
CSE 421

Introduction to Algorithms

Lecture 4: BFS, DFS Properties/Applications,

Topological Sort

1

Generic Graph Traversal Algorithm

Given: Graph graph � = (�, �) vertex ���

Find: set 	 of vertices reachable from ���

Reachable(�):

	� {�}

while there is a , � ∈ � where ∈ 	 and � ∉ 	

Add � to 	

return 	

2

3

BFS Tree

0

1

2

3

4
can label by distances from start

Tree gives shortest

paths from start vertex

��

��

��

��

��

Undirected Graph Search Application: Connected Components

Want to answer questions of the form:

Given: vertices and � in �

Is there a path from to �?

Idea: create array � s.t

�[] = smallest numbered vertex connected to

Answer is yes iff �[] = �[�]

4

Q: Why is this better than

an array Path[, �]?

5

Undirected Graph Search Application: Connected Components

Initial state: all � unvisited

for ��1 to � do

if state(�) ≠ fully-explored then

BFS(�): setting �[] �� for each found

(and marking visited/fully-explored)

endfor

Total cost: �(� + �)

• Each vertex is touched once in outer procedure and edges examined in

different BFS runs are disjoint

• Works also with Depth First Search ...

DFS() – Recursive Procedure

Global Initialization: mark all vertices "unvisited"

DFS()

mark “visited” and add to 	

for each edge (, �)

if (� is “unvisited”)

DFS(�)

end for

mark “fully-explored”

6

7

Properties of DFS(�)

Like BFS(�):

• DFS(�) visits � iff there is a path in � from � to �

• Edges into undiscovered vertices define depth-first spanning tree of �

Unlike the BFS tree:

• the DFS spanning tree isn't minimum depth

• its levels don't reflect min distance from the root

• non-tree edges never join vertices on the same or adjacent levels

BUT…

8

Non-tree edges in DFS tree of undirected graphs

Claim: All non-tree edges join a vertex and one of its

descendents/ancestors in the DFS tree

• In other words ... No “cross edges”.

9

No cross edges in DFS on undirected graphs

Claim: During DFS(�) every vertex marked “visited” is a descendant of �
in the DFS tree

Claim: For every �, ! in the DFS tree , if (�, !) is an edge not in
then one of � or ! is an ancestor of the other in

Proof:

• One of DFS(�) or DFS(!) is called first, suppose WLOG that DFS(�) was

called before DFS(!)

• During DFS(�), the edge (�, !) is examined

• Since (�, !) is a not an edge of , ! was already visited when edge (�, !) was
examined during DFS(�)

• Therefore ! was visited during the call to DFS(�) so ! is a descendant of �.

Applications of Graph Traversal: Bipartiteness Testing

Definition: An undirected graph � is bipartite iff we can color its

vertices red and green so each edge has different color endpoints

Input: Undirected graph �

Goal: If � is bipartite, output a coloring;

otherwise, output “NOT Bipartite”.

Fact: Graph � contains an odd-length cycle ⇒ it is not bipartite

10

On a cycle the two colors must alternate, so

• green every 2nd vertex

• red every 2nd vertex

Can’t have either if length is not divisible by 2.

Just coloring the cycle part

of � is impossible

Applications of Graph Traversal: Bipartiteness Testing

WLOG (“without loss of generality”): Can assume that � is connected

• Otherwise run on each component

Simple idea: start coloring nodes starting at a given node �
• Color � red

• Color all neighbors of � green

• Color all their neighbors red, etc.

• If you ever hit a node that was already colored

• the same color as you want to color it, ignore it

• the opposite color, output “NOT Bipartite” and halt

11

12

BFS gives Bipartiteness

Run BFS assigning all vertices from layer �# the color # mod �

• i.e., red if they are in an even layer, green if in an odd layer

• if no edge joining two vertices of the same color

• then it is a good coloring

• otherwise

• there is a bad edge; output “Not Bipartite”

Why is that “Not Bipartite” output correct?

Why does BFS work for Bipartiteness?

