
CSE 421 Section 10

Final Review

Administrivia

Announcements & Reminders

● HW8

○ Was Due Yesterday, Wednesday 12/6

○ Solutions will be posted Saturday morning.

● Final Review Session: Sunday 12/10 @ 2:00 pm on Zoom

○ We will go over the practice final, try to take it before the session if you can!

○ Bring your questions. The review session will not be recorded.

● Final Exam: Monday 12/11 @ 2:30-4:45 @ CSE2 G20
○ Note later end time than in the schedule.

○ Make sure you have it saved on your calendar!

○ If you are sick the day of the exam, let us know and we will schedule a conflict exam!

Announcements & Reminders

Course evaluations are out! PLEASE fill out the general course evaluation for

Paul and the section evaluation for your TAs! It helps us improve our teaching

and the way the course is taught.

This is ESPECIALLY important this quarter so we have

student input on how sections worked, and we can

(hopefully) improve in future quarters!!!

Reduction

Problem 1 – Reduction

Consider the following problems:

HAM-PATH

Input: A directed graph �
Output: True if there is a Hamiltonian Path in �, that is a path that visits each vertex exactly once.

HAM-CYCLE

Input: A directed graph �
Output: True if there is a Hamiltonian Cycle in �, that is, a path ��, ��, … , ��that visits each vertex

exactly once along with the edge (�� , ��).

Suppose that HAM-PATH is NP-hard. Use that fact to show HAM-CYCLE is NP-hard.

Work through this problem with the people around you, and then we’ll go over it together!

Problem 1 – Reduction
Suppose that HAM-PATH is NP-hard. Use that fact to show HAM-CYCLE is NP-hard.

Problem 1 – Reduction
Suppose that HAM-PATH is NP-hard. Use that fact to show HAM-CYCLE is NP-hard.

We will show that HAM-PATH ≤� HAM-CYCLE, that is we will use a library function designed for

HAM-CYCLE problem to solve the HAM-PATH problem.

Problem 1 – Reduction
Suppose that HAM-PATH is NP-hard. Use that fact to show HAM-CYCLE is NP-hard.

We will show that HAM-PATH ≤� HAM-CYCLE, that is we will use a library function designed for

HAM-CYCLE problem to solve the HAM-PATH problem.

Let � be an input for the HAM-PATH problem. Create the graph �, as follows: Starting from �,

add two vertices and �, and the edge (, �). For every vertex � that was in �, add the edges (�,) and (�, �). Call the HAM-CYCLE library on � and return its result (unchanged) as the

answer for HAM-PATH on �.

Problem 1 – Reduction
Suppose that HAM-PATH is NP-hard. Use that fact to show HAM-CYCLE is NP-hard.

We will show that HAM-PATH ≤� HAM-CYCLE, that is we will use a library function designed for

HAM-CYCLE problem to solve the HAM-PATH problem.

Let � be an input for the HAM-PATH problem. Create the graph �, as follows: Starting from �,

add two vertices and �, and the edge (, �). For every vertex � that was in �, add the edges (�,) and (�, �). Call the HAM-CYCLE library on � and return its result (unchanged) as the

answer for HAM-PATH on �. ��

��

��

����

Problem 1 – Reduction
Suppose that HAM-PATH is NP-hard. Use that fact to show HAM-CYCLE is NP-hard.

We will show that HAM-PATH ≤� HAM-CYCLE, that is we will use a library function designed for

HAM-CYCLE problem to solve the HAM-PATH problem.

Let � be an input for the HAM-PATH problem. Create the graph �, as follows: Starting from �,

add two vertices and �, and the edge (, �). For every vertex � that was in �, add the edges (�,) and (�, �). Call the HAM-CYCLE library on � and return its result (unchanged) as the

answer for HAM-PATH on �. ��

��

��

����

Problem 1 – Reduction
Suppose that HAM-PATH is NP-hard. Use that fact to show HAM-CYCLE is NP-hard.

We will show that HAM-PATH ≤� HAM-CYCLE, that is we will use a library function designed for

HAM-CYCLE problem to solve the HAM-PATH problem.

Let � be an input for the HAM-PATH problem. Create the graph �, as follows: Starting from �,

add two vertices and �, and the edge (, �). For every vertex � that was in �, add the edges (�,) and (�, �). Call the HAM-CYCLE library on � and return its result (unchanged) as the

answer for HAM-PATH on �. ��

��

��

����

�

Note: We could have

used just one vertex but

it would be hard to see

how the diagram works.

Problem 1 – Reduction
Suppose that HAM-PATH is NP-hard. Use that fact to show HAM-CYCLE is NP-hard.

We will show that HAM-PATH ≤� HAM-CYCLE, that is we will use a library function designed for

HAM-CYCLE problem to solve the HAM-PATH problem.

Let � be an input for the HAM-PATH problem. Create the graph �, as follows: Starting from �,

add two vertices and �, and the edge (, �). For every vertex � that was in �, add the edges (�,) and (�, �). Call the HAM-CYCLE library on � and return its result (unchanged) as the

answer for HAM-PATH on �. ��

��

��

����

�

Note: We could have

used just one vertex but

it would be hard to see

how the diagram works.

