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Announcements

We had to fix HW6 P3’s statement a few times.

We think we’ve got it now (it says “version 3” in red on the pdf).

Holiday on Monday! 

We’ll have an announcement about office hours tonight.

You’ll get exam solutions over the long weekend.



Closing The Loop

Feedback on homeworks

It’s hard to interpret tone over text
Especially when one person is in “technical statement mode” and the other isn’t.

And to you it’s your work

I’ve asked TAs to be cognizant of that.

We’re tweaking some things on our end to try to make it easier for TAs 
to give feedback

Late Policy

Hope was to be more granular; some it’s working that way for, some it 
isn’t. 



Closing The Loop

We’re going to keep the Wednesday deadlines.

It’s chosen intentionally to work with sections 

You wrap-up topic on Wednesday, start practicing new topic in the new 
homework and section on Thursday. 

We’re very glad to hear sections are working!

If you haven’t been going, please consider starting.

Especially if you are struggling with homework. It’s practice on similar 
problems!



Flows

A flow moves units of water from 𝑠 to 𝑡.

Water can only be created at 𝑠 and only disappear at 𝑡.

And you cannot move more water than the capacity on any edge.
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What’s a Cut?

For directed graphs (like we have here)

An (𝑠, 𝑡)-cut, is a split of the vertices into two sets (𝐴, 𝐵)

So that 𝑠 is in 𝐴, 𝑡 is in 𝐵, 
and every other vertex is in exactly one of 𝐴 and B.

The capacity of a cut (or size of a cut) is the capacity of the edges going 
from 𝐴 to 𝐵 (don’t count capacity from 𝐵 to 𝐴).



Another Example

Residual

Flow
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Max Flow-Min Cut Theorem

The value of the maximum flow from 𝑠 to 𝒕 is equal to 

the value of the minimum cut separating 𝒔 and 𝒕.

Max-Flow-Min-Cut Theorem

The full proof is VERY notation heavy. 

Focus on the words and intuition. The notation is there to support your 

intuition; the notation is not the main point.

We’re going to skip a few steps for the sake of minimizing notation. See 

any textbook for all the details.



Some notation (more formally)

Let 𝑓 be a flow.

For an edge 𝑒, 𝑓(𝑒) is the flow on 𝑒. 

val 𝑓 is the sum of flow leaving 𝑠 (equivalently entering 𝑡).

For a cut (𝐴, 𝐵), cap 𝐴, 𝐵 = σ𝑒:𝑒= 𝑢,𝑣 ,𝑢∈𝐴,𝑣∈𝐵 𝑐(𝑒)
i.e., the sum of the capacities on edges going from 𝐴 to 𝐵.

Direction matters!

Notice the capacity of a cut is independent of any particular flow. It’s a 
property of the original graph, not the flow or the residual graph.





Step 1: The Flow Goes Somewhere

Intuitively, the net-flow for every cut is the same as the net flow for the 
cut (𝑠, 𝑉 ∖ {𝑠}). 

Why? Well the flow has to go somewhere! It can only disappear at 𝑡. 

Why care? It’s a technical observation we’ll need later.

For every 𝑠-𝑡 cut, A, B :

val 𝑓 = 𝑓𝑜𝑢𝑡 𝐴 − 𝑓𝑖𝑛 𝐴 =෍
𝑒= 𝑢,𝑣 :𝑢∈𝐴,𝑣∈𝐵

𝑓 𝑒 −෍
𝑒= 𝑣,𝑢 :𝑢∈𝐴,𝑣∈𝐵

𝑓 𝑒





Step 2: Cuts limit flows (‘weak duality’)

Cuts limit flows! Intuition: to get the flow to 𝑡 it has to “all get through” 
every cut. So you can’t have a flow of value more than any given cut.

Proof: 

val 𝑓 = 𝑓𝑜𝑢𝑡 𝐴 − 𝑓𝑖𝑛 𝐴 ≤ 𝑓𝑜𝑢𝑡 𝐴 = σ𝑒= 𝑢,𝑣 :𝑢∈𝐴,𝑣∈𝐵 𝑓 𝑒

≤ σ𝑒= 𝑢,𝑣 :𝑢∈𝐴,𝑣∈𝐵 𝑐 𝑒 = cap(𝐴, 𝐵)

Let 𝑓 be any 𝑠-𝑡 flow, and (𝐴, 𝐵) be any 𝑠-𝑡 cut. 

