CSE 421Introduction to Algorithms

Lecture 5: Greedy Algorithms

I EN SCHOOL

Greedy Algorithms

Hard to define exactly but can give general properties

- Solution is built in small steps
- Decisions on how to build the solution are made to maximize some criterion without looking to the future
	- Want the 'best' current partial solution as if the current step were the last step

May be more than one greedy algorithm using different criteria to solve a given problem

• Not obvious which criteria will actually work

Greedy Algorithms

- Greedy algorithms
	- Easy to produce
	- Fast running times
	- Work only on certain classes of problems

 \blacktriangleright Hard part is showing that they are correct

• Focus on methods for proving that greedy algorithms do work

Interval Scheduling

Interval Scheduling:

- Single resource
- Reservation requests of form:

"Can I reserve it from start time \bm{s} to finish time \bm{f} ?"

Interval Scheduling

Interval scheduling:

- Job j starts at s_j and finishes at $f_j > s_j$.
-
- Two jobs i and j are compatible if they don't overlap: $f_i \leq s_j$ or $f_j \leq s_j$
• Goal: find maximum size subset of mutually compatible jobs.

Greedy Algorithms for Interval Scheduling

• What criterion should we try?

Greedy Algorithms for Interval Scheduling

- What criterion should we try?
	- Earliest start time $s_{\it i}$
	- Shortest request time $\boldsymbol{f}_i \boldsymbol{s}_i$
	- Fewest conflicts

Greedy Algorithms for Interval Scheduling

- $\bullet\,$ Earliest finish time ${f}_i$
	- Works!

Greedy (by finish time) Algorithm for Interval Scheduling

 $R \leftarrow$ set of all requests
A

 $A \leftarrow \varnothing$

while $\bm{R} \neq \varnothing$ do

Choose request $\bm{i} \!\in\! \bm{R}$ with smallest finish time $\bm{f}_{\bm{i}}$

Add request \bm{i} to \bm{A}

Delete all requests in \boldsymbol{R} not compatible with request \boldsymbol{i}

return \boldsymbol{A}

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's

Interval Scheduling: Analysis

Claim: A is a compatible set of requests and requests are added to \boldsymbol{A} in order of finish time

• When we add a request to \boldsymbol{A} we delete all incompatible ones from \boldsymbol{R}

Name the finish times of requests in A as a_1 , a_2 , ..., a_t in order.

Claim: Let $0 \subseteq R$ be a set of compatible requests whose finish times in order are \mathbf{o}_1 , \mathbf{o}_2 , ..., \mathbf{o}_s . Then for every integer $k\geq 1$ we have:

- a) if O contains a k^{th} request then A does too, and
- b) $\mathsf{a}_k \leq \mathsf{o}_k$ " \boldsymbol{A} is ahead of \boldsymbol{O} "

Note that a) alone implies that $t \geq s$ which means that A is optimal but we also $\frac{1}{2}$ need b) "stays ahead" to keep the induction going.

Inductive Proof of Claim

Base Case $k = 1: A$ **includes the request with smallest finish time, so** if O is not empty then $a_1 \leq o_1$

Inductive Step: Suppose that $\mathbf{a}_k \leq \mathbf{o}_k$ and there is a k +1st request in $\boldsymbol{O}.$

Then $k+1$ st request in O is compatible with $a_1, a_2, ..., a_k$ since $a_k \leq o_k$ and $\mathbf{o}_k \leq$ start time of $k+1^\text{st}$ request in O whose finish time is \mathbf{o}_{k+1} \leq There is a $k+1$ st request in A whose finish time is named a_{k+1} . Also, since A would have considered both requests and chosen the one with the earlier finish time, $\mathbf{a}_{k+1} \leq \mathbf{o}_{k+1}$.

Interval Scheduling: Greedy Algorithm Implementation

Scheduling All Intervals: Interval Partitioning

Interval Partitioning:

• Lecture j starts at s_j and finishes at f_j .

 Goal: find minimum number of rooms to schedule all lectures so that no two occur at the same time in the same room.

Example: This schedule uses 4 rooms to schedule 10 lectures.

Can you do better?

Scheduling All Intervals: Interval Partitioning

Interval Partitioning:

• Lecture j starts at s_j and finishes at f_j .

 Goal: find minimum number of rooms to schedule all lectures so that no two occur at the same time in the same room.

Example: This schedule uses only 3 rooms.

Scheduling All Intervals: Interval Partitioning

Defn: The depth of a set of open intervals is the maximum number that contain any given time.

Key observation: # of rooms needed ≥ depth.

Example: This schedule uses only $\overline{\mathbf{3}}$ rooms. Since depth \geq $\overline{\mathbf{3}}$ this is optimal.

A simple greedy algorithm

Sort requests in increasing order of start times $(\boldsymbol{s}_1, \boldsymbol{f}_1), ..., (\boldsymbol{s}_n, \boldsymbol{f}_n)$

 ${\boldsymbol{last_1\!\leftarrow\!0}}$ // finish time of last request currently scheduled in room $\boldsymbol{1}$ for $\boldsymbol{i} \leftarrow 1$ to \boldsymbol{n} {

$j\!\leftarrow\!1$

}

}

```
while (request \bm{i} not scheduled) {
```
if $s_i{\geq}\mathit{last}_i$ then schedule request <mark> \boldsymbol{i} </mark> in room \boldsymbol{j}

> last_j $-f_i$

 $j \leftarrow j + 1$ if \boldsymbol{last}_j undefined then $\boldsymbol{last}_j \!\leftarrow\! \boldsymbol{0}$ Look for the first room where the request will fit, opening a new room if all the others used so far are full.

