CSE 421Introduction to Algorithms

Lecture 4: BFS, DFS Properties/Applications, Topological Sort

FN SCHOOL

Generic Graph Traversal Algorithm

 G iven: G raph graph $G = (V, E)$ vertex $\boldsymbol{s} \! \in \! V$ **Find:** set \boldsymbol{R} of vertices reachable from $\boldsymbol{s} \! \in \! \boldsymbol{V}$

```
Reachable(s):
          R{\leftarrow}\ {\{s\}}while there is a (\boldsymbol{u},\boldsymbol{\nu})\in \boldsymbol{E} where \boldsymbol{u}\in \boldsymbol{R} and \boldsymbol{\nu}\notin \boldsymbol{R}Add \boldsymbol{\nu} to \boldsymbol{R}return \bm{R}
```


Undirected Graph Search Application: Connected Components

Undirected Graph Search Application: Connected Components

```
Initial state: all \boldsymbol{\nu} unvisited
for s \leftarrow 1 to n do
     if state(s) \neq fully-explored then
             BFS(s): setting A[u] \leftarrow s for each u found
                       (and marking \boldsymbol{u} visited/fully-explored)
```
endfor

Total cost: $O(n + m)$

- Each vertex is touched once in outer procedure and edges examined in different BFS runs are disjoint
- Works also with Depth First Search ...

DFS() **– Recursive Procedure**

Global Initialization: mark all vertices "unvisited" $DFS(u)$

```
mark \, \bm{u} \, "visited" and add \bm{u} to \bm{R}for each edge (u, v)if (\boldsymbol{\nu} is "unvisited")
               DFS(v)end formark \boldsymbol{u} "fully-explored"
```
Properties of DFS(s)

Like $BFS(s)$:

- DFS(s) visits x iff there is a path in G from s to x
- Edges into undiscovered vertices define depth-first spanning tree of \boldsymbol{G}

Unlike the BFS tree:

- the DFS spanning tree *isn't* minimum depth
- its levels *don't* reflect min distance from the root
- non-tree edges *never* join vertices on the same or adjacent levelsBUT…

Non-tree edges in DFS tree of undirected graphs

Claim: All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree

• In other words ... No "cross edges".

No cross edges in DFS on undirected graphs

Claim: During DFS(x) every vertex marked "visited" is a descendant of x in the DFS tree \boldsymbol{T}

Claim: For every x, y in the DFS tree T , if (x, y) is an edge *not* in T then one of \bm{x} or \bm{y} is an ancestor of the other in \bm{T} and $\bm{\gamma}$

Proof:

- One of DFS(x) or DFS(y) is called first, suppose WLOG that DFS(x) was called before DFS($\bm{\mathsf{y}}$)
- During DFS (x) , the edge (x, y) is examined
- Since (x, y) is a *not* an edge of T , y was already visited when edge (x, y) was examined during DFS(x)
- Therefore y was visited during the call to $\frac{DFS(x)}{x}$ so y is a descendant of x .

Applications of Graph Traversal: Bipartiteness Testing

Definition: An undirected graph G is bipartite iff we can color its vertices **red** and **green** so each edge has different color endpoints

Input: Undirected graph **Goal:** If G is bipartite, output a coloring; otherwise, output "NOT Bipartite".

Fact: Graph *G* contains an odd-length cycle ⇒ it is not bipartite

•

Just coloring the cycle part of \boldsymbol{G} is impossible

On a cycle the two colors must alternate, so

- •**•** green every 2nd vertex
- **red** every 2nd vertex

Can't have either if length is not divisible by 2.

Applications of Graph Traversal: Bipartiteness Testing

WLOG ("without loss of generality"): Can assume that *G* is connected

• Otherwise run on each component

Simple idea: start coloring nodes starting at a given node

- Color **red**
- Color all neighbors of **green**
- Color all their neighbors **red**, etc*.*
- If you ever hit a node that was already colored
	- the **same** color as you want to color it, ignore it
	- the **opposite** color, output *"*NOT Bipartite*"* and halt

BFS gives Bipartiteness

Run BFS assigning all vertices from layer $\boldsymbol{L}_{\boldsymbol{i}}$ the color \boldsymbol{i} mod $\boldsymbol{2}$

- i.e., **red** if they are in an even layer, **green** if in an odd layer
- if no edge joining two vertices of the same color
	- then it is a good coloring
- otherwise
	- there is a bad edge; output "Not Bipartite"

Why is that "Not Bipartite" output correct?