Then val 𝑓 ≤ cap(𝐴, 𝐵)



Step 3: Cuts are the only things that limit 
flows

Intuition: going from 𝐴∗ → 𝐵∗, you’re saturated; 𝐵∗ → 𝐴∗ is unused.

Sketch:

Let 𝐴∗ be all the vertices reachable from 𝑠 in the residual graph, and 
𝐵∗ = 𝑉 ∖ 𝐴∗. 

Observe that (𝐴∗, 𝐵∗) is indeed an 𝑠-𝑡 cut. The only way to not be a cut 
is to have 𝑡 ∈ 𝐴∗. But we assumed 𝑡 was not reachable from 𝑠. 

Let 𝑓∗ be an 𝑠-𝑡 flow such that there is no 𝑠-𝑡 path in the residual graph.

Then there is a cut (𝐴∗, 𝐵∗) such that val 𝑓∗ = cap(𝐴∗, 𝐵∗)



Step 3: Cuts are the only things that limit 
flows

(sub)-claim: If 𝑒 = (𝑢, 𝑣) such that 𝑢 ∈ 𝐴∗, 𝑣 ∈ 𝐵∗, then 𝑓 𝑒 = 𝑐(𝑒).

(i.e. edges going from 𝐴∗ to 𝐵∗ are saturated).

In the residual graph, we only don’t have a copy of 𝑒 if  𝑒 is saturated. If 
we did have the edge 𝑒, we would be able to reach 𝑣 from 𝑠, and it 
would be in 𝐴∗, not 𝐵∗. So 𝑒 must be saturated.

Let 𝑓∗ be an 𝑠-𝑡 flow such that there is no 𝑠-𝑡 path in the residual graph.

Then there is a cut (𝐴∗, 𝐵∗) such that val 𝑓∗ = cap(𝐴∗, 𝐵∗)

𝑢

𝑣



Step 3: Cuts are the only things that limit 
flows

(sub)-claim: If 𝑒 = (𝑣, 𝑢) such that 𝑢 ∈ 𝐴∗, 𝑣 ∈ 𝐵∗, then 𝑓 𝑒 = 0.

(i.e. edges going from 𝐵∗ to 𝐴∗ are unused).

In the residual graph, we add a copy of (𝑢, 𝑣) when there is any flow on 
(𝑣, 𝑢). If we did have the edge (𝑢, 𝑣), we would be able to reach 𝑣 from 
𝑠, and it would be in 𝐴∗, not 𝐵∗. So 𝑒 = (𝑣, 𝑢) must be unused.

Let 𝑓∗ be an 𝑠-𝑡 flow such that there is no 𝑠-𝑡 path in the residual graph.

Then there is a cut (𝐴∗, 𝐵∗) such that val 𝑓∗ = cap(𝐴∗, 𝐵∗)

𝑢

𝑣



Step 3: Cuts are the only things that limit 
flows

Put it together: What’s the value of the flow?

val 𝑓∗ = 𝑓𝑜𝑢𝑡 𝐴∗ − 𝑓𝑖𝑛 𝐴∗

= σ𝑒= 𝑢,𝑣 :𝑢∈𝐴,𝑣∈𝐵 𝑓 𝑒 − σ𝑒= 𝑣,𝑢 :𝑢∈𝐴,𝑣∈𝐵 𝑓 𝑒

= σ𝑒= 𝑢,𝑣 :𝑢∈𝐴,𝑣∈𝐵 𝑐 𝑒 − σ𝑒= 𝑣,𝑢 :𝑢∈𝐴,𝑣∈𝐵 0

= cap(𝐴∗, 𝐵∗)

Let 𝑓∗ be an 𝑠-𝑡 flow such that there is no 𝑠-𝑡 path in the residual graph.

Then there is a cut (𝐴∗, 𝐵∗) such that val 𝑓∗ = cap(𝐴∗, 𝐵∗)

Step 1’s lemma

Net is flow out minus flow in.

Last 2 slides

Definition of capacity.



Concluding The Theorem

Proof: Run Ford-Fulkerson, you’ll get a flow of value 𝑓∗ such that there 
is a cut of capacity 𝑓∗. There can be no larger flow and no smaller cut, 
as for all flows 𝑓 and all cuts (𝐴, 𝐵): val 𝑓 ≤ cap 𝐴, 𝐵 .