Interval Partitioning: Greedy Analysis

Observation: Greedy algorithm never schedules two incompatible lectures in the same room

• Only schedules request \bm{i} in room \bm{j} if $\bm{s_i} \geq \bm{last_j}$

Theorem: Greedy algorithm is optimal.

Proof:

Let \boldsymbol{d} = number of rooms that the greedy algorithm allocates.

- Room \boldsymbol{d} is allocated because we needed to schedule a request, say \boldsymbol{j} , that is incompatible with some request in each of the other $d-1$ rooms.
- Since we sorted by start time, these incompatibilities are caused by requests that start no later than \boldsymbol{s}_j and finish after \boldsymbol{s}_j .

So... we have \boldsymbol{d} requests overlapping at time $\boldsymbol{s}_j~+~\varepsilon$ for some tiny $\epsilon > \boldsymbol{0}$.

Key observation \Rightarrow all schedules use \geq d rooms.

A simple greedy algorithm

Runtime analysis

 $\theta(n \log n)$

Sort requests in increasing order of start times $(\boldsymbol{s}_1, \boldsymbol{f}_1), ..., (\boldsymbol{s}_n, \boldsymbol{f}_n)$

 $\boldsymbol{last_1} \!\leftarrow\! \boldsymbol{0} \not|$ finish time of last request currently scheduled in room $\boldsymbol{1}$ for $i \leftarrow 1$ to $n \left\{ \right.$

 $j\!\leftarrow\!1$

}

}

```
while (request \bm{i} not scheduled) {
```
if $\boldsymbol{s}_i \!\geq \! \boldsymbol{last}_j$ then schedule request \boldsymbol{i} in room \boldsymbol{j} last $_j$ \leftarrow f $_i$

 $j \leftarrow j + 1$ if \boldsymbol{last}_j undefined then $\boldsymbol{last}_j \!\leftarrow\! \boldsymbol{0}$

Might need to try all d rooms to schedule a request

 $\theta(n d)$

 \boldsymbol{d} might be as big as \boldsymbol{n}

Worst case $\,\Theta(n^2)$

A more efficient implementation: Priority queue

Sort requests in increasing order of start times $(\boldsymbol{s}_1, \boldsymbol{f}_1), ..., (\boldsymbol{s}_n, \boldsymbol{f}_n)$

 $\theta(n \log n)$

 $d \leftarrow 1$ schedule request ${\bf 1}$ in room ${\bf 1}$ $last_1 \leftarrow f_1$ insert 1 into priority queue Q with key ϵ $last_1$ $\displaystyle{ \begin{aligned} \mathsf{for}\;\; i\leftarrow 2\;\mathsf{to}\;n \, \lbrace \right. \ \hspace{1in} \; i\left. \right. \quad \left. \mathsf{findmin}\;\; \right. } \end{aligned} }$ $O((\alpha\phi)$ \leftarrow $j \leftarrow \text{findmin}(Q)$ if \boldsymbol{s}_{i} \ge \boldsymbol{last}_{j} then { schedule request \bm{i} in room \bm{j} $\theta(n \log d)$ $last_j \leftarrow f_i$ increasekey(**j,Q**) to $last_j$ } Q_2 l q g d) else { $d \leftarrow d + 1$ schedule request \bm{i} in room \bm{d} $\Theta(\boldsymbol{n} \log \boldsymbol{n})$ total $last_d \leftarrow f_i$ insert d into priority queue Q with key = $last_d$ } ∂ (logal) }

G ALLEN SCHOOL

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's

Structural: Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

Exchange argument: Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.

Scheduling to Minimize Lateness

Scheduling to minimize lateness:

- Single resource as in interval scheduling but, instead of start and finish times, request <mark>*i*</mark> has
	- Time requirement \boldsymbol{t}_i which must be scheduled in a contiguous block
	- Target deadlin $e \overline{d_j}$ by which time the request would like to be finished
- Overall start time **s** for all jobs

Requests are scheduled by the algorithm into time intervals $[\bm{s}_{\bm{i}},\bm{f}_{\bm{i}}]$ s.t. $\left(\bm{t}_{\bm{i}}=\bm{f}_{\bm{i}}-\bm{s}_{\bm{i}}\right)$

- Lateness of schedule for request \boldsymbol{i} is
	- If $f_i > d_i$ then request i is late by $L_i = \underbrace{f_i d_i}$; otherwise its lateness $L_i = 0$
- Maximum lateness $\boldsymbol{L} = \max_i \boldsymbol{L} \boldsymbol{i}$

Goal: Find a schedule for **all** requests (values of \boldsymbol{s}_i and \boldsymbol{f}_i for each request \boldsymbol{i}) to minimize the maximum lateness, L .

Scheduling to Minimizing Lateness

• Example:

Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order of processing time $t_j^{}$.

[Earliest deadline first] Consider jobs in ascending order of deadline $\bm{d}_j.$

[Smallest slack] Consider jobs in ascending order of slack $\bm{d}_j \ - \ \bm{t}_j$

Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order of processing time $t_j^{}$.

counterexample

 Will schedule 1 (length 1) before 2 (length 10).2 can only be scheduled at time 1 1 will finish at time 11 >10. Lateness 1.Lateness 0 possible If 1 goes last.

.

[Smallest slack] Consider jobs in ascending order of slack $\bm{d}_j \ - \ \bm{t}_j$

counterexample

Will schedule 2 (slack 0) before 1 (slack 1). 1 can only be scheduled at time 10 1 will finish at time 11 >10. Lateness 9.Lateness 1 possible if 1 goes first.