CSE 421 Introduction to Algorithms

Lecture 3: Overview, Graph Search

W PAUL G. ALLEN SCHOOL of computer science & engineering

Measuring efficiency: The RAM model

- RAM = Random Access Machine
- Time ≈ # of instructions executed in an ideal assembly language
 - each simple operation (+,*,-,=,if,call) takes one time step
 - each memory access takes one time step

Complexity analysis

- Problem size *n*
 - Worst-case complexity:

maximum # steps algorithm takes on any input of size *n*

• Best-case complexity:

minimum # steps algorithm takes on any input of size *n*

• Average-case complexity:

average # steps algorithm takes on inputs of size n

Complexity

- The complexity of an algorithm associates a number T(n), the worst/averagecase/best time the algorithm takes, with each problem size **n**.
- Mathematically,
 - *T* is a function that maps positive integers giving problem size to positive real numbers giving number of steps.
- Sometimes we have more than one size parameter
 - e.g. *n*=# of vertices, *m*=# of edges in a graph.

Efficient = Polynomial Time

- Polynomial time
 - Running time $T(n) \leq cn^k + d$ for some $c, d, k \geq 0$
- Why polynomial time?
 - If problem size grows by at most a constant factor then so does the running time
 - e.g. $T(2n) \le c \ (2n)^k + d = 2^k cn^k + d \le 2^k (cn^k + d) = 2^k T(n)$
 - polynomial-time is exactly the set of running times that have this property
 - Typical running times are small degree polynomials, mostly less than n^3 , at worst n^6 , not n^{100}

O-notation etc

- Given two positive functions *f* and *g*
 - f(n) is O(g(n)) iff there is a constant c > 0

so that f(n) is eventually always $\leq c \cdot g(n)$

- f(n) is o(g(n)) iff the ratio f(n)/g(n) goes to 0 as n gets large
- f(n) is $\Omega(g(n))$ iff there is a constant $\varepsilon > 0$ so that $f(n) \ge \varepsilon \cdot g(n)$ for infinitely many values of n
- f(n) is $\Theta(g(n))$ iff f(n) is O(g(n)) and f(n) is $\Omega(g(n))$

Note: The definition of f(n) is $\Omega(g(n))$ is the same as "f(n) is **not** o(g(n)) "

O, **o**, Ω , Θ -notation intuition

Introduction to Algorithms

Some representative problems

- Variety of techniques we'll cover
- Seemingly small changes in a problem can require big changes in how we solve it

Some Representative Problems

Interval Scheduling:

- Single resource
- Reservation requests of form:

"Can I reserve it from start time s to finish time f?"

s < f

W PAUL G. ALLEN SCHOOL of computer science & engineering

Interval Scheduling

Interval scheduling:

jobs don't overlap

Input: set of jobs with start times and finish times

Goal: find maximum size subset of mutually compatible jobs.

Interval Scheduling

Interval scheduling:

jobs don't overlap

Input: set of jobs with start times and finish times

Goal: find maximum size subset of mutually compatible jobs.

Interval Scheduling

- An optimal solution can be found using a "greedy algorithm"
 - Myopic kind of algorithm that seems to have no look-ahead
 - Greedy algorithms only work when the problem has a special kind of structure
 - When they do work they are typically very efficient

Weighted Interval Scheduling

- Same problem as interval scheduling except that each request *i* also has an associated value or weight w_i
 - w_i might be
 - amount of money we get from renting out the resource for that time period
 - amount of time the resource is being used

Weighted Interval Scheduling

Input: Set of jobs with start times, finish times, and weightsGoal: Find maximum weight subset of mutually compatible jobs.

Weighted Interval Scheduling

Ordinary interval scheduling is a special case of this problem

• Take all weights $w_i = 1$

Problem is quite different though

• E.g. one weight might dwarf all others

"Greedy algorithms" don't work

Solution: "Dynamic Programming"

• builds up optimal solutions from a table of solutions to smaller problems

A graph G = (V, E) is bipartite iff

- Set **V** of vertices has two disjoint parts **X** and **Y**
- Every edge in *E* joins a vertex from *X* and a vertex from *Y*

Set $M \subseteq E$ is a matching in G iff no two edges in M share a vertex

Goal: Find a matching *M* in *G* of maximum size.

Differences from stable matching

- limited set of possible partners for each vertex
- sides may not be the same size
- no notion of stability; matching everything may be impossible.

