CSE 421Introduction to Algorithms

Lecture 3: Overview, Graph Search

I EN SCHOOL

Measuring efficiency: The RAM model

- RAM = Random Access Machine
- Time ≈ # of instructions executed in an ideal assembly language
	- each simple operation $(+,^*,\text{-},\text{=},\text{if},\text{call})$ takes one time step
	- each memory access takes one time step

Complexity analysis

- Problem size \bm{n}
	- **Worst-case complexity**:

maximum # steps algorithm takes on any input of size \boldsymbol{n}

• **Best-case complexity:**

minimum # steps algorithm takes on any input of size \boldsymbol{n}

• **Average-case complexity**:

average # steps algorithm takes on inputs of size \boldsymbol{n}

Complexity

- \bullet The complexity of an algorithm associates a number $\bm{T}(\bm{n})$, the worst/averagecase/best time the algorithm takes, with each problem size **ⁿ**.
- Mathematically,
	- \cdot T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.
- Sometimes we have more than one size parameter
	- e.g. n =# of vertices, m =# of edges in a graph.

Efficient = Polynomial Time

- Polynomial time
	- Running time $\bm{T}(\bm{n}) \leq \bm{c}\bm{n}^{\bm{k}} + \bm{d}$ for some $\bm{c}, \bm{d}, \bm{k}~\geq~\bm{0}$
- Why polynomial time?
	- If problem size grows by at most a constant factor then so does the running time
		- e.g. $T(2n) \le c (2n)^k + d = 2^k cn^k + d \le 2^k (cn^k + d) = 2^k T(n)$
		- polynomial-time is exactly the set of running times that have this property
	- Typical running times are small degree polynomials, mostly less than $\boldsymbol{n^3}$, at worst $\boldsymbol{n^6}$ **,** not

O-notation etc

- Given two positive functions \boldsymbol{f} and \boldsymbol{g}
	- $\bm{f}(\bm{n})$ is $\bm{O}(\bm{g}(\bm{n}))$ iff there is a constant \bm{c} $>$ $\bm{0}$

so that $\bm{f}(\bm{n})$ is eventually always $\leq \bm{c} \cdot \bm{g}(\bm{n})$

- $f(n)$ is $\bm{o}(g(n))$ iff the ratio $f(n)/g(n)$ goes to $\bm{0}$ as \bm{n} gets large
- $f(n)$ is $\Omega(g(n))$ iff there is a constant $\varepsilon > 0$ so that $f(n) \geq \varepsilon \cdot g(n)$ for infinitely many values of n
- $\bm{\cdot}$ $f(n)$ is $\bm{\Theta}(g(n))$ iff $f(n)$ is $\bm{O}(g(n))$ and $f(n)$ is $\bm{\Omega}(g(n))$

Note: The definition of $f(n)$ is $\boldsymbol{\Omega}(g(n))$ is the same as " $f(n)$ is $\boldsymbol{\mathsf{not}}\ \boldsymbol{o}(g(n))$ "

O, o, Ω, Θ**-notation intuition**

Introduction to Algorithms

• **Some representative problems**

- Variety of techniques we'll cover
- Seemingly small changes in a problem can require big changes in how we solve it

Some Representative Problems

Interval Scheduling:

- Single resource
- Reservation requests of form:

"Can I reserve it from start time s to finish time f ?"

 $s < f$

JEG. ALLEN SCHOOL R SCIENCE & ENGINEERING

Interval Scheduling

Interval scheduling:

jobs don't overlap

Input: set of jobs with start times and finish times

Goal: find maximum size subset of mutually compatible jobs.

Interval Scheduling

Interval scheduling:

jobs don't overlap

Input: set of jobs with start times and finish times

Goal: find maximum size subset of mutually compatible jobs.

