
CSE 421

Introduction to Algorithms

Lecture 3: Overview, Graph Search

1

2

Measuring efficiency: The RAM model

• RAM = Random Access Machine

• Time ≈ # of instructions executed in an ideal assembly language

• each simple operation (+,*,-,=,if,call) takes one time step

• each memory access takes one time step

3

Complexity analysis

• Problem size �

• Worst-case complexity:

maximum # steps algorithm takes on any input of size �

• Best-case complexity:

minimum # steps algorithm takes on any input of size �

• Average-case complexity:

average # steps algorithm takes on inputs of size �

4

Complexity

• The complexity of an algorithm associates a number �(�), the worst/average-

case/best time the algorithm takes, with each problem size n.

• Mathematically,

• � is a function that maps positive integers giving problem size to positive real

numbers giving number of steps.

• Sometimes we have more than one size parameter

• e.g. �=# of vertices, �=# of edges in a graph.

5

Efficient = Polynomial Time

• Polynomial time

• Running time �(�) � ��� +
 for some �,
, � ≥

• Why polynomial time?

• If problem size grows by at most a constant factor then so does the running

time

• e.g. � �� ≤ � �� � +
 = ����� +
 ≤ �� ��� +
 = �� �(�)

• polynomial-time is exactly the set of running times that have this

property

• Typical running times are small degree polynomials, mostly less than ��, at

worst ��, not ��

6

Complexity

Problem size �

�(�)

O-notation etc

• Given two positive functions � and �

• �(�) is �(�(�)) iff there is a constant � �

so that �(�) is eventually always � � ⋅ �(�)

• �(�) is �(�(�)) iff the ratio �(�)/�(�) goes to as � gets large

• �(�) is �(�(�)) iff there is a constant � > so that � � ≥ � ⋅ �(�) for

infinitely many values of �

• �(�) is �(�(�)) iff �(�) is �(�(�)) and �(�) is �(�(�))

7

Note: The definition of �(�) is �(�(�)) is the same as “�(�) is not �(�(�)) ”

O, o, ΩΩΩΩ, , , , ΘΘΘΘ-notation intuition

8

Ratio �(�)/�(�)

�

� � is...

� � � : ratio eventually

below a line forever

�(� �): ratio goes to 0

�(� �): ratio eventually

above a line forever

�(� �): both � and �

�

 , �, �

!,

Introduction to Algorithms

• Some representative problems

• Variety of techniques we’ll cover

• Seemingly small changes in a problem can require big changes in

how we solve it

9

Some Representative Problems

Interval Scheduling:

• Single resource

• Reservation requests of form:

“Can I reserve it from start time " to finish time �?”
" < �

10

Interval Scheduling

Interval scheduling:

Input: set of jobs with start times and finish times

Goal: find maximum size subset of mutually compatible jobs.

11

Time0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

jobs don’t overlap

Interval Scheduling

Interval scheduling:

Input: set of jobs with start times and finish times

Goal: find maximum size subset of mutually compatible jobs.

12

Time0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

jobs don’t overlap

13

Interval Scheduling

• An optimal solution can be found using a “greedy algorithm”

• Myopic kind of algorithm that seems to have no look-ahead

• Greedy algorithms only work when the problem has a special kind of
structure

• When they do work they are typically very efficient

14

Weighted Interval Scheduling

• Same problem as interval scheduling except that each request % also has
an associated value or weight &%

• &% might be

• amount of money we get from renting out the resource for that time period

• amount of time the resource is being used

Weighted Interval Scheduling

Input: Set of jobs with start times, finish times, and weights

Goal: Find maximum weight subset of mutually compatible jobs.

15

Time0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

16

Weighted Interval Scheduling

Ordinary interval scheduling is a special case of this problem

• Take all weights &% = �

Problem is quite different though

• E.g. one weight might dwarf all others

“Greedy algorithms” don’t work

Solution: “Dynamic Programming”

• builds up optimal solutions from a table of solutions to smaller problems

17

Bipartite Matching

A graph ' = (,) is bipartite iff

• Set (of vertices has two disjoint parts * and +

• Every edge in) joins a vertex from * and a vertex from +

Set , ⊆) is a matching in ' iff no two edges in , share a vertex

Goal: Find a matching , in ' of maximum size.

Differences from stable matching

• limited set of possible partners for each vertex

• sides may not be the same size

• no notion of stability; matching everything may be impossible.

18

Bipartite Matching

Input: Bipartite graph

Goal: Find maximum size matching.

