CSE 421
Introduction to Algorithms

Lecture 5: Greedy Algorithms

Greedy Algorithms

Hard to define exactly but can give general properties
* Solution is built in small steps

e Decisions on how to build the solution are made to
maximize some criterion without looking to the future

* Want the ‘best’ current partial solution as if the current step were the
last step

May be more than one greedy algorithm using different criteria to
solve a given problem

* Not obvious which criteria will actually work

PAUL G. ALLEN SCHOOL

Greedy Algorithms

* Greedy algorithms
* Easy to produce
* Fast running times
* Work only on certain classes of problems

(/ms showing that they/arecoﬁ
g

* Focus on methods for proving that greedy algorithms do work

PAUL G. ALLEN SCHOOL

Interval Scheduling

Interval Scheduling:
* Single resource
e Reservation requests of form:

“Can | reserve it from start time s to finish time f?”
s<f

PAUL G. ALLEN SCHOOL

Interval Scheduling

Interval scheduling:
* Jobj starts at s; and finishes at f; > s;.
* Two jobs i and j are compatible if they don't overlap: f; < s;or f; < s;

L
« Goal: find maximum size subset of mutually compatible jobs. =

a

>

O 1t 2 3 4 5 6 7 8 9 10 11 Time

PAUL G. ALLEN SCHOOL

Greedy Algorithms for Interval Scheduling

* What criterion should we try?

PAUL G. ALLEN SCHOOL

Greedy Algorithms for Interval Scheduling

* What criterion should we try?
* Earliest start time s;

* Shortest request time f; — s;

* Fewest conflicts

PAUL G. ALLEN SCHOOL

Greedy Algorithms for Interval Scheduling

* What criterion should we try?
* Earliest start time s;
* Doesn'twork)

—

* Shortest request time f; — s;
* Doesn’t work

* Fewest conflicts
N\
e Doesn’t work G

* Earliest finish time f;
e Works!

PAUL G. ALLEN SCHOOL

Greedy (by finish time) Algorithm for Interval Scheduling

R < set of all requests
A
while R # & do
Choose request i€ R with smallest finish time f;
Add requestito 4
Delete all requests in R not compatible with request i

return 4

PAUL G. ALLEN SCHOOL

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm's

PAUL G. ALLEN SCHOOL

Interval Scheduling: Analysis

Claim: 4 is a compatible set of requests and
requests are added to A in order of finish time

« When we add a request to A we delete all incompatible ones from R

Name the finish times of requestsin A as a,, a,, ..., a, in order.

Claim: Let O € R be a set of compatible requests whose finish times in order are
04, 0,, ..., 0.. Then for every integer k = 1 we have:

a) if O contains a k" request then A4 does too, and
b) a, <o, “Aisaheadof 0”

Note that a) alone implies that £ = s which means that A4 is optimal but we also
need b) “stays ahead” to keep the induction going.

PAUL G. ALLEN SCHOOL

Inductive Proof of Claim

Base Case k = 1: A includes the request with smallest finish time, so
if O is not empty thena; <o,

Inductive Step: Suppose that a, < o, and there is a k+1% request in O.

Then k+1%t request in O is compatible with a4, a,, ..., a,, since a; < o,
and o, < start time of k+1t in O whose finish time is o,,,,

MS’C in A whose finish time is named a,,,,.

Also, since A wou idered both requests and chosen the one

with the earlier finish time, a,,, < 0,,,.

Greedy: a, a, a, Apiq . /d\
/WQVCJWC% ”l

OPT: 04 0, Oy m - . u 71

PAUL G. ALLEN SCHOOL

Interval Scheduling: Greedy Algorithm Implementation

Sort jobs by finish times so that 0 <f, < £, < ... < £f_. O(n logn)
A« ¢ -
last <« O W\ﬂw%?)gb
forj=1to /é&l/d/g C
if O(n)
A< AU {j}
last « £,
}
return A

PAUL G. ALLEN SCHOOL

Scheduling All Intervals: Interval Partitioning

Interval Partitioning:
* Lecture j starts at Sj and finishes at fj.

Goal: find minimum number of rooms to schedule all lectures so that
no two occur at the same time in the same room.

Example: This schedule uses 4 rooms to schedule 10 lectures.

f\\] p Can you do better?
c g \ &

»

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 330 4 4:30 Ti
ime

PAUL G. ALLEN SCHOOL

Scheduling All Intervals: Interval Partitioning

Interval Partitioning:
* Lecture j starts at Sj and finishes at fj.

Goal: find minimum number of rooms to schedule all lectures so that
no two occur at the same time in the same room.

Example: This schedule uses only 3 rooms.

c d f J
b g i
S ~oh

>
»

9 230 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 Ti
ime

PAUL G. ALLEN SCHOOL

Scheduling All Intervals: Interval Partitioning

Defn: The depth of a set of open intervals is the maximum number that contain any given time.

