
Section 9: P, NP, and Reductions

1. SATisfy This

Determine whether each instance of 3SAT is satisfiable. If it is, list a satisfying variable assignment.

(a) (¬a ∨ ¬b ∨ c) ∧ (a ∨ c ∨ ¬d) ∧ (b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ b ∨ c) ∧ (¬b ∨ c ∨ ¬d)

(b) (¬a∨ b∨d)∧ (¬b∨ c∨d)∧ (a∨¬c∨d)∧ (a∨¬b∨¬d)∧ (b∨¬c∨¬d)∧ (¬a∨ c∨¬d)∧ (a∨ b∨ c)∧ (¬a∨¬b∨¬c)

(c) (a∨¬c∨d)∧(¬a∨b∨c)∧(b∨¬c∨¬d)∧(a∨¬c∨d)∧(a∨¬b∨c)∧(¬a∨b∨¬d)∧(¬a∨c∨d)∧(b∨¬c∨d)∧(a∨c∨¬d)

(d) (¬a∨¬b∨ c)∧ (a∨ b∨¬c)∧ (¬a∨¬b∨¬c)∧ (¬a∨ b∨ c)∧ (a∨¬b∨¬c)∧ (¬a∨ b∨¬c)∧ (a∨ b∨ c)∧ (a∨¬b∨ c)

2. A Fun Reduction

Define 5SAT as the following problem:
Input: An expression in CNF form, where every term has exactly 5 literals.
Output: true if there is a variable setting which makes the whole expression true, false otherwise.

And 3SAT as in class:
Input: expression in CNF form, where every term has exactly 3 literals.
Output: true if there is a variable setting which makes the whole expression true, false otherwise.

Prove that 5SAT is NP-complete using 3SAT.

2.1. Read and Understand the Problem
Read the problem and answer these quick-check-questions.

Make sure you understand 5SAT.

• What is the input type?

• What is the output type?

• Are any words in the problem technical terms? Do you know them all?

You’re going to design a reduction – what will that reduction look like?

• Which problem are you solving, and which problem are you assuming you have an algorithm for? Make sure
your reduction is “going the right direction”

• What is the output type for your reduction?

2.2. Design the Reduction
Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the “certificates” (the
thing that makes it a YES instance), and transform from one type of certificate to the other.
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2.3. Write The Proof
• To be NP-Complete, 5SAT needs to be in NP. Argue that it is (this argument is usually only 2-3 sentences).

(a) What is the certificate?

(b) How does a verifier check it efficiently?

• Show your reduction is correct. Remember you need to prove two implications and that the running time is
polynomial.

(a) Running time:

(b) Correctness:

3. A Reduction between different kinds of problems

Define integer linear programming (ILP) as follows:
Input: An integer matrix A and integer vector b
Output: true if there is an integer vector x such that Ax ≤ b, false otherwise.

And 3SAT as earlier:
Input: expression in CNF form, where every term has exactly 3 literals on different variables.
Output: true if there is a variable setting which makes the whole expression true, false otherwise.

We already know from class that 3SAT ≤P ILP by a long series of reductions. Prove this directly using a single
reduction.

3.1. Read and Understand the Problem
Read the problem and answer these quick-check-questions.

Make sure you understand ILP and 3SAT.

• What is the input type?

• What is the output type?

• Are any words in the problem technical terms? Do you know them all?

You’re going to design a reduction – what will that reduction look like?

• Which problem are you solving, and which problem are you assuming you have an algorithm for? Make sure
your reduction is “going the right direction”

• What is the output type for your reduction?

3.2. Design the Reduction
Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the “certificates” (the
thing that makes it a YES instance), and transform from one type of certificate to the other.

3.3. Write The Proof
(a) To be NP-Complete, ILP needs to be in NP. Argue that it is (this argument is usually only 2-3 sentences).

(b) Show your reduction is correct. Remember you need to prove two implications and that the running time is
polynomial.
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4. Reduce to decision

NP is a set of decision (yes/no) problems, but in practice we’re often interested in optimization problems (instead of
“is there a vertex cover of size k?” we usually want to “find the smallest vertex cover”). Usually, this isn’t a problem,
though; we’ll see an example in this problem.