The value of the maximum flow from 𝑠 to 𝒕 is equal to 

the value of the minimum cut separating 𝒔 and 𝒕.

Max-Flow-Min-Cut Theorem



Isn’t This Cool?

Another instance where we prove a big theorem using an algorithm.

The max-flow min-cut theorem doesn’t mention an algorithm, but it can 
be proved via analyzing Ford-Fulkerson!



So What?

Great quick check for if you’ve found the maximum flow (or min-cut).
Check the other and see if the value is the same!

We’ll see examples of max-flow used for modeling. Sometimes the min-
cut can be interpreted as a “barrier” to a good assignment.  

It’s also a nice example of duality

A maximization problem and a minimization problem that restrict each 
other.



Applications



Applications of Max-Flow-Min-Cut

Max-Flow and Min-Cut are useful if you work for the water company…

But they’re also useful if you don’t.

The most common application is assignment problems.

You have jobs and people who can do jobs – who is going to do which?

Big idea:

Let one unit of flow mean “assigning” one job to a person.



Hey Wait…

Isn’t this what stable matching is for?

Stable matching is very versatile, and it lets you encode preferences.

Max-flow assignment is even more versatile on the types of 
assignments.

But there’s not an easy way to encode preferences. 



Example Problem

You and your housemates need to decide who is going to do each of 
the chores this week.

Some of your housemates are unable to do some chores.

Housemates: 1,2,3

Chores: 

Arrange furniture, clean the Bathroom, Cook dinner, do the Dishes

Housemate 1 is unable to arrange furniture, 2 is unable to cook.



Example Problem

Housemate 1 is unable to arrange furniture, 2 is unable to cook.

Vertex for each housemate and chore.

Edge if the housemate could do the chore
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Example Problem

Housemate 1 is unable to arrange furniture, 2 is unable to cook.

Vertex for each housemate and chore.

Edge if the housemate could do the chore

D

C

B

A

3

2

1



Example Problem

Idea: Flow from 1 to 𝐵 means “make housemate 1 do chore B.”

Every chore needs to be done (by one person). 

Every person needs to do at most two chores.

D
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A

3
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1



Example Problem

Idea: Flow from 1 to 𝐵 means “make housemate 1 do chore B.”

Every chore needs to be done (by one person). 

Every person needs to do at most two chores.

D
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1

s t
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“dummy” target



Example Problem

Idea: Flow from 1 to 𝐵 means “make housemate 1 do chore B.”

Every chore needs to be done (by one person).

Every person needs to do at most two chores.
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Example Problem

Idea: Flow from 1 to 𝐵 means “make housemate 1 do chore B.”

Every chore needs to be done (by one person). 

Every person needs to do at most two chores.
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Example Problem

What are the capacities for the middle edges?

Could make them 1 (make sure you don’t get “two units of cooking”

All our requirements are already (implicitly) encoded. So could make them ∞
instead.
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Example Problem

Find a max flow…And read off the assignment!

Full color: 1 unit of flow, faded: 0 units of flow

1 cleans the bathroom and does the dishes, 2 arranges furniture, 3 cooks.
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Why are all of our constraints met?

Every chore gets done

No one does more than 2 chores

People only do chores they’re capable of



Why are all of our constraints met?

Every chore gets done

No one does more than 2 chores

People only do chores they’re capable of

A flow of value 4 sends one unit of flow through each of A,B,C,D (because the edges to 

𝑡 are all capacity 1), so a max-flow ensures if possible we’ll find an assignment.

Only 2 units of flow can go through any person vertex (because edges from 𝑠 to people 

are all capacity 2).

There is only an edge from a person to a chore if they can do that chore.



One More Requirement…

There’s another requirement we haven’t mentioned:

People only get “whole units” of chores
i.e. you don’t have two people each doing half of the cooking.

The max-flow approach guarantees this! As long as our requirements 
are integers (or ∞) as well.

Same logic as last lecture – Ford-Fulkerson will only add integers to the 
current flow.



Key Ideas

Use different vertices to represent different jobs (even if they look 
related).

You can (once per problem) use the value of the flow to evaluate 
whether you’ve met some minimum number (one “at least” or “exactly 
equal to” requirement)

Otherwise, use capacities to limit the options. One unit of flow usually 
represents one “assignment.”



More Practice



Another Problem

You run two coffee shops. You have to decide who will work at which of 
your shops today:

𝐴, 𝐵, 𝐶 are all capable of managing a shop.

