
CSE 421

Introduction to Algorithms

Lecture 3: Overview, Graph Search
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Measuring efficiency: The RAM model

• RAM = Random Access Machine

• Time ≈ # of instructions executed in an ideal assembly language

• each simple operation (+,*,-,=,if,call) takes one time step

• each memory access takes one time step
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Complexity analysis

• Problem size �

• Worst-case complexity: 

maximum # steps algorithm takes on any input of size �

• Best-case complexity:

minimum # steps algorithm takes on any input of size �

• Average-case complexity: 

average # steps algorithm takes on inputs of size �
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Complexity

• The complexity of an algorithm associates a number �(�), the worst/average-

case/best time the algorithm takes, with each problem size n.

• Mathematically,

• � is a function that maps positive integers giving problem size to positive real 

numbers giving number of steps.

• Sometimes we have more than one size parameter

• e.g. �=# of vertices, �=# of edges in a graph. 
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Efficient = Polynomial Time

• Polynomial time

• Running time �(�) � ��� + 
 for some �, 
, � ≥  


• Why polynomial time?

• If problem size grows by at most a constant factor then so does the running 

time

• e.g. � �� ≤ � �� � + 
 = ����� + 
 ≤ �� ��� + 
 = �� �(�)

• polynomial-time is exactly the set of running times that have this 

property

• Typical running times are small degree polynomials, mostly less than ��, at 

worst ��, not ��





6

Complexity

Problem size  �

�(�)



O-notation etc

• Given two positive functions � and �

• �(�) is �(�(�))  iff there is a constant � � 


so that �(�) is eventually always � � ⋅ �(�)

• �(�) is �(�(�)) iff the ratio �(�)/�(�) goes to 
 as � gets large

• �(�) is �(�(�)) iff there is a constant � > 
 so that � � ≥ � ⋅ �(�) for 

infinitely many values of �

• �(�) is �(�(�)) iff �(�) is �(�(�)) and �(�) is �(�(�)) 
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Note: The definition of �(�) is �(�(�)) is the same as “�(�) is not �(�(�)) ”



O, o, ΩΩΩΩ, , , , ΘΘΘΘ-notation intuition
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Ratio �(�)/�(�)

�

� � is...

� � � : ratio eventually    

below a line forever

�(� � ): ratio goes to 0

�(� � ): ratio eventually    

above a line forever

�(� � ): both � and �

�

 , �, �

!,  



Introduction to Algorithms

• Some representative problems

• Variety of techniques we’ll cover

• Seemingly small changes in a problem can require big changes in 

how we solve it
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Some Representative Problems

Interval Scheduling:

• Single resource

• Reservation requests of form:

“Can I reserve it from start time " to finish time �?”
" <  �
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Interval Scheduling

Interval scheduling:

Input: set of jobs with start times and finish times

Goal: find maximum size subset of mutually compatible jobs.
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Interval Scheduling

• An optimal solution can be found using a “greedy algorithm”

• Myopic kind of algorithm that seems to have no look-ahead

• Greedy algorithms only work when the problem has a special kind of 
structure

• When they do work they are typically very efficient
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Weighted Interval Scheduling

• Same problem as interval scheduling except that each request % also has 
an associated value or weight &%

• &% might be

• amount of money we get from renting out the resource for that time period

• amount of time the resource is being used



Weighted Interval Scheduling

Input: Set of jobs with start times, finish times, and weights

Goal: Find maximum weight subset of mutually compatible jobs.
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Weighted Interval Scheduling

Ordinary interval scheduling is a special case of this problem

• Take all weights &% = �

Problem is quite different though

• E.g. one weight might dwarf all others

“Greedy algorithms” don’t work

Solution: “Dynamic Programming” 

• builds up optimal solutions from a table of solutions to smaller problems
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Bipartite Matching

A graph ' = (, )  is bipartite iff

• Set ( of vertices has two disjoint parts * and +

• Every edge in ) joins a vertex from * and a vertex from +

Set , ⊆ ) is a matching in ' iff no two edges in , share a vertex

Goal: Find a matching , in ' of maximum size.

