CSE 421
Introduction to Algorithms

Lecture 4: BFS, DFS Properties/Applications,
Topological Sort

Generic Graph Traversal Algorithm

Given: Graph graph G = (V,E) vertex seV

Find: set R of vertices reachable from sV

Reachable(s):
R« {s}
while thereisa (u,v) € E whereu € Randv ¢ R
Addvto R
return R

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

BFS Tree

Tree gives shortest
paths from start vertex

can label by distances from start Ly

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Undirected Graph Search Application: Connected Components

Want to answer questions of the form:
Given: verticesu and vin G
Is there a path from u to v?

Idea: create array A s.t
A|u| = smallest numbered vertex connected to u

Answer is yes iff Aju| = A|v] Q: Why is this better than
an array Path[u, v]?

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Undirected Graph Search Application: Connected Components

Initial state: all v unvisited
fors<—1ton do
if state(s) # fully-explored then
BFS(s): setting A|u| <—s for each u found
(and marking u visited/fully-explored)

endfor

Total cost: O(n + m)

* Each vertex is touched once in outer procedure and edges examined in
different BFS runs are disjoint

* Works also with Depth First Search ...

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

DFS(u) — Recursive Procedure

Global Initialization: mark all vertices "unvisited"
DFS(u)

mark u “visited” and add uto R

for each edge (u, v)

if (v is “unvisited”)
DFS(v)
end for
mark u “fully-explored”

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Properties of DFS(s)

Like BFS(s):
* DFS(s) visits x iff there is a path in G from s to x
* Edges into undiscovered vertices define depth-first spanning tree of G

Unlike the BFS tree:
e the DFS spanning tree isn't minimum depth
e its levels don't reflect min distance from the root
* non-tree edges never join vertices on the same or adjacent levels

BUT...

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Non-tree edges in DFS tree of undirected graphs

Claim: All non-tree edges join a vertex and one of its
descendents/ancestors in the DFS tree

* In other words ... No “cross edges”.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

No cross edges in DFS on undirected graphs

Claim: During DFS(x) every vertex marked “visited” is a descendant of x
inthe DFS tree T

Claim: For every x, y inthe DFS tree T, if (x,y) isan edgenotinT
then one of x or y is an ancestor of the otherin T

Proof:
* One of DFS(x) or DFS(y) is called first, suppose WLOG that DFS(x) was
called before DFS(y)
* During DFS(x), the edge (x, y) is examined
* Since (x,y) is a not an edge of T, y was already visited when edge (x, y) was

examined during DFS(x)
* Therefore y was visited during the call to DFS(x) so y is a descendant of x. ®

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Applications of Graph Traversal: Bipartiteness Testing

Definition: An undirected graph G is bipartite iff we can color its
vertices red and green so each edge has different color endpoints

Input: Undirected graph G
Goal: If G is bipartite, output a coloring;
otherwise, output “NOT Bipartite”.

Fact: Graph G contains an odd-length cycle = it is not bipartite

Just coloring the cycle part On a cycle the two colors must alternate, so

of G is impossible s green every 2" vertex
* red every 2" vertex

Can’t have either if length is not divisible by 2.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Applications of Graph Traversal: Bipartiteness Testing

WLOG (“without loss of generality”): Can assume that G is connected
* Otherwise run on each component

Simple idea: start coloring nodes starting at a given node s
 Color s red
 Color all neighbors of s green
 Color all their neighbors red, etc.
e If you ever hit a node that was already colored
* the same color as you want to color it, ignore it
* the opposite color, output “NOT Bipartite” and halt

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

BFS gives Bipartiteness

Run BFS assigning all vertices from layer L, the color i mod 2
* i.e., red if they are in an even layer, green if in an odd layer

* if no edge joining two vertices of the same color
 then it is a good coloring

» otherwise
* there is a bad edge; output “Not Bipartite”

Why is that “Not Bipartite” output correct?

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Why does BFS work for Bipartiteness?

Recall: All edges join vertices on the same or adjacent BFS layers
= Any bad edge must join two vertices u and v in the same layer

Say the layer withu and vis L;
u and v have common ancestor at some level L; fori < j

Odd cycle of length 2(j — i) + 1 j—i
= Not Bipartite

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

DFS(v) for a directed graph

DFS(v)

/ Wedges

forward r

edges
back edges @

!
®

@ Du @ <« cross edges

\@L """"" NO — cross edges

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Properties of Directed DFS

e Before DFS(s) returns, it visits all previously unvisited vertices
reachable via directed paths from s

* Every cycle contains a back edge in the DFS tree

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Strongly Connected Components of Directed Graphs

Defn: Vertices u and v are strongly connected iff they are on a directed cycle (there are
paths from u to v and from v to u).

Defn: Can partition vertices of any directed graph into strongly connected components:
1. all pairs of vertices in the same component are strongly connected
2. can’t merge components and keep property 1

» Strongly connected components can be stored efficiently just like connected components

* Can be found by extending DFS algorithm in O(n + m) time using extra bookkeeping
* We won’t cover the details

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Strongly Connected Components

/ W edges

back edges _.

@ > @ <« cross edges

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Strongly Connected Components

O
. (\@n
/ ©
.

s /

A
©\

@

PAUL G. ALLEN SCHOOL

Strongly Connected Components

>
N \

i ©
Q"

©)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Directed Acyclic Graphs

A directed graph G = (V, E) is acyclic iff it has no directed cycles

Terminology: A directed acyclic graph is also called a DAG

After shrinking the strongly connected components of a directed graph to
single vertices, the result is a DAG

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Topological Sort

Given: a directed acyclic graph (DAG) G = (V,E)

Output: numbering of the vertices of G with distinct numbers from 1 ton
so that edges only go from lower numbered to higher numbered vertices

Applications:
* nodes represent tasks
» edges represent precedence between tasks
* topological sort gives a sequential schedule for solving them

Nice algorithmic paradigm for general directed graphs:

* Process strongly connected components one-by-one in the order given by
topological sort of the DAG you get from shrinking them.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Directed Acyclic Graph

g\? /c%

\C;/

PAUL G. ALLEN SCHOOL

In-degree 0 vertices

Claim: Every DAG has a vertex of in-degree 0

Proof: By contradiction
Suppose every vertex has some incoming edge
Consider following procedure:
while (true) do
v < some predecessor of v

» After n + 1 steps where n = |V| there will be a repeated vertex
 This yields a cycle, contradicting that it is a DAG. =

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Topological Sort

e Can do using DFS

* Alternative simpler idea:
e Any vertex of in-degree 0 can be given number 1 to start
 Remove it from the graph
* Then give a vertex of in-degree 0 number 2
* Etc.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Topological Sort

]

/\?5%

w PAUL G. ALLEN SCHOOL

Topological Sort

Topological Sort

Topological Sort

Topological Sort

Topological Sort

Topological Sort

Topological Sort

Topological Sort

Topological Sort

Topological Sort

Topological Sort

Topological Sort

Topological Sort

Topological Sort

Implementing Topological Sort

* Go through all edges, computing array with in-degree for each vertex
O(m+n)

* Maintain a list of vertices of in-degree 0
 Remove any vertex in list and number it

* When a vertex is removed, decrease in-degree of each neighbor by 1
and add them to the list if their degree drops to 0

Total cost: O(m + n)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