𝐷, 𝐸, 𝐹, 𝐺 are all regular employees (can’t be a manager)

You need at least one manager at each shop, at least 3 people (total) at 
shop 1 and at least 4 people (total) at shop 2. 

Hint: think of assigning managers and non-managers as separate…





Manage

1

Manage

2

Work
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Key Ideas

Use different vertices to represent different jobs (even if they look 
related).

You can (once per problem) use the value of the flow to evaluate 
whether you’ve met some minimum number (one “at least” or “exactly 
equal to” requirement)

Otherwise, use capacities to limit the options. One unit of flow usually 
represents one “assignment.”



Baseball Elimination



One More Example

A classic example

We’ll also be able to use the min-cut in addition to the flow!

Question: Can the Mariners still win* the division?

*or at least tie for first place. 

And if they can’t, can you explain why.



Can The Mariners Win The Division?

Team Wins (𝒘) Games Left

Angels 81 12

Rangers 80 12

Mariners 70 12

A’s 69 12

It’s late at night September 14, 1998. 

You’re working for the Seattle Times. 

The Mariners won! But the Angels did too. 

How do you frame the Mariners current situation in your postgame article?

MLB rules say all games will be played (if they end up mattering) so you can 

assume those will happen.



Can The Mariners Win The Division?

Team Wins (𝒘) Games Left Possible Wins (𝐏)

Angels 81 12 93

Rangers 80 12 92

Mariners 70 12 82

A’s 69 12 81

𝑃𝑀𝐴𝑅𝐼𝑁𝐸𝑅𝑆 ≥ 𝑤𝑖 for all 𝑖, so the Mariners can win the division, right?



Well…No

𝑔𝑖𝑗 Angels Rangers Mariners A’s

Angels - 5 3 4

Rangers 5 - 4 3

Mariners 3 4 - 5

A’s 4 3 5 -

The teams will play each other, here are the number of games to be played against each 

other.

Team Wins (𝒘) Games Left Possible Wins (𝑷)

Angels 81 12 93

Rangers 80 12 92

Mariners 70 12 82

A’s 69 12 81



Well…No

At least one of the Angels and Rangers is going to win at least 83 
games 

someone wins at least three of the five they play against each other. 

The Mariners can only win 82 games.



Lessons

Comparing 𝑃𝑖 to 𝑤𝑗 is insufficient to tell if a team is eliminated.

The teams are interconnected by the games they play against each 
other.

Let’s find a way to do this calculation…not by hand.

What do we need to assign?



Assignment

We need to assign who wins each of the remaining games.

Safe to assume the Mariners will win them all.

Just need to figure out the others. 

One unit of flow represents one win. 



Making a Network
Angels Rangers Mariners A’s

Angels - 5 3 4

Rangers 5 - 4 3

Mariners 3 4 - 5

A’s 4 3 5 -

Team Wins (𝒘) Possible Wins (𝑷)

Angels 81 93

Rangers 80 92

Mariners 70 82

A’s 69 81

Angels 

vs. 

Rangers

Angels 

vs. 

A’s

Rangers 

vs. 

A’s

Angels

Rangers

A’s

𝑠, t on the ends

First layer is pairs of opponents 

(i.e. what game is being played)

Second layer is individual teams.



Making a Network
Angels Rangers Mariners A’s

Angels - 5 3 4

Rangers 5 - 4 3

Mariners 3 4 - 5

A’s 4 3 5 -

Team Wins (𝒘) Possible Wins (𝑷)

Angels 81 93

Rangers 80 92

Mariners 70 82

A’s 69 81

Angels 

vs. 

Rangers

Angels 

vs. 

A’s

Rangers 

vs. 

A’s

Angels

Rangers

A’s

Put number of games to be 

played from 𝑠 to pairs

5

4

3



Making a Network
Angels Rangers Mariners A’s

Angels - 5 3 4

Rangers 5 - 4 3

Mariners 3 4 - 5

A’s 4 3 5 -

Team Wins (𝒘) Possible Wins (𝑷)

Angels 81 93

Rangers 80 92

Mariners 70 82

A’s 69 81

Angels 

vs. 

Rangers

Angels 

vs. 

A’s

Rangers 

vs. 

A’s

Angels

Rangers

A’s

How do we make sure Mariners 

win? They’ll end the season with 82 

wins (current + games left). 

How many more can each team 

win?

Mariners poss total – team current

5

4

3



Making a Network
Angels Rangers Mariners A’s

Angels - 5 3 4

Rangers 5 - 4 3

Mariners 3 4 - 5

A’s 4 3 5 -

Team Wins (𝒘) Possible Wins (𝑷)

Angels 81 93

Rangers 80 92

Mariners 70 82

A’s 69 81

Angels 

vs. 

Rangers

Angels 

vs. 

A’s

Rangers 

vs. 

A’s

Angels

Rangers

A’s

How do we make sure Mariners 

win? They’ll end the season with 82 

wins (current + games left). 

How many more can each team 

win?

Mariners poss total – team current

5

4

3

Angels have 81 wins, 1 more is ok (total matches 

Mariners possible) 2 is not. Capacity is 1.

1



Making a Network
Angels Rangers Mariners A’s

Angels - 5 3 4

Rangers 5 - 4 3

Mariners 3 4 - 5

A’s 4 3 5 -

Team Wins (𝒘) Possible Wins (𝑷)

Angels 81 93

Rangers 80 92

Mariners 70 82

A’s 69 81

Angels 

vs. 

Rangers

Angels 

vs. 

A’s

Rangers 

vs. 

A’s

Angels

Rangers

A’s

How do we make sure Mariners 

win? They’ll end the season with 82 

wins (current + games left). 

How many more can each team 

win?

Mariners poss total – team current

5
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2

13



Making a Network
Angels Rangers Mariners A’s

Angels - 5 3 4

Rangers 5 - 4 3

Mariners 3 4 - 5

A’s 4 3 5 -

Team Wins (𝒘) Possible Wins (𝑷)

Angels 81 93

Rangers 80 92

Mariners 70 82

A’s 69 81

Angels 

vs. 

Rangers

Angels 

vs. 

A’s

Rangers 

vs. 

A’s

Angels

Rangers

A’s

Edges in the middle?

Only to the two teams playing.

We’ve handled are constraints, can 

leave capacities at ∞.
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Making a Network
Angels Rangers Mariners A’s

Angels - 5 3 4

Rangers 5 - 4 3

Mariners 3 4 - 5

A’s 4 3 5 -

Team Wins (𝒘) Possible Wins (𝑷)

Angels 81 93

Rangers 80 92

Mariners 70 82

A’s 69 81

Angels 

vs. 

Rangers

Angels 

vs. 

A’s

Rangers 

vs. 

A’s

Angels

Rangers

A’s

Edges in the middle?

Only to the two teams playing.

We’ve handled are constraints, can 

leave capacities at ∞.
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Making a Network
Angels Rangers Mariners A’s

Angels - 5 3 4

Rangers 5 - 4 3

Mariners 3 4 - 5

A’s 4 3 5 -

Team Wins (𝒘) Possible Wins (𝑷)

Angels 81 93

Rangers 80 92

Mariners 70 82

A’s 69 81

Angels 

vs. 

Rangers

Angels 

vs. 

A’s

Rangers 

vs. 

A’s

Angels

Rangers

A’s

We’re done!

5

4

3

1

2

13

∞

∞

∞

∞

∞

∞



Why are all the constraints met?

How many games are there to play? Equal to the capacities leaving 𝑠.

So if we have a flow of at least that value, we’ll assign winners to all the 
games. 

Why will the Mariners win with this assignment?

The capacity from team A to 𝑡 ensures A will not end with more wins.

No “half-wins” or anything weird?

All capacities are integers, so we’ll get an integer solution!



Interpreting the answer

If the max flow has value equal to number of games, we know how the 
Mariners can still win the division.

If the max flow is less than that, the Mariners can’t win the division!

(if they could win the division, then there is a way that the remaining 
games could play out with the mariners having as many wins as anyone 
else, but then we could make a feasible flow by assigning a unit of flow 
for each winner).



Max Flow
Angels Rangers Mariners A’s

Angels - 5 3 4

Rangers 5 - 4 3

Mariners 3 4 - 5

A’s 4 3 5 -

Team Wins (𝒘) Possible Wins (𝑷)

Angels 81 93

Rangers 80 92

Mariners 70 82

A’s 69 81

Angels 

vs. 

Rangers

Angels 

vs. 

A’s

Rangers 

vs. 

