
CSE 421

Introduction to Algorithms

Lecture 4: BFS, DFS Properties/Applications, 

Topological Sort

1



Generic Graph Traversal Algorithm

Given: Graph graph � = (�, �) vertex ���

Find: set 	 of vertices reachable from ���

Reachable(�):

	� {�}

while there is a , � ∈ � where  ∈ 	 and � ∉ 	

Add � to 	

return 	
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Undirected Graph Search Application: Connected Components

Want to answer questions of the form:

Given: vertices  and � in �

Is there a path from  to �?

Idea: create array � s.t 

�[] = smallest numbered vertex connected to 

Answer is yes iff �[] = �[�]
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Q: Why is this better than  

an array Path[, �]?
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Undirected Graph Search Application: Connected Components

Initial state: all � unvisited

for ��1 to � do                                          

if state(�) ≠ fully-explored then                                 

BFS(�): setting �[] �� for each  found 

(and marking  visited/fully-explored)         

endfor

Total cost: �(� + �)

• Each vertex is touched once in outer procedure and edges examined in 

different BFS runs are disjoint 

• Works also with Depth First Search ...



DFS() – Recursive Procedure

Global Initialization: mark all vertices "unvisited"

DFS()

mark   “visited” and add  to 	

for each edge (, �)

if (� is “unvisited”) 

DFS(�)

end for

mark  “fully-explored”
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Properties of DFS(�)

Like BFS(�):

• DFS(�) visits � iff there is a path in � from � to �

• Edges into undiscovered vertices define depth-first spanning tree of �

Unlike the BFS tree: 

• the DFS spanning tree isn't minimum depth

• its levels don't reflect min distance from the root

• non-tree edges never join vertices on the same or adjacent levels

BUT…
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Non-tree edges in DFS tree of undirected graphs

Claim: All non-tree edges join a vertex and one of its  

descendents/ancestors in the DFS tree

• In other words ... No “cross edges”.
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No cross edges in DFS on undirected graphs

Claim: During DFS(�) every vertex marked “visited” is a descendant of �
in the DFS tree  

Claim: For every �, ! in the DFS tree  ,  if (�, !) is an edge not in  
then one of � or ! is an ancestor of the other in  

Proof:

• One of DFS(�) or DFS(!) is called first, suppose WLOG that DFS(�) was 

called before DFS(!)

• During DFS(�), the edge (�, !) is examined

• Since (�, !) is a not an edge of  , ! was already visited when edge (�, !) was 
examined during DFS(�)

• Therefore ! was visited during the call to DFS(�) so ! is a descendant of �.



Applications of Graph Traversal: Bipartiteness Testing

Definition:  An undirected graph � is bipartite iff we can color its 

vertices red and green so each edge has different color endpoints

Input: Undirected graph �

Goal: If � is bipartite, output a coloring;  

otherwise, output “NOT Bipartite”.

Fact: Graph � contains an odd-length cycle ⇒ it is not bipartite
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On a cycle the two colors must alternate, so 

• green every 2nd vertex 

• red every 2nd vertex

Can’t have either if length is not divisible by 2.

Just coloring the cycle part 

of � is impossible



Applications of Graph Traversal: Bipartiteness Testing

WLOG (“without loss of generality”): Can assume that � is connected

• Otherwise run on each component

Simple idea: start coloring nodes starting at a given node �
• Color � red

• Color all neighbors of � green

• Color all their neighbors red, etc. 

• If you ever hit a node that was already colored

• the same color as you want to color it, ignore it

• the opposite color, output “NOT Bipartite” and halt
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BFS gives Bipartiteness

Run BFS assigning all vertices from layer �# the color # mod �

• i.e., red if they are in an even layer, green if in an odd layer 

• if no edge joining two vertices of the same color 

• then it is a good coloring

• otherwise

• there is a bad edge; output “Not Bipartite”

Why is that “Not Bipartite” output correct?



Why does BFS work for Bipartiteness?

Recall: All edges join vertices on the same or adjacent BFS layers

⇒ Any bad edge must join two vertices  and � in the same layer

Say the layer with  and � is �'

 and � have common ancestor at some level �# for # < '
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Odd cycle of length � ' − # + �

⇒⇒⇒⇒ Not Bipartite

�
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�'
 �

' − #' − #
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DFS(�) for a directed graph
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DFS(�)
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Properties of Directed DFS

• Before DFS(�) returns, it visits all previously unvisited vertices 

reachable via directed paths from �

• Every cycle contains a back edge in the DFS tree
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Strongly Connected Components of Directed Graphs

Defn: Vertices  and � are strongly connected iff they are on a directed cycle (there are 

paths from  to � and from � to ).  

Defn: Can partition vertices of any directed graph into strongly connected components: 

1. all pairs of vertices in the same component are strongly connected

2. can’t merge components and keep property 1

• Strongly connected components can be stored efficiently just like connected components

• Can be found by extending DFS algorithm in �(� + �) time using extra bookkeeping

• We won’t cover the details
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Strongly Connected Components
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Strongly Connected Components
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Directed Acyclic Graphs

A directed graph � = (�, �) is acyclic iff it has no directed cycles

Terminology: A directed acyclic graph is also called a DAG

After shrinking the strongly connected components of a directed graph to 

single vertices, the result is a DAG
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Topological Sort

Given: a directed acyclic graph (DAG) � = (�, �)

Output: numbering of the vertices of � with distinct numbers from � to �

so that edges only go from lower numbered to higher numbered vertices

Applications:

• nodes represent tasks

• edges represent precedence between tasks

• topological sort gives a sequential schedule for solving them 

Nice algorithmic paradigm for general directed graphs:

• Process strongly connected components one-by-one in the order given by 

topological sort of the DAG you get from shrinking them.
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Directed Acyclic Graph
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In-degree 0 vertices

Claim: Every DAG has a vertex of in-degree 0

Proof: By contradiction

Suppose every vertex has some incoming edge

Consider following procedure:

while (true) do

� � some predecessor of �

• After � + � steps where � = |�| there will be a repeated vertex

• This yields a cycle, contradicting that it is a DAG.
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Topological Sort

• Can do using DFS

• Alternative simpler idea:

• Any vertex of in-degree 0 can be given number 1 to start

• Remove it from the graph

• Then give a vertex of in-degree 0 number 2

• Etc. 
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort

36

1

4
3

10

8

9

5

6

7

2



Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Implementing Topological Sort

• Go through all edges, computing array with in-degree for each vertex    

     �(� + �)

• Maintain a list of vertices of in-degree �

• Remove any vertex in list and number it

• When a vertex is removed, decrease in-degree of each neighbor by �

and add them to the list if their degree drops to �

Total cost: �(� + �)
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