Interval Scheduling

- An optimal solution can be found using a "greedy algorithm"
	- Myopic kind of algorithm that seems to have no look-ahead
	- Greedy algorithms only work when the problem has a special kind of structure
	- When they do work they are typically very efficient

Weighted Interval Scheduling

- Same problem as interval scheduling except that each request \boldsymbol{i} also has an associated value or weight \bm{w}_i
	- \boldsymbol{w}_{i} might be
		- amount of money we get from renting out the resource for that time period
		- amount of time the resource is being used

Weighted Interval Scheduling

Input: Set of jobs with start times, finish times, and weights**Goal:** Find maximum weight subset of mutually compatible jobs.

Weighted Interval Scheduling

Ordinary interval scheduling is a special case of this problem

• Take all weights $w_i = 1$

Problem is quite different though

• E.g. one weight might dwarf all others

"Greedy algorithms" don't work

Solution: "Dynamic Programming"

• builds up optimal solutions from a table of solutions to smaller problems

Bipartite Matching

A graph ${\boldsymbol G} = ({\boldsymbol V}, {\boldsymbol E})$ is bipartite iff

- Set \boldsymbol{V} of vertices has two disjoint parts \boldsymbol{X} and \boldsymbol{Y}
- Every edge in \boldsymbol{E} joins a vertex from \boldsymbol{X} and a vertex from \boldsymbol{Y}

Set $M \subseteq E$ is a matching in G iff no two edges in M share a vertex

Goal: Find a matching M in G of maximum size.

Differences from stable matching

- limited set of possible partners for each vertex
- sides may not be the same size
- no notion of stability; matching everything may be impossible.

Bipartite Matching

Input: Bipartite graph

Goal: Find maximum size matching.

Bipartite Matching

- Models assignment problems
	- \boldsymbol{X} represents customers, \boldsymbol{Y} represents salespeople
	- \boldsymbol{X} represents professors, \boldsymbol{Y} represents courses
- If $|X| = |Y| = n$
	- \bm{G} has perfect matching iff maximum matching has size \bm{n}

Solution: polynomial-time algorithm using "augmentation" technique

• Also used for solving more general class of network flow problems

Defn: For graph $G = (V, E)$ a set $I \subseteq V$ is independent iff no two nodes in I are joined by an edge

 $\textsf{Input:}$ Graph $\textbf{\textit{G}} = (\textbf{\textit{V}}, \textbf{\textit{E}})$

Goal: Find an independent set **I** in **V** of maximum possible size

• Models conflicts and mutual exclusion

Input: Graph.

Goal: Find a maximum size independent set.

Generalizes

- **Interval Scheduling**
	- Vertices in the graph are the requests
	- Vertices are joined by an edge if they are **not** compatible

• **Bipartite Matching**

- Given bipartite graph $G = (V, E)$ create new graph $G' = (V', E')$ (sometimes called the line-graph of \bm{G}) where
	- $V' = E$
	- Two elements of V' (which are edges in G) are joined iff they touch
- Independent set I in $V' \Rightarrow$ no edges in I touch $\Rightarrow I$ is matching in G

Bipartite Matching bigger independent Set

Bipartite Matching bigger independent Set

No polynomial-time algorithm is known

- But to convince someone that there is a large independent set all you'd only need to tell them what the set is
	- they can easily convince themselves that the set is large enough and independent
- Convincing someone that there isn't such a set seems much harder
- We will show that **Independent Set** is NP-complete
	- Class of all the hardest problems that have the property above

Introduction to Algorithms

• **Graph Search/Traversal**

Undirected Graph G = (V,E)

PAUL G. ALLEN SCHOOL UTER SCIENCE & ENGINEERING

Directed Graph G = (V,E)

PAUL G. ALLEN SCHOOL **SCIENCE & ENGINEERING**

Learn the basic structure of a graph

Walk from a fixed starting vertex \bm{s} to find all vertices reachable from \bm{s}

