
Section 9: Solutions

1. SATisfy This

Determine whether each instance of 3SAT is satisfiable. If it is, list a satisfying variable assignment.

(a) (¬a ∨ ¬b ∨ c) ∧ (a ∨ c ∨ ¬d) ∧ (b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ b ∨ c) ∧ (¬b ∨ c ∨ ¬d)
Solution:

This is satisfiable: a = T, b = F, c = T, d = F makes each clause true, so the overall formula is true.

(b) (¬a∨ b∨d)∧ (¬b∨ c∨d)∧ (a∨¬c∨d)∧ (a∨¬b∨¬d)∧ (b∨¬c∨¬d)∧ (¬a∨ c∨¬d)∧ (a∨ b∨ c)∧ (¬a∨¬b∨¬c)
Solution:

This is unsatisfiable.

(c) (a∨¬c∨d)∧(¬a∨b∨c)∧(b∨¬c∨¬d)∧(a∨¬c∨d)∧(a∨¬b∨c)∧(¬a∨b∨¬d)∧(¬a∨c∨d)∧(b∨¬c∨d)∧(a∨c∨¬d)
Solution:

This is satisfiable: a = F, b = T, c = T, d = T makes each clause true, so the overall formula is true.

(d) (¬a∨¬b∨ c)∧ (a∨ b∨¬c)∧ (¬a∨¬b∨¬c)∧ (¬a∨ b∨ c)∧ (a∨¬b∨¬c)∧ (¬a∨ b∨¬c)∧ (a∨ b∨ c)∧ (a∨¬b∨ c)
Solution:

This is unsatisfiable.

2. A Fun Reduction

Define 5SAT as the following problem:
Input: An expression in CNF form, where every term has exactly 5 literals.
Output: true if there is a variable setting which makes the whole expression true, false otherwise.

And 3SAT as in class:
Input: expression in CNF form, where every term has exactly 3 literals.
Output: true if there is a variable setting which makes the whole expression true, false otherwise.

Prove that 5SAT is NP-complete using 3SAT.

2.1. Read and Understand the Problem
Read the problem and answer these quick-check-questions.

Make sure you understand 5SAT.

• What is the input type?

• What is the output type?

• Are any words in the problem technical terms? Do you know them all?

Solution:
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For 5SAT

• input: an expression in CNF form of n Boolean variables where each clause has 5 literals

• output: true or false (depending on if we have a variable setting which makes the whole expression true)

• CNF form is AND of ORs like (za ∨ zb ∨ zi) ∧ (zc ∨ zi ∨ zj) ∧ ..., literals zi are Boolean variables or the
negation of Boolean variables xi or ¬xi

You’re going to design a reduction – what will that reduction look like?

• Which problem are you solving, and which problem are you assuming you have an algorithm for? Make sure
your reduction is “going the right direction”

• What is the output type for your reduction?

Solution:

For the reduction

• We want to show that 5SAT is NP-complete, so we need to reduce 3SAT, an NP-complete problem, to 5SAT
in polynomial time. We can assume we have an algorithm for 5SAT. In other words, we want to show that
3SAT ≤ 5SAT

• output of the reduction: a Boolean which is the answer to the 3SAT (which we get by calling 5-SAT like a
library function)

2.2. Design the Reduction
Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the “certificates”
(the thing that makes it a YES instance), and transform from one type of certificate to the other. Solution:

Let x1, . . . xn be the variables in the 3SAT instance and C1, C2, . . . , Cm be the clauses.

Create two dummy variables d1, d2. For each clause Ci, create four clauses:
C1 ∨ d1 ∨ d2
C1 ∨ ¬d1 ∨ d2
C1 ∨ d1 ∨ ¬d2
C1 ∨ ¬d1 ∨ ¬d2
Our 5-SAT instance is: xn . . . , xn, d1, d2
The 4m clauses described above.

2.3. