CSE 421
Introduction to Algorithms

Lecture 5: Greedy Algorithms

Greedy Algorithms

Hard to define exactly but can give general properties
* Solution is built in small steps

e Decisions on how to build the solution are made to
maximize some criterion without looking to the future

* Want the ‘best’ current partial solution as if the current step were the
last step

May be more than one greedy algorithm using different criteria to
solve a given problem

* Not obvious which criteria will actually work

PAUL G. ALLEN SCHOOL

Greedy Algorithms

* Greedy algorithms
* Easy to produce
* Fast running times
* Work only on certain classes of problems
e Hard part is showing that they are correct

* Focus on methods for proving that greedy algorithms do work

PAUL G. ALLEN SCHOOL

Interval Scheduling

Interval Scheduling:
* Single resource
e Reservation requests of form:

“Can | reserve it from start time s to finish time f?”
s<f

PAUL G. ALLEN SCHOOL

Interval Scheduling

Interval scheduling:
* Jobj starts at s; and finishes at f; > s;.
* Two jobs i and j are compatible if they don't overlap: f; < s;or f; < s,
* Goal: find maximum size subset of mutually compatible jobs.

a

>

o 1 2 3 4 5 6 7 8 9 10 11 Time

PAUL G. ALLEN SCHOOL

Greedy Algorithms for Interval Scheduling

* What criterion should we try?

PAUL G. ALLEN SCHOOL

Greedy Algorithms for Interval Scheduling

* What criterion should we try?
* Earliest start time s;

* Shortest request time f; — s;

* Fewest conflicts

PAUL G. ALLEN SCHOOL

Greedy Algorithms for Interval Scheduling

* What criterion should we try?
* Earliest start time s;
* Doesn’t work

* Shortest request time f; — s;
* Doesn’t work

* Fewest conflicts
e Doesn’t work

* Earliest finish time f;
e Works!

PAUL G. ALLEN SCHOOL

Greedy (by finish time) Algorithm for Interval Scheduling

R < set of all requests
A
while R # & do
Choose request i€ R with smallest finish time f;
Add requestito 4
Delete all requests in R not compatible with request i

return 4

PAUL G. ALLEN SCHOOL

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm's

PAUL G. ALLEN SCHOOL

Interval Scheduling: Analysis

Claim: 4 is a compatible set of requests and
requests are added to A in order of finish time

« When we add a request to A we delete all incompatible ones from R

Name the finish times of requestsin A as a,, a,, ..., a, in order.

Claim: Let O € R be a set of compatible requests whose finish times in order are
04, 0,, ..., 0.. Then for every integer k = 1 we have:

a) if O contains a k" request then A4 does too, and
b) a, <o, “Aisaheadof 0”

Note that a) alone implies that £ = s which means that A4 is optimal but we also
need b) “stays ahead” to keep the induction going.

PAUL G. ALLEN SCHOOL

Inductive Proof of Claim

Base Case k = 1: A includes the request with smallest finish time, so
if O is not empty thena; <o,

Inductive Step: Suppose that a, < o, and there is a k+1% request in O.
Then k+1%t request in O is compatible with a4, a,, ..., a,, since a; < o,
and o, < start time of k+1% request in O whose finish time is o, ,
= There is a k+1t request in 4 whose finish time is named a,,,.

Also, since A would have considered both requests and chosen the one
with the earlier finish time, a;,; < 0,,,.

Greedy: a, a, a, a1

OPT: o1 02 Ok 0k+1 4o oo [|

>
»

PAUL G. ALLEN SCHOOL

Interval Scheduling: Greedy Algorithm Implementation

Sort jobs by finish times so that 0 <f, < £, < ...

IA

£ O(nlogn)

A« ¢
last <« O
for j =1 to n {
if (last < s)) O(n)
A« AU {j}
last « £,
}

return A

PAUL G. ALLEN SCHOOL

Scheduling All Intervals: Interval Partitioning

Interval Partitioning:
* Lecture j starts at Sj and finishes at fj.

Goal: find minimum number of rooms to schedule all lectures so that
no two occur at the same time in the same room.