Recall: All edges join vertices on the same or adjacent BFS layers

⇒ Any bad edge must join two vertices and � in the same layer

Say the layer with and � is �'

 and � have common ancestor at some level �# for # < '

13

Odd cycle of length � ' − # + �

⇒⇒⇒⇒ Not Bipartite

�

�#

�'
 �

' − #' − #

�

DFS(�) for a directed graph

14

1

2
10

9

8

3

4

5

6

7

11

12

13

DFS(�)

15

back edges

1

2
10

9

8

3

4

5

6

7

11

12

13

tree edges

forward

edges

←←←← cross edges

NO →→→→ cross edges

Properties of Directed DFS

• Before DFS(�) returns, it visits all previously unvisited vertices

reachable via directed paths from �

• Every cycle contains a back edge in the DFS tree

16

Strongly Connected Components of Directed Graphs

Defn: Vertices and � are strongly connected iff they are on a directed cycle (there are

paths from to � and from � to).

Defn: Can partition vertices of any directed graph into strongly connected components:

1. all pairs of vertices in the same component are strongly connected

2. can’t merge components and keep property 1

• Strongly connected components can be stored efficiently just like connected components

• Can be found by extending DFS algorithm in �(� + �) time using extra bookkeeping

• We won’t cover the details

17

Strongly Connected Components

18

back edges

1

2
10

9

8

3

4

5

6

7

11

12

13

tree edges

forward

edges

←←←← cross edges

10

11

12

9

8

3

4

5

6

7

Strongly Connected Components

19

1

2

13

Strongly Connected Components

20

1

2

13

Directed Acyclic Graphs

A directed graph � = (�, �) is acyclic iff it has no directed cycles

Terminology: A directed acyclic graph is also called a DAG

After shrinking the strongly connected components of a directed graph to

single vertices, the result is a DAG

21

Topological Sort

Given: a directed acyclic graph (DAG) � = (�, �)

Output: numbering of the vertices of � with distinct numbers from � to �

so that edges only go from lower numbered to higher numbered vertices

Applications:

• nodes represent tasks

• edges represent precedence between tasks

• topological sort gives a sequential schedule for solving them

Nice algorithmic paradigm for general directed graphs:

• Process strongly connected components one-by-one in the order given by

topological sort of the DAG you get from shrinking them.

22

Directed Acyclic Graph

23

In-degree 0 vertices

Claim: Every DAG has a vertex of in-degree 0

Proof: By contradiction

Suppose every vertex has some incoming edge

Consider following procedure:

while (true) do

� � some predecessor of �

• After � + � steps where � = |�| there will be a repeated vertex

• This yields a cycle, contradicting that it is a DAG.

24

Topological Sort

• Can do using DFS

• Alternative simpler idea:

• Any vertex of in-degree 0 can be given number 1 to start

• Remove it from the graph

• Then give a vertex of in-degree 0 number 2

• Etc.

25

Topological Sort

26

Topological Sort

27

1

Topological Sort

28

1 2

Topological Sort

29

1

3

2

Topological Sort

30

1

4
3

2

Topological Sort

31

1

4
3

5

2

Topological Sort

32

1

4
3

5

6

2

Topological Sort

33

1

4
3

5

6

7

2

Topological Sort

34

1

4
3

8

5

6

7

2

Topological Sort

35

1

4
3

8

9

5

6

7

2

Topological Sort

36

1

4
3

10

8

9

5

6

7

2

Topological Sort

37

1

4
3

10

8

9

11

5

6

7

2

Topological Sort

38

1

4
3

12

10

8

9

11

5

6

7

2

Topological Sort

39

1

4
3

12

10

8

9

11

13

5

6

7

2

40

Topological Sort

1

4
3

12

10

8

9

11

13

14

5

6

7

2

Implementing Topological Sort

• Go through all edges, computing array with in-degree for each vertex

 �(� + �)

• Maintain a list of vertices of in-degree �

• Remove any vertex in list and number it

• When a vertex is removed, decrease in-degree of each neighbor by �

and add them to the list if their degree drops to �

Total cost: �(� + �)

41

