set of compatible requests whose finish times in order are 
o, o�, ..., o�.   Then for every integer � ≥ 1 we have:

a) if � contains a �th request then � does too, and

b) a� ≤ o� “� is ahead of �”

Note that a) alone implies that � ≥ � which means that � is optimal but we also 
need b) “stays ahead” to keep the induction going.
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Base Case � = : � includes the request with smallest finish time, so    
if � is not empty then a ≤ o

Inductive Step: Suppose that a� ≤ o� and there is a �+1st request in �.

Then �+1st request in � is compatible with a, a�, ..., a� since a� ≤ o�

and o� ≤ start time of �+1st request in � whose finish time is o�+1

⇒ There is a �+1st request in � whose finish time is named a�+1.

Also, since � would have considered both requests and chosen the one 

with the earlier finish time, a�+1 ≤ o�+1.

Inductive Proof of Claim
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Interval Scheduling:  Greedy Algorithm Implementation
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Sort jobs by finish times so that 0 ≤≤≤≤ f1 ≤≤≤≤ f2 ≤≤≤≤ ... ≤≤≤≤ fn.

A ←←←← φφφφ

last ←←←← 0

for j = 1 to n {

if (last ≤≤≤≤ sj)

A ←←←← A ∪∪∪∪ {j}

last ←←←← fj
}

return A  

��� log ��

����



Scheduling All Intervals: Interval Partitioning

Interval Partitioning:

• Lecture � starts at �� and finishes at ��.

Goal: find minimum number of rooms to schedule all lectures so that 

no two occur at the same time in the same room.

Example: This schedule uses 4 rooms to schedule 10 lectures.
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Scheduling All Intervals: Interval Partitioning

Interval Partitioning:

• Lecture � starts at �� and finishes at ��.

Goal: find minimum number of rooms to schedule all lectures so that 

no two occur at the same time in the same room.

Example: This schedule uses only 3 rooms.
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Scheduling All Intervals: Interval Partitioning

Defn: The depth of a set of open intervals is the maximum number that contain any given time.

Key observation:  # of rooms needed ≥ depth.

Example: This schedule uses only � rooms.   Since depth ≥ � this is optimal.
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A simple greedy algorithm

Sort requests in increasing order of start times ��, ��, … , ���, ���

!"�� 
← # // finish time of last request currently scheduled in room 

for � � to � {

� � 

while (request � not scheduled) {

if �� 
� !"��� then 

schedule request � in room �

!"��� 
← ��

� � � + 

if !"��� 
undefined then !"��� 

← #

}

}
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Look for the first room where the request 

will fit, opening a new room if all the 

others used so far are full.



Interval Partitioning:  Greedy Analysis

Observation: Greedy algorithm never schedules two incompatible lectures in the 
same room

• Only schedules request � in room � if �� ≥ !"���

Theorem: Greedy algorithm is optimal.

Proof: 

Let % = number of rooms that the greedy algorithm allocates.

• Room % is allocated because we needed to schedule a request, say �, that is incompatible with 

some request in each of the other % −  rooms.

• Since we sorted by start time, these incompatibilities are caused by requests that start no later 

than �� and finish after ��.

So… we have % requests overlapping at time �� +  � for some tiny � > #.

Key observation   all schedules use � % rooms.  
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Sort requests in increasing order of start times ��, ��, … , ���, ���

!"�� 
← # // finish time of last request currently scheduled in room 

for � � to � {

� � 

while (request � not scheduled) {

if �� 
� !"��� then 

schedule request � in room �

!"��� 
← ��

� � � + 

if !"��� 
undefined then !"��� 

← #

}

}

A simple greedy algorithm
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Runtime analysis

��� log �)

Might need to try all %
rooms to schedule a 

request

��� %)

% might be as big as �

Worst case  &����



Sort requests in increasing order of start times �, � , … , ��, ��

% � 

schedule request  in room 

!"�� � �   

insert  into priority queue ' with key = !"��

for  � � � to � {

� ← findmin(')

if �� 
� !"��� then { 

schedule request � in room �

!"��� ←←←← ��

increasekey(�,') to !"��� }

else {

% ←←←← % + 

schedule request � in room %

!"��% ←←←← ��

insert % into priority queue ' with key = !"��% 
}

}

A more efficient implementation: Priority queue
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Greedy Analysis Strategies

Greedy algorithm stays ahead:  Show that after each step of the greedy 

algorithm, its solution is at least as good as any other algorithm's

Structural:  Discover a simple "structural" bound asserting that every possible 

solution must have a certain value. Then show that your algorithm always 

achieves this bound.