Let VCD be the problem: Given a graph G and an integer k, return true if and only if G has a vertex cover of size k.
Let VCO be the problem: Given a graphG, return a list containing the vertices in a minimum size vertex cover.

(a) Show that VCD ≤P VCO (this is the easy direction).

(b) We’ll now start working on the other reduction. Imagine someone came to you and said “See this vertex u, I
promise it is in a minimum vertex cover.” Use this promise to solve VCO on a graph of size n− 1 instead of n.

(c) Now imagine the same person said “See this vertex v, I promise it is not in any minimum vertex cover.” Use
this promise to solve VCO on a graph of size at most n− 1 instead of n.

(d) Use the ideas from the last two parts to show VCO ≤P VCD.

5. Another Reduction

Consider an undirected graph G, where each vertex has a non-negative integer number of pebbles. A single pebbling
move consists of removing two pebbles from a vertex and adding one pebble to an adjacent vertex, where we can
choose which adjacent vertex. A pebbling move can only be done on a vertex that already has at least two pebbles,
and it will always decrease the total number of pebbles in the graph by exactly one. Our goal is to remove as many
pebbles as we can. Observe that at best, we’ll have at least one pebble remaining in the graph.

Define the PEBBLE problem as the following problem:

Input: An undirected graph and the number of pebbles at each vertex Output: true if there is a sequence of pebbling
moves that leaves exactly one pebble in the graph, false otherwise.

Define the Hamiltonian Path Problem as the following problem:

Input: An undirected graph.

Output: true if there exists a path in the graph visiting every vertex exactly once, false otherwise.

Given that the Hamiltonian Path Problem is NP-complete, show that PEBBLE is as well. You may assume that the
total number of pebbles in a graph is polynomial in terms of the size of the graph.

Hint: A single pebbling move can be represented as an ordered pair of vertices (u, v) where we take two pebbles
from u and place one pebble in its neighbor v. A sequence of pebbling moves can be represented by a sequence of
these pairs. Is there any way we can order these pairs nicely?

5.1. Read and Understand the Problem
Read the problem and answer these quick-check-questions.

Make sure you understand PEBBLE and the Hamiltonian Path Problem.

• What is the input type?

• What is the output type?

• Are any words in the problem technical terms? Do you know them all?

You’re going to design a reduction – what will that reduction look like?

• Which problem are use solving, and which problem are you assuming you have an algorithm for? Make sure
your reduction is “going the right direction”
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• What is the output type for your reduction?

5.2. Design the Reduction
Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the “certificates” (the
thing that makes it a YES instance), and transform from one type of certificate to the other.

5.3. Write The Proof
(a) to be NP-Complete, PEBBLE needs to be in NP. Argue that it is (this argument is usually only 2-3 sentences).

(b) Show your reduction is correct. Remember you need to prove two implications and that the running time is
polynomial.

6. Vertex Cover and Independent Set

Define IND-SET as follows:
Input: An undirected graph G and a positive integer k
Output: true if there is an independent set in G of size at least k, false otherwise.

Define VER-COVER as follows:
Input: An undirected graph G and a positive integer k
Output: true if there is an vertex cover in G of size at most k, false otherwise.

Prove that VER-COVER is NP-complete using IND-SET.

6.1. Read and Understand the Problem
Read the problem and answer these quick-check-questions.

Make sure you understand IND-SET and VER-COVER.

• What is the input type?

• What is the output type?

• Are any words in the problem technical terms? Do you know them all?

You’re going to design a reduction – what will that reduction look like?

• Which problem are you solving, and which problem are you assuming you have an algorithm for? Make
sure your reduction is “going the right direction”

• What is the output type for your reduction?

6.2. Design the Reduction
Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the “certificates”
(the thing that makes it a YES instance), and transform from one type of certificate to the other.

6.3. Write The Proof
(i) to be NP-Complete, IND-SET needs to be in NP. Argue that it is (this argument is usually only 2-3 sen-

tences).

(ii) Show your reduction is correct. Remember you need to prove two implications and that the running time
is polynomial.
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