
CSE 421 Section 10

Final Review



Administrivia



Announcements & Reminders

● HW8 

○ Was Due Yesterday, Wednesday 12/6

○ Solutions will be posted Saturday morning.

● Final Review Session: Sunday 12/10 @ 2:00 pm on Zoom

○ We will go over the practice final, try to take it before the session if you can!

○ Bring your questions.   The review session will not be recorded.

● Final Exam: Monday 12/11 @ 2:30-4:45 @ CSE2 G20
○ Note later end time than in the schedule.

○ Make sure you have it saved on your calendar!

○ If you are sick the day of the exam, let us know and we will schedule a conflict exam!



Announcements & Reminders

Course evaluations are out! PLEASE fill out the general course evaluation for  

Paul and the section evaluation for your TAs! It helps us improve our teaching 

and the way the course is taught. 

This is ESPECIALLY important this quarter so we have 

student input on how sections worked, and we can 

(hopefully) improve in future quarters!!!



Reduction



Problem 1 – Reduction

Consider the following problems:

HAM-PATH

Input: A directed graph �

Output: True if there is a Hamiltonian Path in �, that is a path that visits each vertex exactly once.

HAM-CYCLE

Input: A directed graph �

Output: True if there is a Hamiltonian Cycle in �, that is, a path ��, ��, … , ��that visits each vertex 

exactly once along with the edge (�� , ��).

Suppose that HAM-PATH is NP-hard. Use that fact to show HAM-CYCLE is NP-hard.

Work through this problem with the people around you, and then we’ll go over it together!
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Problem 1 – Reduction
Suppose that HAM-PATH is NP-hard. Use that fact to show HAM-CYCLE is NP-hard.

Correctness:



Max-Flow / Min-Cut



Problem 2 – Max-Flow / Min-Cut

A group of traders are leaving Switzerland, and need to convert their Francs (the local currency) 

into various international currencies. There are 
 traders and � currencies. Trader � has 
� Francs 

to convert. The bank has �� Francs-worth of currency �. Trader � is willing to trade as much as ���

of his Francs for currency �. 

(For example, a trader with 1000 Francs might be willing to convert up to 700 of his Francs for 

USD, up to 500 of his Francs for Japanese Yen, and up to 500 of his Francs for Euros). 

Assuming that all traders give their requests to the bank at the same time, describe an algorithm 

that the bank can use to satisfy the requests (if it can).

Work through this problem with the people around you, and then we’ll go over it together!
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DP 1: Longest Common Subsequence (LCS)



Problem 3 –LCS

The sequence � = ��, … , ��is a subsequence of � = ��, … , ��, if � can be formed by 

selecting a sequence of elements of �, i.e., if �� = ��� , �� = ��� , … ,

�� = �� , where !� < !�#�. The Longest Common Sequence problem is given 

sequences � and �, find a maximum length sequence � that is a subsequence of both 

� and �.

This problem can be solved with dynamic programming. Give a recurrence that is the 

basis for a dynamic programming algorithm. You should also give the appropriate 

base cases, and explain why your recurrence is correct.

Work through this problem with the people around you, and then we’ll go over it together!
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DP 2: Electoral College



Problem 4 – Electoral College

The problem is to determine the set of states with the smallest total population that can provide the 

votes to win the electoral college. Formally, the problem is: Let $� be the population of state �, and ��
the number of electoral votes for state �. All electoral votes of a state go to a single candidate, so the 

winning candidate is the one who receives at least % electoral votes, where % = (∑ ��� )/2 + 1. Our 

goal is to find a set of states + that minimizes the value of ∑ $��∈- subject to the constraint that 

∑ ���∈- ≥ %.

a) The dynamic programming solution for this problem involves computing a function OPTwhere 

OPT(�, �) gives the minimum populations of a set of states from 1, 2,… , � such that their votes sum 

to exactly �. Give a recursive definition of OPT and an explanation as to why it is correct.

b) What are the base cases for your function OPT.

Work through this problem with the people around you, and then we’ll go over it together!
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Problem 4 – Electoral College

b) What are the base cases for your function OPT.



That’s All, Folks!

Thanks for coming to section this week!

Any questions?