Exchange argument:  Gradually transform any solution to the one found by 
the greedy algorithm without hurting its quality.
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Interval Scheduling:  Analysis (Contradiction form)

Theorem: Greedy (by-finish-time) algorithm produces an optimal solution

Proof: (By contradiction)

Assume that that greedy algorithm is not optimal. 

• Let a, a�, ... a� denote set of jobs selected by greedy algorithm.

• Let o, o�, ... o� denote set of jobs in an optimal solution with

a = o, a� = o�, ..., a� = o� for the largest possible value of �. 

• Since greedy is not optimal we have � ≥ � + .
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Compatible job a�+1 must exist since job o�+1 is a candidate for a compatible job after a�



Interval Scheduling:  Analysis (Contradiction form)

Theorem: Greedy (by-finish-time) algorithm produces an optimal solution

Proof: (By contradiction)

Assume that that greedy algorithm is not optimal. 

• Let a, a�, ... a� denote set of jobs selected by greedy algorithm.

• Let o, o�, ... o� denote set of jobs in an optimal solution with

a = o, a� = o�, ..., a� = o� for the largest possible value of �.

• Since greedy is not optimal we have � ≥ � + .
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Greedy:

OPT: o�+1

Since � is largest, job a�+1≠ o�+1  and a�+1 finishes at least as early as o�+1 does.

Can come up with another optimal schedule agreeing with Greedy for �+1 steps: Replace o�+1 by a�+1.



Theorem: Greedy (by-finish-time) algorithm produces an optimal solution

Proof: (By contradiction)

Assume that that greedy algorithm is not optimal. 

• Let a, a�, ... a� denote set of jobs selected by greedy algorithm.

• Let o, o�, ... o� denote set of jobs in an optimal solution with

a = o, a� = o�, ..., a� = o� for the largest possible value of �.

• Since greedy is not optimal we have � ≥ � + .

o’�+1

Interval Scheduling:  Analysis (Contradiction form)
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Greedy:

OPT:

Since � is largest, job a�+1≠ o�+1  and a�+1 finishes at least as early as o�+1 does.

Can come up with another optimal schedule agreeing with Greedy for �+1 steps: Replace o�+1 by a�+1.

Contradiction



Scheduling to Minimize Lateness

Scheduling to minimize lateness:

• Single resource as in interval scheduling but, instead of start and finish times, 

request � has

• Time requirement �� which must be scheduled in a contiguous block

• Target deadline %� by which time the request would like to be finished

• Overall start time � for all jobs

Requests are scheduled by the algorithm into time intervals [��, ��] s.t. �� = �� − ��

• Lateness of schedule for request � is

• If �� > %� then request � is late by ,� =  �� − %� ; otherwise its lateness ,� =  #

• Maximum lateness , = max� ,� 

Goal: Find a schedule for all requests (values of �� and �� for each request �) to 

minimize the maximum lateness, ,.
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Scheduling to Minimizing Lateness

• Example:

26

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9
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27

Minimizing Lateness:  Greedy Algorithms

Greedy template:  Consider jobs in some order. 

[Shortest processing time first]  Consider jobs in ascending order of 
processing time ��.

[Earliest deadline first] Consider jobs in ascending order of deadline %�.

[Smallest slack]  Consider jobs in ascending order of slack %� −  ��.
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Minimizing Lateness:  Greedy Algorithms

Greedy template:  Consider jobs in some order. 

[Shortest processing time first]  Consider jobs in ascending order of 
processing time ��.

[Smallest slack]  Consider jobs in ascending order of slack %� −  ��.

counterexample
dj

tj

2

1

1

10

10

2

counterexample

dj

tj

100

1

1

10

10

2 Will schedule 1 (length 1) before 2 (length 10).

2 can only be scheduled at time 1

1 will finish at time 11 >10. Lateness 1.