Problem 1 – Reduction
Suppose that HAM-PATH is NP-hard. Use that fact to show HAM-CYCLE is NP-hard.

We will show that HAM-PATH ≤� HAM-CYCLE, that is we will use a library function designed for

HAM-CYCLE problem to solve the HAM-PATH problem.

Let � be an input for the HAM-PATH problem. Create the graph �, as follows: Starting from �,

add two vertices and �, and the edge (, �). For every vertex � that was in �, add the edges (�,) and (�, �). Call the HAM-CYCLE library on � and return its result (unchanged) as the

answer for HAM-PATH on �. ��

��

��

����

�

Note: We could have

used just one vertex but

it would be hard to see

how the diagram works.

Problem 1 – Reduction
Suppose that HAM-PATH is NP-hard. Use that fact to show HAM-CYCLE is NP-hard.

We will show that HAM-PATH ≤� HAM-CYCLE, that is we will use a library function designed for

HAM-CYCLE problem to solve the HAM-PATH problem.

Let � be an input for the HAM-PATH problem. Create the graph �, as follows: Starting from �,

add two vertices and �, and the edge (, �). For every vertex � that was in �, add the edges (�,) and (�, �). Call the HAM-CYCLE library on � and return its result (unchanged) as the

answer for HAM-PATH on �. ��

��

��

����

�

Note: We could have

used just one vertex but

it would be hard to see

how the diagram works.

Problem 1 – Reduction
Suppose that HAM-PATH is NP-hard. Use that fact to show HAM-CYCLE is NP-hard.

We will show that HAM-PATH ≤� HAM-CYCLE, that is we will use a library function designed for

HAM-CYCLE problem to solve the HAM-PATH problem.

Let � be an input for the HAM-PATH problem. Create the graph �, as follows: Starting from �,

add two vertices and �, and the edge (, �). For every vertex � that was in �, add the edges (�,) and (�, �). Call the HAM-CYCLE library on � and return its result (unchanged) as the

answer for HAM-PATH on �. ��

��

��

����

�

Problem 1 – Reduction
Suppose that HAM-PATH is NP-hard. Use that fact to show HAM-CYCLE is NP-hard.

We will show that HAM-PATH ≤� HAM-CYCLE, that is we will use a library function designed for

HAM-CYCLE problem to solve the HAM-PATH problem.

Let � be an input for the HAM-PATH problem. Create the graph �, as follows: Starting from �,

add two vertices and �, and the edge (, �). For every vertex � that was in �, add the edges (�,) and (�, �). Call the HAM-CYCLE library on � and return its result (unchanged) as the

answer for HAM-PATH on �.

Running time:

Copying the graph, adding two vertices and 2� + 1 edges can be done in polynomial time, and

we make only one call to the library. So, the reduction is polynomial.

Problem 1 – Reduction
Suppose that HAM-PATH is NP-hard. Use that fact to show HAM-CYCLE is NP-hard.

Correctness:

Problem 1 – Reduction
Suppose that HAM-PATH is NP-hard. Use that fact to show HAM-CYCLE is NP-hard.

Correctness:

Suppose that � has a HAM-PATH, ��, ��, … , ��. Then in �, note that ��, ��, … , ��, , � is a path

that visits every vertex in � (since we copied � and then added edges from all � into and from to �. Since we also included edges from � to every �, there is also the edge (�, ��) in � and

there is a Hamiltonian Cycle in �, so our reduction correctly returns YES.

Problem 1 – Reduction
Suppose that HAM-PATH is NP-hard. Use that fact to show HAM-CYCLE is NP-hard.

Correctness:

Suppose that � has a HAM-PATH, ��, ��, … , ��. Then in �, note that ��, ��, … , ��, , � is a path

that visits every vertex in � (since we copied � and then added edges from all � into and from to �. Since we also included edges from � to every �, there is also the edge (�, ��) in � and

there is a Hamiltonian Cycle in �, so our reduction correctly returns YES.

Conversely suppose that � has a Hamiltonian cycle. Observe that since has only one outgoing

edge and � has only one incoming edge, the cycle must include the edge (, �). Thus the cycle

can be written as , �, ��, … , �� (since cycles have the edge from the last vertex to the first

vertex, we can rewrite the cycle with appearing first). Since all edges in � but not in � have or � as an endpoint, the edges (�� , ����) are from � for all �, and we have that ��, … , �� is a

Hamiltonian path in �.

Max-Flow / Min-Cut

Problem 2 – Max-Flow / Min-Cut

A group of traders are leaving Switzerland, and need to convert their Francs (the local currency)

into various international currencies. There are � traders and � currencies. Trader � has �� Francs

to convert. The bank has �� Francs-worth of currency �. Trader � is willing to trade as much as ��
of his Francs for currency �.

(For example, a trader with 1000 Francs might be willing to convert up to 700 of his Francs for

USD, up to 500 of his Francs for Japanese Yen, and up to 500 of his Francs for Euros).

