Section 10: Final Review

1. Reduction

Consider the following problems:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAM-PATH</td>
<td>A directed graph (G)</td>
<td>True if there is a Hamiltonian Path in (G), that is, a path that visits each vertex exactly once.</td>
</tr>
<tr>
<td>HAM-CYCLE</td>
<td>A directed graph (G)</td>
<td>True if there is a Hamiltonian Cycle in (G), that is, a path (v_0, v_1, ..., v_n) that visits each vertex exactly once along with the edge ((v_n, v_0)).</td>
</tr>
</tbody>
</table>

Suppose that HAM-PATH is NP-hard. Use that fact to show HAM-CYCLE is NP-hard.

2. Max-Flow/Min-Cut

A group of traders are leaving Switzerland, and need to convert their Francs (the local currency) into various international currencies. There are \(n \) traders and \(m \) currencies. Trader \(i \) has \(T_i \) Francs to convert. The bank has \(B_j \) Francs-worth of currency \(j \). Trader \(i \) is willing to trade as much as \(C_{ij} \) of his Francs for currency \(j \). (For example, a trader with 1000 Francs might be willing to convert up to 700 of his Francs for USD, up to 500 of his Francs for Japanese Yen, and up to 500 of his Francs for Euros).

Assuming that all traders give their requests to the bank at the same time, describe an algorithm that the bank can use to satisfy the requests (if it can).

3. DP LCS

The sequence \(C = c_1, ..., c_k \) is a subsequence of \(A = a_1, ..., a_n \), if \(C \) can be formed by selecting a sequence of elements of \(A \), i.e., if \(c_1 = a_{r_1}, c_2 = a_{r_2}, ..., c_k = a_{r_k} \), where \(r_j < r_{j+1} \). The LCS problem is: given sequences \(A \) and \(B \), find a maximum length sequence \(C \) which is a subsequence of both \(A \) and \(B \).

This problem can be solved with dynamic programming. Give a recurrence that is the basis for a dynamic programming algorithm. You should also give the appropriate base cases, and explain why your recurrence is correct.

4. DP Electoral College

The problem is to determine the set of states with the smallest total population that can provide the votes to win the electoral college. Formally, the problem is:

Let \(p_i \) be the population of state \(i \), and \(v_i \) the number of electoral votes for state \(i \). All electoral votes of a state go to a single candidate, so the winning candidate is the one who receives at least \(V \) electoral votes, where \(V = \lfloor (\sum_i v_i)/2 \rfloor + 1 \). Our goal is to find a set of states \(S \) that minimizes the value of \(\sum_{i \in S} p_i \) subject to the constraint that \(\sum_{i \in S} v_i \geq V \).

(a) The dynamic programming solution for this problem involves computing a function OPT where OPT\((i, v)\) gives the minimum populations of a set of states from 1, 2, ..., \(i \) such that their votes sum to exactly \(v \). Give a recursive definition of OPT and an explanation as to why it is correct.

(b) What are the base cases for your function OPT.