Lateness 0 possible If 1 goes last.

Will schedule 2 (slack 0) before 1 (slack 1).

1 can only be scheduled at time 10

1 will finish at time 11 >10. Lateness 9.

Lateness 1 possible if 1 goes first.
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Minimizing Lateness:  Greedy Algorithms

Greedy template:  Consider jobs in some order. 

[Earliest deadline first]  Consider jobs in ascending order of deadline %�.



Greedy Algorithm: Earliest Deadline First

Consider requests in increasing order of deadlines

Schedule the request with the earliest deadline as soon as the resource is available
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Minimizing Lateness:  Greedy EDF Algorithm

• Greedy Earliest Deadline First (EDF).
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Sort deadlines in increasing order  (% ≤ %� ≤ ⋯ ≤ %�)

� ← �

for � ←←←←  to � {

�� ←←←←�

�� ←←←← �� + ��

� ←←←← ��

}

More on Monday!



Scheduling to Minimizing Lateness

• Example:
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2 max lateness = 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Original Schedule

EDF Schedule
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Proof for Greedy EDF Algorithm: Exchange Argument

Show that if there is another schedule O (think optimal schedule) 

then we can gradually change O so that… 

• at each step the maximum lateness in O never gets worse

• it eventually becomes the same cost as A

This means that A is at least as good as O, so A is also optimal!
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Minimizing Lateness: No Idle Time

Observation: There exists an optimal schedule with no idle time

Observation: The greedy EDF schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12At least as good



Defn: An inversion in schedule 1 is a pair of jobs � and �
such that %� < %� but � is scheduled before �.

Observation: Greedy EDF schedule has no inversions.

Observation:  If schedule 1 (with no idle time) has an inversion

it has two adjacent jobs that are inverted

• Any job in between would be inverted w.r.t. one of the two ends
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Minimizing Lateness: Inversions
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Defn: An inversion in schedule 1 is a pair of jobs � and �
such that %� < %� but � is scheduled before �.

Claim: Swapping two adjacent, inverted jobs 

• reduces the # of inversions by 

• does not increase the max lateness.
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Minimizing Lateness: Inversions

ij

i j

before swap

after swap
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inversion%�   %�
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Defn: An inversion in schedule 1 is a pair of jobs � and �
such that %� < %� but � is scheduled before �.

Claim: Maximum lateness does not increase
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Minimizing Lateness: Inversions

ij
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before swap
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Optimal schedules and inversions

Claim: There is an optimal schedule with no idle time and no inversions

Proof:

By previous argument there is an optimal schedule O with no idle time

If O has an inversion then it has an adjacent pair of requests in its schedule 

that are inverted and can be swapped without increasing lateness

…  we just need to show one more claim that eventually this swapping stops 
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Optimal schedules and inversions

Claim: Eventually these swaps will produce an optimal schedule with no inversions.

Proof:

Each swap decreases the # of inversions by 

There are a bounded # of inversions possible in the worst case

• at most  ��� − �/� but we only care that this is finite.

The # of inversions can’t be negative so this must stop.
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Idleness and Inversions are the only issue

Claim: All schedules with no inversions and no idle time have the same maximum 

lateness.

Proof:

Schedules can differ only in how they order requests with equal deadlines

Consider all requests having some common deadline %.

• Maximum lateness of these jobs is based only on finish time of the last one … 

and the set of these requests occupies the same time segment in both schedules.

⇒  The last of these requests finishes at the same time in any such schedule.
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Earliest Deadline First is optimal

We know that

• There is an optimal schedule with no idle time or inversions

• All schedules with no idle time or inversions have the same maximum lateness

• EDF produces a schedule with no idle time or inversions

So …

• EDF produces an optimal schedule



Greedy Analysis Strategies

Greedy algorithm stays ahead:  Show that after each step of the greedy 

algorithm, its solution is at least as good as any other algorithm's

Structural:  Discover a simple "structural" bound asserting that every possible 

solution must have a certain value. Then show that your algorithm always 

achieves this bound.

Exchange argument:  Gradually transform any solution to the one found by 
the greedy algorithm without hurting its quality.
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