Example: This schedule uses 4 rooms to schedule 10 lectures.

¢ ! Can you do better?
c d g
b h
a f [

»

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 330 4 4:30 Ti
ime

PAUL G. ALLEN SCHOOL

Scheduling All Intervals: Interval Partitioning

Interval Partitioning:
* Lecture j starts at Sj and finishes at fj.

Goal: find minimum number of rooms to schedule all lectures so that
no two occur at the same time in the same room.

Example: This schedule uses only 3 rooms.

c d f J
b g i
S ~oh

>
»

9 230 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 Ti
ime

PAUL G. ALLEN SCHOOL

Scheduling All Intervals: Interval Partitioning

Defn: The depth of a set of open intervals is the maximum number that contain any given time.

Key observation: # of rooms needed > depth.

Example: This schedule uses only 3 rooms. Since depth > 3 this is optimal.

/

depth = 3

«

(o
o

9 230 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 T"
ime

PAUL G. ALLEN SCHOOL

A simple greedy algorithm
Sort requests in increasing order of start times (s, f1), ..., (8,, [,)

last, < 0 //finish time of last request currently scheduled in room 1
fori«<1ton{
j<1 7
while (request i not scheduled) {
if s;,> last; then

schedule request i in room j | Look for the first room where the request
will fit, opening a new room if all the

laStiefi others used so far are full.

j<j+1

if lastj undefined then lastje 0]

}

PAUL G. ALLEN SCHOOL

Interval Partitioning: Greedy Analysis

Observation: Greedy algorithm never schedules two incompatible lectures in the
same room
* Only schedules request i inroom j if s; = last;

Theorem: Greedy algorithm is optimal.

Proof:
Let d = number of rooms that the greedy algorithm allocates.

* Room d is allocated because we needed to schedule a request, say j, that is incompatible with
some request in each of the other d — 1 rooms.

* Since we sorted by start time, these incompatibilities are caused by requests that start no later
than s; and finish after s;.

So... we have d requests overlapping at time s; + &forsome tiny ¢ > 0.
Key observation = all schedules use > d rooms. =

PAUL G. ALLEN SCHOOL

A simple greedy algorithm Runtime analysis

Sort requests in increasing order of start times (s, f1), ..., (8,, [,) O(nlogn)

last, < 0 //finish time of last request currently scheduled in room 1
fori«<1ton{
j<1
while (request i not scheduled) {
if s;> last; then

.. . Might need to try all d O(nd)
schedule request i in room j
rooms to schedule a
last. < f; request . .
i</ d might be as bigasn
j<—j+1
if lastj undefined then lastje 0 Worst case ©(n2)

}

PAUL G. ALLEN SCHOOL

A more efficient implementation: Priority queue

Sort requests in increasing order of start times (s, f,), ..., (5,) O(nlog n)

d«1

schedule request 1 inroom 1

last, < f,

insert 1 into priority queue Q with key = last,

for i< 2ton{

J < findmin(Q) 0(1)
if ;> last; then {
schedule request i in room j O(n log d)
last; « f;
increasekey(j,Q) to last; } O(logd)
else {

d—d+1
schedule request i in room d
last, « f; ®(n logn) total
insert d into priority queue Q with key = last} O(logd)

}

PAUL G. ALLEN SCHOOL

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm's

Structural: Discover a simple "structural” bound asserting that every possible
solution must have a certain value. Then show that your algorithm always
achieves this bound.

Exchange argument: Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.

PAUL G. ALLEN SCHOOL

Interval Scheduling: Analysis (Contradiction form)

Theorem: Greedy (by-finish-time) algorithm produces an optimal solution

Proof: (By contradiction)
Assume that that greedy algorithm is not optimal.
* Letay, a,, ... a,denote set of jobs selected by greedy algorithm.

* Leto,, 0,, ... o, denote set of jobs in an optimal solution with
a, =0,,a,=0,, .., a, =0, for the largest possible value of k.

* Since greedy is not optimal we have s = k + 1.