Key observation: # of rooms needed > depth.

Example: This schedule uses only 3 rooms. Since depth > 3 this is optimal.

/

depth = 3

«

(o
o

9 230 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 T"
ime

PAUL G. ALLEN SCHOOL

A simple greedy algorithm
Sort requests in increasing order of start times (s, f1), ..., (8,, [,)

last, < 0 //finish time of last request currently scheduled in room 1
mn{
j<1 7
while (request i not scheduled) {
if s;> last; then

(/‘}
schedule request i in roomy | Look for the first room where the request
will fit, opening a new room if all the
laStiefi others used so far are full.
j<—j+1

if lastj undefined then lastje 0]
R —

}

PAUL G. ALLEN SCHOOL

Interval Partitioning: Greedy Analysis

Observation: Greedy algorithm never schedules two incompatible lectures in the

same room \ 9
* Only schedules request i inroom j if s; = last; 0 3
—
Theorem: Greedy algorithm is optimal. UK
Proof: T

Let d = number of rooms that the greedy algorithm allocates.

* Room d is allocated because we needed to schedule a request, say j, that is incompatible with
some request in each of the other d — 1 rooms.

* Since we sorted by start time, these incompatibilities are caused by requests that start no later
than s; and finish after s;. T

So... we have d requests overlapping at time s; + &forsome tiny ¢ > 0.
Key observation = all schedules use > d rooms. =

PAUL G. ALLEN SCHOOL

A simple greedy algorithm Runtime analysis

Sort requests in increasing order of start times (s, f1), ..., (8,, [,) O(nlogn)

last, < 0 //finish time of last request currently scheduled in room 1
fori«<1ton{
j<1
while (request i not scheduled) {
if s;> last; then

.. . Might need to try all d O(nd)
schedule request i in room j
rooms to schedule a
last. < f; request . .
i</ d might be as bigasn
j<—j+1
if lastj undefined then lastje 0 Worst case ©(n2)

}

PAUL G. ALLEN SCHOOL

A more efficient implementation: Priority queue

Sort requests in increasing order of start times (s, f,), ..., (5,) O(nlog n)

d«1
schedule request 1 inroom 1

last, < f,
insert 1 into priority queue Q with key
&

fori<—2ton{ / &
J < findmin(Q ((/A)
e S

schedule request i in room j O(n log d)
last; « f;
increasekey(j,Q) to last; - O d

oad ast) -~ =—0| &;0&1?55)

de—d+1

schedule request i in room d

last, « f; ®(n logn) total

insert d into priority queue Q with key = last} Q({fogﬂ?
} — i

PAUL G. ALLEN SCHOOL

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm's

Structural: Discover a simple "structural” bound asserting that every possible
solution must have a certain value. Then show that your algorithm always
achieves this bound.

Exchange argument: Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.

PAUL G. ALLEN SCHOOL

Scheduling to Minimize Lateness
/L

Scheduling to minimize lateness:
* Single resource as in interval scheduling but, instead d@f start and finish ti ;

request i has

* Time requirement £; which must be scheduled in a contiguous block
* Target deadliny which time the request would like to be finished

* Overall start time s for all jobs

. — 77
Requests are scheduled by the algorithm into time intervals [s;, f] s.t.@

* Lateness of schedule for request i is =

* If f; > d; thenrequestiislatebyL; = f; — d;; otherwise its lateness L; = 0
. . ——
* Maximum lateness L = max; Li

T

Goal: Find a schedule for all requests (values of s; and f; for each request i) to
minimize the maximum lateness, L.

PAUL G. ALLEN SCHOOL

Scheduling to Minimizing Lateness

* Example:
(1]2]3/4]5]6]
3 2 1 4 3 2
6 8 9 9 14 15

lateness = 2 lateness =0 max lateness = 6

| ! |
d3:9 d2:8 d6:15 d1 d5:14 d4:9
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PAUL G. ALLEN SCHOOL

"
o

Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order of
processing time ;.

[Earliest deadline first] Consider jobs in ascending order of deadline dj.

[Smallest slack] Consider jobs in ascending order of slack d]- — ;.

PAUL G. ALLEN SCHOOL

Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order of
processing time ;.

Will schedule 1 (length 1) before 2 (length 10).
1 10 counterexample 2 can qn!y be sc.heduled attime 1
M 00 10 1 will finish at time 11 >10. Lateness 1.

Lateness 0 possible If 1 goes last.

[Smallest slack] Consider jobs in ascending order of slack d]- — ;.

Will schedule 2 (slack 0) before 1 (slack 1).
1 10 1 can only be scheduled at time 10
2 10 counterexample 1 will finish at time 11 >10. Lateness 9.

Lateness 1 possible if 1 goes first.

PAUL G. ALLEN SCHOOL

