
Section 10: Solutions

1. Reduction

Consider the following problems:
HAM-PATH
Input: A directed graph G
Output: True if there is a Hamiltonian Path in G, that is a path that visits each vertex exactly once.

HAM-CYCLE
Input: A directed graph G
Output: True if there is a Hamiltonian Cycle in G, that is, a path v0, v1, ..., vn that visits each vertex exactly
once along with the edge (vn, v0).

Suppose that HAM-PATH is NP-hard. Use that fact to show HAM-CYCLE is NP-hard.

Solution:

We will show that HAM-PATH ≤P HAM-CYCLE, that is we will use a library function designed for HAM-CYCLE
problem to solve the HAM-PATH problem.

Let G be an input for the HAM-PATH problem. Create the graph H, as follows: Starting from G, add two
vertices u and v, and the edge (u, v). For every vertex w that was in G, add the edges (w, u) and (v, w). Call
the HAM-CYCLE library on H and return its result (unchanged) as the answer for HAM-PATH on G. (Note: we
could have just had one vertex u with edges from every vertex to u and from u to every vertex but what we did
makes the diagram easier to look at.)

Correctness:
Suppose that G has a HAM-PATH, w1, w2, ..., wn. Then in H, note that w1, w2, ..., wn, u, v is a path that visits
every vertex in H (since we copied H and then added edges from all w into u and from u to v. Since we also
included edges from v to every w, there is also the edge v, w1 in H and there is a Hamiltonian Cycle in H, so
our reduction correctly returns YES.

Conversely suppose that H has a Hamiltonian cycle. Observe that since u has only one outgoing edge and v has
only one incoming edge, the cycle must include the edge u, v. Thus the cycle can be written as u, v, w1, ..., wn

(since cycles have the edge from the last vertex to the first vertex, we can rewrite the cycle with u appearing
first). Since all edges in H but not in G have u or v as an endpoint, the edges wi, wi+1 are from G for all i, and
we have that w1, ..., wn is a Hamiltonian path in G.

Running time:
Copying the graph, adding two vertices and 2n + 1 edges can be done in polynomial time, and we make only
one call to the library.

2. Max-Flow/Min-Cut

A group of traders are leaving Switzerland, and need to convert their Francs (the local currency) into various in-
ternational currencies. There are n traders and m currencies. Trader i has Ti Francs to convert. The bank has Bj

Francs-worth of currency j. Trader i is willing to trade as much as Cij of his Francs for currency j. (For example,
a trader with 1000 Francs might be willing to convert up to 700 of his Francs for USD, up to 500 of his Francs for
Japaneses Yen, and up to 500 of his Francs for Euros).

Assuming that all traders give their requests to the bank at the same time, describe an algorithm that the bank can
use to satisfy the requests (if it can).

Solution:

1



This is set up as a flow network, with Francs flowing from the source s to the sink t. A row of vertices t1, ..., tn
represents the traders, and a row of vertices b1, ..., bm represents the currency held by the bank. The edge (s, ti)
has capacity Ti which gives the amount trader i wants to change. The edge (ti, bj) has capacity Cij giving the
maximum number of Francs i wants to trade into currency j. Finally, the edge (bj , t) with capacity Bj gives the
limit on the amount of currency j that is available. If there is a flow f in the network with |f | =

∑
i Ti then all

traders are able to convert their currencies. (An alternate solution which reverses the source and sink, and has
currency flow to from the banks to traders is also valid.)

3. DP LCS

The sequence C = c1, ..., ck is a subsequence of A = a1, ..., an, if C can be formed by selecting a sequence of elements
of A, i.e., if c1 = ar1 , c2 = ar2 , ..., ck = ark , where rj < rj+1. The LCS problem is: given sequences A and B, find a
maximum length sequence C which is a subsequence of both A and B.

This problem can be solved with dynamic programming. Give a recurrence that is the basis for a dynamic program-
ming algorithm. You should also give the appropriate base cases, and explain why your recurrence is correct.

Solution:

The recurrence for OPT(i, j) is giving the length of the longest common subsequence of a1, ..., ai and b1, ..., bj
. The key idea is that we match ai and bj this alters the recurrence from the LCS problem by making the
dependency on OPT(i−2, j−2) if there is a match. The recurrence becomes:

OPT(i, j) =

{
max(OPT(i−1, j−1) + 1,OPT(i−1, j),OPT(i, j−1)) if ai = bj

max(OPT(i−1, j),OPT(i, j−1)) if ai 6= bj

To handle the base cases appropriately, we need to ensure that we the don’t access indices that are out of bounds.
The most convenient way to do this is just to define OPT(0, j) = OPT(i, 0) = 0 so we can avoid special cases in
the recurrence.

4. DP Electoral College

The problem is to determine the set of states with the smallest total population that can provide the votes to win
the electoral college. Formally, the problem is:

Let pi be the population of state i, and vi the number of electoral votes for state i. All electoral votes of a state
go to a single candidate, so the winning candidate is the one who receives at least V electoral votes, where V =
b(
∑

i vi)/2c + 1. Our goal is to find a set of states S that minimizes the value of
∑

i∈S pi subject to the constraint
that

∑
i∈S vi ≥ V .

(a) The dynamic programming solution for this problem involves computing a function OPT where OPT(i, v) gives
the minimum populations of a set of states from 1, 2, ..., i such that their votes sum to exactly v. Give a recursive
definition of OPT and an explanation as to why it is correct.

Solution:

OPT(i, v) = min(OPT(i−1, v),OPT(i−1, v−vi) + pi) The first term corresponds to state i not included in
the vote total, and the second term corresponds to the state i included in the vote total.

(b) What are the base cases for your function OPT.

Solution:
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OPT(0, 0) = 0 and OPT(0, v) = ∞ for v ≥ 1
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