Input: Bipartite graph

Goal: Find maximum size matching.

- Models assignment problems
 - X represents customers, Y represents salespeople
 - X represents professors, Y represents courses
- If |X| = |Y| = n
 - G has perfect matching iff maximum matching has size n

Solution: polynomial-time algorithm using "augmentation" technique

• Also used for solving more general class of network flow problems

Independent Set

Defn: For graph G = (V, E) a set $I \subseteq V$ is independent iff no two nodes in I are joined by an edge

Input: Graph G = (V, E)

Goal: Find an independent set *I* in *V* of maximum possible size

• Models conflicts and mutual exclusion

Input: Graph.

Goal: Find a maximum size independent set.

Independent Set

Generalizes

- Interval Scheduling
 - Vertices in the graph are the requests
 - Vertices are joined by an edge if they are **not** compatible

• Bipartite Matching

- Given bipartite graph G = (V, E) create new graph G' = (V', E')(sometimes called the line-graph of G) where
 - V' = E
 - Two elements of V' (which are edges in G) are joined iff they touch
- Independent set I in $V' \Rightarrow$ no edges in I touch $\Rightarrow I$ is matching in G

Independent Set

Independent Set

Independent Set

No polynomial-time algorithm is known

- But to convince someone that there is a large independent set all you'd only need to tell them what the set is
 - they can easily convince themselves that the set is large enough and independent
- Convincing someone that there isn't such a set seems much harder

We will show that **Independent Set** is NP-complete

• Class of all the hardest problems that have the property above

Introduction to Algorithms

• Graph Search/Traversal

Undirected Graph G = (V,E)

PAUL G. ALLEN SCHOOL of computer science & engineering

Directed Graph G = (V,E)

PAUL G. ALLEN SCHOOL of computer science & engineering

Learn the basic structure of a graph

Walk from a fixed starting vertex s to find all vertices reachable from s

Generic Graph Traversal Algorithm

Given: Graph graph G = (V, E) vertex $s \in V$ **Find:** set **R** of vertices reachable from $s \in V$

```
Reachable(s):

R \leftarrow \{s\}

while there is a (u, v) \in E where u \in R and v \notin R

Add v to R

return R
```

Generic Traversal Always Works

Claim: At termination, R is the set of nodes reachable from s

Proof

- \subseteq : For every node $v \in \mathbb{R}$ there is a path from s to v
 - Easy induction based on edges found.
- \supseteq : Suppose there is a node $w \notin R$ reachable from s via a path P
 - Take first node v on P such that $v \notin R$
 - Predecessor u of v in P satisfies
 - $u \in \mathbf{R}$
 - $(u, v) \in E$
 - But this contradicts the fact that the algorithm exited the while loop. ■

Graph Traversal

Learn the basic structure of a graph

Walk from a fixed starting vertex s to find all vertices reachable from s

Three states of vertices

- unvisited
- visited/discovered (in R)
- fully-explored (in *R* and all neighbors have been visited)

Breadth-First Search

Completely explore the vertices in order of their distance from s

Naturally implemented using a queue

BFS(s)

Global initialization: mark all vertices "unvisited" BFS(*s*) mark *s* "visited"; $R \leftarrow \{s\}$; layer $L_0 \leftarrow \{s\}$; $i \leftarrow 0$ while *L_i* not empty $L_{i+1} \leftarrow \emptyset$ for each $u \in L_i$ for each edge (u, v)if (**v** is "unvisited") mark v "visited" Add v to set **R** and to layer L_{i+1} mark *u* "fully-explored" $i \leftarrow i + 1$

Properties of BFS

BFS(s) visits x iff there is a path in G from s to x.

Edges followed to undiscovered vertices define a breadth first spanning tree of *G*

Layer *i* in this tree:

 L_i = set of vertices u with shortest path in G from root s of length i.

Properties of BFS

Claim: For undirected graphs:

All edges join vertices on the same or adjacent layers of BFS tree

Proof: Suppose not...

Then there would be vertices (x, y) s.t. $x \in L_i$ and $y \in L_j$ and j > i + 1.

Then, when vertices adjacent to x are considered in BFS, y would be added to L_{i+1} and not to L_j .

Contradiction.

BFS Application: Shortest Paths

PAUL G. ALLEN SCHOOL of computer science & engineering