Why does BFS work for Bipartiteness?

Recall: All edges join vertices on the same or adjacent BFS layers \Rightarrow Any bad edge must join two vertices \boldsymbol{u} and $\boldsymbol{\nu}$ in the same layer

 \boldsymbol{u}

 $\boldsymbol{\mathcal{V}}$

$\mathsf{DFS}(v)$ for a directed graph

Properties of Directed DFS

- Before DFS(s) returns, it visits all previously unvisited vertices reachable via directed paths from **s**
- Every cycle contains a back edge in the DFS tree

Strongly Connected Components of Directed Graphs

Defn: Vertices \boldsymbol{u} and \boldsymbol{v} are strongly connected iff they are on a directed cycle (there are paths from \boldsymbol{u} to \boldsymbol{v} and from \boldsymbol{v} to \boldsymbol{u}).

Defn: Can partition vertices of any directed graph into strongly connected components:

- 1. all pairs of vertices in the same component are strongly connected
- 2. can't merge components and keep property 1
- Strongly connected components can be stored efficiently just like connected components
- Can be found by extending DFS algorithm in $O(\bm n + \bm m)$ time using extra bookkeeping
	- We won't cover the details

PAUL G. ALLEN SCHOOL TER SCIENCE & ENGINEERING

Strongly Connected Components

PAUL G. ALLEN SCHOOL **SCIENCE & ENGINEERING**

Strongly Connected Components

Directed Acyclic Graphs

A directed graph $G = (V, E)$ is acyclic iff it has no directed cycles

Terminology: ^A directed acyclic graph is also called a DAG

After shrinking the strongly connected components of a directed graph to single vertices, the result is a DAG

```
Given: a directed acyclic graph (DAG) G = (V, E)
```
Output: numbering of the vertices of \boldsymbol{G} with distinct numbers from $\boldsymbol{1}$ to \boldsymbol{n} so that edges only go from lower numbered to higher numbered vertices

Applications:

- nodes represent tasks
- edges represent precedence between tasks
- topological sort gives a sequential schedule for solving them

Nice algorithmic paradigm for general directed graphs:

• Process strongly connected components one-by-one in the order given by topological sort of the DAG you get from shrinking them.

Directed Acyclic Graph

In-degree 0 vertices

Claim: Every DAG has a vertex of in-degree 0

Proof: By contradiction

 Suppose every vertex has some incoming edgeConsider following procedure:while (true) do

- $\bm v \leftarrow$ some predecessor of $\bm v$
- After $n + 1$ steps where $n = |V|$ there will be a repeated vertex
	- This yields a cycle, contradicting that it is a DAG.

- Can do using DFS
- Alternative simpler idea:
	- Any vertex of in-degree 0 can be given number 1 to start
	- Remove it from the graph
	- Then give a vertex of in-degree 0 number 2
	- Etc.

PAUL G. ALLEN SCHOOL PUTER SCIENCE & ENGINEERING **OF COI**

PAUL G. ALLEN SCHOOL R SCIENCE & ENGINEERING OF CO

PAUL G. ALLEN SCHOOL R SCIENCE & ENGINEERING OF CO

PAUL G. ALLEN SCHOOL OF CO **SCIENCE & ENGINEERING**

Implementing Topological Sort

- Go through all edges, computing array with in-degree for each vertex $\theta (m + n)$
- Maintain a list of vertices of in-degree $\mathbf 0$
- Remove any vertex in list and number it
- When a vertex is removed, decrease in-degree of each neighbor by $\bf 1$ and add them to the list if their degree drops to $\boldsymbol{0}$

Total cost: $O(m + n)$