Compatible job a,,, must exist since job o,,, is a candidate for a compatible job after a,,

Greedy: a, a, a, a,

v

OPT: 0, 0, Oy Oes1

PAUL G. ALLEN SCHOOL

v

Interval Scheduling: Analysis (Contradiction form)

Theorem: Greedy (by-finish-time) algorithm produces an optimal solution

Proof: (By contradiction)
Assume that that greedy algorithm is not optimal.
* Letay, a,, ... a,denote set of jobs selected by greedy algorithm.

* Leto,, 0,, ... o, denote set of jobs in an optimal solution with
a, =0,,a,=0,, .., a, =0, for the largest possible value of k.

* Since greedy is not optimal we have s = k + 1.

Since k is largest, job a,,,# 04,4 and a,,, finishes at least as early as 0,,,, does.

Greedy: a, a, a, a,

v

OPT: 0, 0, Oy Oes1

>
>

Can come up with another optimal schedule agreeing with Greedy for k+1 steps: Replace 0,,, by a,,,-

PAUL G. ALLEN SCHOOL

Interval Scheduling: Analysis (Contradiction form)

Theorem: Greedy (by-finish-time) algorithm produces an optimal solution

Proof: (By contradiction)
Assume that that greedy algorithm is not optimal.
* Letay, a,, ... a,denote set of jobs selected by greedy algorithm.

* Leto,, 0,, ... o, denote set of jobs in an optimal solution with

a, =04,a,=0,, .., a,=0,for the largest possible value of k. « Contradiction

* Since greedy is not optimal we have s = k + 1.

Since k is largest, job a,,,# 0., and a,,, finishes at least as early as 0,,,, does.

Greedy: a, a, a, a,

v

OPT: 0, 0, Oy 0').1

>
>

\ 4

Can come up with another optimal schedule agreeing with Greedy for k+1 steps: Replace 0;,, by @;,;- | n

PAUL G. ALLEN SCHOOL

Scheduling to Minimize Lateness

Scheduling to minimize lateness:

* Single resource as in interval scheduling but, instead of start and finish times,
request i has

* Time requirement £; which must be scheduled in a contiguous block
* Target deadline d; by which time the request would like to be finished
* Overall start time s for all jobs

Requests are scheduled by the algorithm into time intervals [s;, fi] s.t. ;= f;, — s;
* Lateness of schedule for request i is

* If f; > d; thenrequestiislatebyL; = f; — d;; otherwise its lateness L; = 0
* Maximum lateness L = max; Li

Goal: Find a schedule for all requests (values of s; and f; for each request i) to
minimize the maximum lateness, L.

PAUL G. ALLEN SCHOOL

Scheduling to Minimizing Lateness

* Example:
(1]2]3/4]5]6]
3 2 1 4 3 2
6 8 9 9 14 15

lateness = 2 lateness =0 max lateness = 6

| ! |
d3:9 d2:8 d6:15 d1 d5:14 d4:9
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PAUL G. ALLEN SCHOOL

"
o

Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order of
processing time ;.

[Earliest deadline first] Consider jobs in ascending order of deadline dj.

[Smallest slack] Consider jobs in ascending order of slack d]- — ;.

PAUL G. ALLEN SCHOOL

Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order of
processing time ;.

Will schedule 1 (length 1) before 2 (length 10).
1 10 counterexample 2 can qn!y be sc.heduled attime 1
M 00 10 1 will finish at time 11 >10. Lateness 1.

Lateness 0 possible If 1 goes last.

[Smallest slack] Consider jobs in ascending order of slack d]- — ;.

Will schedule 2 (slack 0) before 1 (slack 1).
1 10 1 can only be scheduled at time 10
2 10 counterexample 1 will finish at time 11 >10. Lateness 9.

Lateness 1 possible if 1 goes first.

PAUL G. ALLEN SCHOOL

Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Earliest deadline first] Consider jobs in ascending order of deadline dj.

PAUL G. ALLEN SCHOOL

Greedy Algorithm: Earliest Deadline First

Consider requests in increasing order of deadlines

Schedule the request with the earliest deadline as soon as the resource is available

PAUL G. ALLEN SCHOOL

Minimizing Lateness: Greedy EDF Algorithm

e Greedy Earliest Deadline First (EDF).