A’s

Angels

Rangers

A’s

5

4

3

∞

∞

∞

∞

∞

∞

1

2

13
3/
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7/
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4/

2/

2/

1/

1/

4/

This is the maximum flow. What’s the min-cut?

{s, Angels vs. Rangers, Angels, Rangers} is one 

side of the cut.

The Angels and Rangers were enough to 

prove that the Mariners couldn’t win!



Generating Proof that you’re eliminated

How do you describe to the general public that the Mariners are eliminated. 

People are going to say “the Mariners can still win 82 games, no one has one 
82, it’s not over yet!”

Of the Angels and Rangers, they will win (combined) at least

81 + 80 + 5 games (Angels wins, Rangers wins, games to be played among 
these teams)

On average they win 
166

2
= 83 games. That’s more than 82. Someone is 

beating that average, and whoever that is the Mariners won’t catch them.



In General

Find the max flow. If its value is the number of games remaining, great!

Mariners can still win.

If its value is less than that, find the min cut. The set of all teams 
reachable from 𝑠 in the residual graph will show you why the Mariners 
are eliminated.



Takeaways

If you want to “assign” things, max-flow might be a good option.

If you say “at most” you can probably just make a capacity constraint

Once you can do an “exactly equal” or “at most” by checking the value 
of the max-flow. 

Sometimes you want an extra layer or two if you have a multiple types 
of assignments.

Sometimes you can convert an “at least” in one group into an “at most” 
on another group.



Optional – Why is there always 
an explanation?



An Explanation Always Exists

Let (𝑆, ҧ𝑆) be a min-cut. 

There’s a lot of structure in the min-cut.

Let 𝑅 be the set of teams whose vertices are reachable from 𝑠
after the edges have been cut. 

The capacity of the cut is

σ𝑖∉𝑅 or𝑗∉𝑅 𝑔𝑖𝑗 + σ𝑖∈𝑅𝑃 − 𝑤𝑖

And the capacity of the cut is less than σ𝑖,𝑗 𝑔𝑖𝑗 (because that is a 

cut, and we can’t have a flow of that value).

If 𝑅 is a set of teams, let 𝑎 𝑅 =
σ𝑖∈𝑅𝑤𝑖+σ𝑖,𝑗∈𝑅 𝑔𝑖,𝑗

|𝑅|
the average 

number of games won be a team in 𝑅.

Angels 

vs. 

Rangers

Angels 

vs. 

A’s

Rangers 

vs. 

A’s

Angels

Rangers

A’s

5

4

3

∞

∞

∞

∞

∞

∞

1

2

13

𝑔𝑖𝑗 is games to be played between 𝑖 and 𝑗

𝑃 is number of wins possible for Mariners

𝑤𝑖 is current number of wins for team 𝑖.



An Explanation Always Exists

σ𝑖∉𝑅 or𝑗∉𝑅 𝑔𝑖𝑗 + σ𝑖∈𝑅 𝑃 − 𝑤𝑖 < σ𝑖,𝑗 𝑔𝑖𝑗

σ𝑖∈𝑅𝑃 − 𝑤𝑖 < σ𝑖∈𝑅,𝑗∈𝑅 𝑔𝑖𝑗

𝑅 𝑃 < σ𝑖∈𝑅,𝑗∈𝑅 𝑔𝑖𝑗 + σ𝑖∈𝑅𝑤𝑖

𝑃 <
σ𝑖∈𝑅,𝑗∈𝑅 𝑔𝑖𝑗+σ𝑖∈𝑅𝑤𝑖

𝑅

That is, the average number of wins for a team in 𝑅 (after all games are 
played) is strictly more than the possible number of wins for the 
Mariners. 

𝑔𝑖𝑗 is games to be played between 𝑖 and 𝑗

𝑃 is number of wins possible for Mariners

𝑤𝑖 is current number of wins for team 𝑖.

After subtracting pairs where at least one of 𝑖, 𝑗 are not in 𝑅 all that 

remains are pairs where both 𝑖, 𝑗 are in 𝑅.

Move 𝑤𝑖 to the other side. 𝑃 is a constant, so we just add |𝑅| copies 

of 𝑃.



Summary

To tell whether your favorite team is eliminated, you can run a max-flow 
computation on a graph with 𝑂(𝑛2) vertices and 𝑂(𝑛2) edges.

If your team is eliminated, there is a witness set of teams that must 
average more wins than is possible for your team.