Differences from stable matching 

• limited set of possible partners for each vertex

• sides may not be the same size

• no notion of stability; matching everything may be impossible.
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Bipartite Matching

Input:  Bipartite graph

Goal: Find maximum size matching.
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Bipartite Matching

• Models assignment problems

• * represents customers, + represents salespeople

• * represents professors, + represents courses

• If |*| = |+| = � 

• ' has perfect matching iff maximum matching has size �

Solution: polynomial-time algorithm using “augmentation” technique 

• Also used for solving more general class of network flow problems
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Independent Set

Defn: For graph ' = (, ) a set / ⊆ ( is independent iff no two nodes in / are 

joined by an edge

Input: Graph ' = (, )

Goal: Find an independent set / in ( of maximum possible size

• Models conflicts and mutual exclusion
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Independent Set

Input: Graph.

Goal: Find a maximum size independent set.
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Independent Set

Generalizes

• Interval Scheduling

• Vertices in the graph are the requests

• Vertices are joined by an edge if they are not compatible

• Bipartite Matching

• Given bipartite graph ' = ((, )) create new graph '’ = ((’, )’) 
(sometimes called the line-graph of ') where

• (’ = )

• Two elements of (’ (which are edges in ') are joined iff they touch

• Independent set / in (’ ⇒ no edges in / touch ⇒ / is matching in '
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Independent Set

No polynomial-time algorithm is known

• But to convince someone that there is a large independent set all you’d 
only need to tell them what the set is

• they can easily convince themselves that the set is large enough and 
independent

• Convincing someone that there isn’t such a set seems much harder

We will show that Independent Set is NP-complete

• Class of all the hardest problems that have the property above



Introduction to Algorithms

• Graph Search/Traversal
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Undirected Graph G = (V,E)
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Directed Graph G = (V,E)
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Graph Traversal

Learn the basic structure of a graph

Walk from a fixed starting vertex " to find all vertices reachable from "
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Generic Graph Traversal Algorithm

Given: Graph graph ' = ((, )) vertex "�(

Find: set 2 of vertices reachable from "�(

Reachable("):

2� {"}

while there is a 5, 6 ∈ ) where 5 ∈ 2 and 6 ∉ 2

Add 6 to 2

return 2
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Generic Traversal Always Works

Claim: At termination, 2 is the set of nodes reachable from "

Proof

�: For every node 6�2 there is a path from " to 6

• Easy induction based on edges found.

�: Suppose there is a node &�2 reachable from " via a path 9

• Take first node 6 on 9 such that 6�2

• Predecessor 5 of 6 in 9 satisfies

• 5 ∈ 2

• 5, 6 ∈ )

• But this contradicts the fact that the algorithm exited the while 
loop. 

"

&
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Graph Traversal

Learn the basic structure of a graph

Walk from a fixed starting vertex " to find all vertices reachable from "

Three states of vertices

• unvisited

• visited/discovered  (in 2)

• fully-explored (in 2 and all neighbors have been visited)
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Breadth-First Search

Completely explore the vertices in order of their distance from "

Naturally implemented using a queue



BFS(")

Global initialization: mark all vertices “unvisited”

BFS(") 

mark " “visited”; 2�{"}; layer :
�{"}; % � 


while :% not empty

:%;� � �

for each 5�:%

for each edge (5, 6)

if (6 is “unvisited”) 

mark 6 “visited”

Add 6 to set 2 and to layer :%;�

mark 5 “fully-explored”

% � % + �
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Properties of BFS

BFS(") visits < iff there is a path in ' from " to <.

Edges followed to undiscovered vertices define a                                             

breadth first spanning tree of '

Layer % in this tree: 

:% = set of vertices 5 with shortest path in ' from root " of length %.
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Properties of BFS

Claim: For undirected graphs:                                                                 

All edges join vertices on the same or adjacent layers of BFS tree

Proof: Suppose not...

Then there would be vertices (<, =) s.t. <�:% and =�:> and > � % + �.

Then, when vertices adjacent to < are considered in BFS,                                

= would be added to :%;� and not to :>.

Contradiction.
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BFS Application: Shortest Paths
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