Assuming that all traders give their requests to the bank at the same time, describe an algorithm

that the bank can use to satisfy the requests (if it can).

Work through this problem with the people around you, and then we’ll go over it together!

Problem 2 – Max-Flow / Min-Cut

Assuming that all traders give their requests to the bank at the same time, describe an algorithm that the bank

can use to satisfy the requests (if it can).

Problem 2 – Max-Flow / Min-Cut

Assuming that all traders give their requests to the bank at the same time, describe an algorithm that the bank

can use to satisfy the requests (if it can).

This is set up as a flow network, with Francs flowing from the source ! to the sink ". A row of

vertices "�, … , "� represents the traders, and a row of vertices #�, … , #$represents the currency

held by the bank. The edge (!, "�) has capacity �� which gives the amount trader � wants to

change. The edge ("� , #�) has capacity �� giving the maximum number of Francs � wants to trade

into currency �. Finally, the edge (#� , ") with capacity �� gives the limit on the amount of currency � that is available. If there is a flow % in the network with |%| = ∑ ��� then all traders are able to

convert their currencies.

(An alternate solution which reverses the source and sink, and has currency flow to from the

banks to traders is also valid.)

Problem 2 – Max-Flow / Min-Cut

Assuming that all traders give their requests to the bank at the same time, describe an algorithm that the bank

can use to satisfy the requests (if it can).

!

"�

"�

"�

#�

#�
"

��
��
��

 �,�

 �,�

��

��

DP 1: Longest Common Subsequence (LCS)

Problem 3 –LCS

The sequence =)�, … ,)*is a subsequence of + = ,�, … , ,�, if can be formed by

selecting a sequence of elements of +, i.e., if)� = ,-. ,)� = ,-/ , … ,
)* = ,-0, where 1� < 1���. The Longest Common Sequence problem is given

sequences + and �, find a maximum length sequence that is a subsequence of both + and �.

This problem can be solved with dynamic programming. Give a recurrence that is the

basis for a dynamic programming algorithm. You should also give the appropriate

base cases, and explain why your recurrence is correct.

Work through this problem with the people around you, and then we’ll go over it together!

Problem 3 –LCS

Give a recurrence that is the basis for a dynamic programming algorithm. You should also give the appropriate

base cases, and explain why your recurrence is correct.

Problem 3 –LCS

Give a recurrence that is the basis for a dynamic programming algorithm. You should also give the appropriate

base cases, and explain why your recurrence is correct.

The recurrence for OPT �, � is giving the length of the longest common non-adjacent

subsequence of ,�, … , ,� and #�, … , #�. The recurrence is:

OPT �, � = 6max (OPT � − 1, � − 1 + 1, OPT �, � − 1 , OPT � − 1, �) if ,� = #�max (OPT � − 1, � , OPT �, � − 1) if ,� ≠ #�
To handle the base cases appropriately, we need to ensure that we the don’t access indices that

are out of bounds. The most convenient way to do this is just to define OPT 0, � = OPT �, 0 = 0
so we can avoid special cases in the recurrence.

DP 2: Electoral College

Problem 4 – Electoral College

The problem is to determine the set of states with the smallest total population that can provide the

votes to win the electoral college. Formally, the problem is: Let ?� be the population of state �, and ��
the number of electoral votes for state �. All electoral votes of a state go to a single candidate, so the

winning candidate is the one who receives at least @ electoral votes, where @ = (∑ ���)/2 + 1. Our

goal is to find a set of states B that minimizes the value of ∑ ?��∈D subject to the constraint that ∑ ���∈D ≥ @.

a) The dynamic programming solution for this problem involves computing a function OPT where OPT(�, �) gives the minimum populations of a set of states from 1, 2, … , � such that their votes sum

to exactly �. Give a recursive definition of OPT and an explanation as to why it is correct.

b) What are the base cases for your function OPT.

Work through this problem with the people around you, and then we’ll go over it together!

Problem 4 – Electoral College

a) The dynamic programming solution for this problem involves computing a function OPT where OPT(�, �) gives the minimum populations of a set of states from 1, 2, … , � such that their votes sum

to exactly �. Give a recursive definition of OPT and an explanation as to why it is correct.

Problem 4 – Electoral College

a) The dynamic programming solution for this problem involves computing a function OPT where OPT(�, �) gives the minimum populations of a set of states from 1, 2, … , � such that their votes sum

to exactly �. Give a recursive definition of OPT and an explanation as to why it is correct.

OPT(�, �) = min {OPT(� − 1, �), OPT(� − 1, � − ��) + ?�}
The first term corresponds to state � not included in the vote total, and the second term

corresponds to the state � included in the vote total.

Problem 4 – Electoral College

b) What are the base cases for your function OPT.

Problem 4 – Electoral College

b) What are the base cases for your function OPT.

OPT(0,0) = 0 and OPT(0, �) = ∞ for � ≥ 1

That’s All, Folks!

Thanks for coming to section this week!

Any questions?