C

1

5

2

A

E

3

B

D 4

19

Bipartite Matching

• Models assignment problems

• * represents customers, + represents salespeople

• * represents professors, + represents courses

• If |*| = |+| = �

• ' has perfect matching iff maximum matching has size �

Solution: polynomial-time algorithm using “augmentation” technique

• Also used for solving more general class of network flow problems

20

Independent Set

Defn: For graph ' = (,) a set / ⊆ (is independent iff no two nodes in / are

joined by an edge

Input: Graph ' = (,)

Goal: Find an independent set / in (of maximum possible size

• Models conflicts and mutual exclusion

21

Independent Set

Input: Graph.

Goal: Find a maximum size independent set.

6

2

5

1

7

3

4

22

Independent Set

Generalizes

• Interval Scheduling

• Vertices in the graph are the requests

• Vertices are joined by an edge if they are not compatible

• Bipartite Matching

• Given bipartite graph ' = ((,)) create new graph '’ = ((’,)’)
(sometimes called the line-graph of ') where

• (’ =)

• Two elements of (’ (which are edges in ') are joined iff they touch

• Independent set / in (’ ⇒ no edges in / touch ⇒ / is matching in '

23

Bipartite Matching Independent Set

1
2

3
4

5

6

7
8

9

1

6 2

3

4
5

8

7

9

' = ((,)) '’ = ((’,)’)

24

Bipartite Matching Independent Set

1
2

3
4

5

6

7
8

9

1

6 2

3

4
5

8

7

9

' = ((,)) '’ = ((’,)’)

25

Independent Set

No polynomial-time algorithm is known

• But to convince someone that there is a large independent set all you’d
only need to tell them what the set is

• they can easily convince themselves that the set is large enough and
independent

• Convincing someone that there isn’t such a set seems much harder

We will show that Independent Set is NP-complete

• Class of all the hardest problems that have the property above

Introduction to Algorithms

• Graph Search/Traversal

26

Undirected Graph G = (V,E)

27

1

2
10

9

8

3

4

5

6

7

11

12

13

Directed Graph G = (V,E)

28

1

2
10

9

8

3

4

5

6

7

11

12

13

Graph Traversal

Learn the basic structure of a graph

Walk from a fixed starting vertex " to find all vertices reachable from "

29

Generic Graph Traversal Algorithm

Given: Graph graph ' = ((,)) vertex "�(

Find: set 2 of vertices reachable from "�(

Reachable("):

2� {"}

while there is a 5, 6 ∈) where 5 ∈ 2 and 6 ∉ 2

Add 6 to 2

return 2

30

31

Generic Traversal Always Works

Claim: At termination, 2 is the set of nodes reachable from "

Proof

�: For every node 6�2 there is a path from " to 6

• Easy induction based on edges found.

�: Suppose there is a node &�2 reachable from " via a path 9

• Take first node 6 on 9 such that 6�2

• Predecessor 5 of 6 in 9 satisfies

• 5 ∈ 2

• 5, 6 ∈)

• But this contradicts the fact that the algorithm exited the while
loop.

"

&

29

5

6

Graph Traversal

Learn the basic structure of a graph

Walk from a fixed starting vertex " to find all vertices reachable from "

Three states of vertices

• unvisited

• visited/discovered (in 2)

• fully-explored (in 2 and all neighbors have been visited)

32

33

Breadth-First Search

Completely explore the vertices in order of their distance from "

Naturally implemented using a queue

BFS(")

Global initialization: mark all vertices “unvisited”

BFS(")

mark " “visited”; 2�{"}; layer :�{"}; % �

while :% not empty

:%;� � �

for each 5�:%

for each edge (5, 6)

if (6 is “unvisited”)

mark 6 “visited”

Add 6 to set 2 and to layer :%;�

mark 5 “fully-explored”

% � % + �

34

35

Properties of BFS

BFS(") visits < iff there is a path in ' from " to <.

Edges followed to undiscovered vertices define a

breadth first spanning tree of '

Layer % in this tree:

:% = set of vertices 5 with shortest path in ' from root " of length %.

36

Properties of BFS

Claim: For undirected graphs:

All edges join vertices on the same or adjacent layers of BFS tree

Proof: Suppose not...

Then there would be vertices (<, =) s.t. <�:% and =�:> and > � % + �.

Then, when vertices adjacent to < are considered in BFS,

= would be added to :%;� and not to :>.

Contradiction.

37

BFS Application: Shortest Paths

0

1

2

3

4
can label by distances from start

Tree gives shortest

paths from start vertex

:

:�

:�

:�

:?