More on Monday!

PAUL G. ALLEN SCHOOL

Scheduling to Minimizing Lateness

* Example: 1] 2]34]5]6]
slzilalalz
6 8 9 9 14 15

lateness = 2 lateness =0 max lateness = 6

| | |
Original Schedule d3=9 d,=8 d, =15 di=6 ds = 14 d;=9
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

max lateness = 1

|
EDF SChedUIe d1:6 d2:8 d3:9 d4:9 d5:14 d6: 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PAUL G. ALLEN SCHOOL

Proof for Greedy EDF Algorithm: Exchange Argument
Show that if there is another schedule O (think optimal schedule)
then we can gradually change O so that...

 at each step the maximum lateness in O never gets worse
* it eventually becomes the same cost as A

This means that A is at least as good as O, so A is also optimall!

PAUL G. ALLEN SCHOOL

Minimizing Lateness: No Idle Time

Observation: There exists an optimal schedule with no idle time

0 1 2 3 4 5 6 7 8 9 10 1
At least as good d

0 1 2 3 4 5 6 7 8 9 10 1

Observation: The greedy EDF schedule has no idle time.

PAUL G. ALLEN SCHOOL

Minimizing Lateness: Inversions

Defn: An inversion in schedule S is a pair of jobs i and j
such that d; < d; but j is scheduled before i.

i 4; inversion

d
o P .

d
Observation: Greedy EDF schedule has no inversions.

Observation: If schedule S (with no idle time) has an inversion
it has two adjacent jobs that are inverted

* Any job in between would be inverted w.r.t. one of the two ends

PAUL G. ALLEN SCHOOL

Minimizing Lateness: Inversions

Defn: An inversion in schedule S is a pair of jobs i and j
such that d; < d; but j is scheduled before i.

d, d

i inversion

/ fi
vetoreswep | T I T

afterswap [I O T
fi f

Claim: Swapping two adjacent, inverted jobs
e reduces the # of inversions by 1
e does not increase the max lateness.

PAUL G. ALLEN SCHOOL

Minimizing Lateness: Inversions

Defn: An inversion in schedule S is a pair of jobs i and j
such that d; < d; but j is scheduled before i.

d; d,
A fj fi

petore swap [N I

after swap [I
fi f
new lateness L]’-]

old lateness L;

Claim: Maximum lateness does not increase

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Optimal schedules and inversions

Claim: There is an optimal schedule with no idle time and no inversions

Proof:
By previous argument there is an optimal schedule O with no idle time

If O has an inversion then it has an adjacent pair of requests in its schedule
that are inverted and can be swapped without increasing lateness

.. we just need to show one more claim that eventually this swapping stops

PAUL G. ALLEN SCHOOL

Optimal schedules and inversions

Claim: Eventually these swaps will produce an optimal schedule with no inversions.

Proof:
Each swap decreases the # of inversions by 1

There are a bounded # of inversions possible in the worst case
e at most n(n — 1)/2 but we only care that this is finite.

The # of inversions can’t be negative so this must stop. =®

PAUL G. ALLEN SCHOOL

Idleness and Inversions are the only issue

Claim: All schedules with no inversions and no idle time have the same maximum
lateness.

Proof:
Schedules can differ only in how they order requests with equal deadlines

Consider all requests having some common deadline d.

* Maximum lateness of these jobs is based only on finish time of the last one ...
and the set of these requests occupies the same time segment in both schedules.

= The last of these requests finishes at the same time in any such schedule. =

PAUL G. ALLEN SCHOOL

Earliest Deadline First is optimal

We know that
* There is an optimal schedule with no idle time or inversions
* All schedules with no idle time or inversions have the same maximum lateness
* EDF produces a schedule with no idle time or inversions

So ...
* EDF produces an optimal schedule

PAUL G. ALLEN SCHOOL

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm's

Structural: Discover a simple "structural” bound asserting that every possible
solution must have a certain value. Then show that your algorithm always
achieves this bound.

Exchange argument: Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.

PAUL G. ALLEN SCHOOL