Generic Graph Traversal Algorithm

 G iven: Graph graph $\boldsymbol{G} = (\boldsymbol{V}, \boldsymbol{E})$ vertex $\boldsymbol{s} \! \in \! \boldsymbol{V}$ **Find:** set \boldsymbol{R} of vertices reachable from $\boldsymbol{s} \! \in \! \boldsymbol{V}$

```

R{\leftarrow}\left\{s\right\}while there is a (\boldsymbol{u}, \boldsymbol{\nu}) \in E where \boldsymbol{u} \in R and \boldsymbol{\nu} \notin RAdd \boldsymbol{\nu} to \boldsymbol{R}return \boldsymbol{R}
```
Generic Traversal Always Works

Claim: At termination, \boldsymbol{R} is the set of nodes reachable from \boldsymbol{s}

Proof

- \subseteq : For every node $\boldsymbol{v} \in \boldsymbol{R}$ there is a path from \boldsymbol{s} to \boldsymbol{v}
	- Easy induction based on edges found.
- \supseteq : Suppose there is a node \bm{w} ∉ **R** reachable from \bm{s} via a path \bm{P}
	- Take first node \boldsymbol{v} on \boldsymbol{P} such that \boldsymbol{v} \in \boldsymbol{R}
	- Predecessor \boldsymbol{u} of \boldsymbol{v} in \boldsymbol{P} satisfies
		- $u \in R$
		- $(u, v) \in E$
	- But this contradicts the fact that the algorithm exited the while $loop.$

Graph Traversal

Learn the basic structure of a graph

Walk from a fixed starting vertex \bm{s} to find all vertices reachable from \bm{s}

Three states of vertices

- **unvisited**
- **visited/discovered** (in R)
- **fully-explored** (in R and all neighbors have been visited)

Breadth-First Search

Completely explore the vertices in order of their distance from s

Naturally implemented using a queue

$BFS(s)$

Global initialization: mark all vertices "unvisited" $BFS(s)$ mark \boldsymbol{s} "visited"; $\boldsymbol{R} {\leftarrow} \{ \boldsymbol{s} \}$; layer $\boldsymbol{L_0}{\leftarrow} \{ \boldsymbol{s} \}$; $\boldsymbol{i} \leftarrow \boldsymbol{0}$ while $\boldsymbol{L}_{\boldsymbol{i}}$ not empty $\boldsymbol{L_{i+1}} \leftarrow \varnothing$ for each $u \in L_i$ for each edge $(\boldsymbol{u}, \boldsymbol{v})$ if ($\bm\nu$ is "unvisited") mark $\boldsymbol{\nu}$ "visited" Add v to set R and to layer L_{i+1} mark \bm{u} "fully-explored" $i \leftarrow i + 1$

Properties of BFS

BFS(s) visits \bm{x} iff there is a path in \bm{G} from \bm{s} to $\bm{x}.$

Edges followed to undiscovered vertices define a breadth first spanning tree of \boldsymbol{G}

Layer *in this tree:*

 $\boldsymbol{L}_{\boldsymbol{i}}$ = set of vertices \boldsymbol{u} with shortest path in \boldsymbol{G} from root \boldsymbol{s} of length \boldsymbol{i} .

Properties of BFS

Claim: For undirected graphs:

All edges join vertices on the same or adjacent layers of BFS tree

Proof: Suppose not...

Then there would be vertices (\pmb{x},\pmb{y}) s.t. $\pmb{x}\!\in\!\pmb{L}_{\pmb{i}}$ and $\pmb{y}\!\in\!\pmb{L}_{\pmb{j}}$ and $\pmb{j}\!>\pmb{i}+\pmb{1}.$

Then, when vertices adjacent to \bm{x} are considered in BFS, \boldsymbol{y} would be added to $\boldsymbol{L}_{\boldsymbol{i+1}}$ and not to $\boldsymbol{L}_{\boldsymbol{j}}.$

Contradiction.

BFS Application: Shortest Paths

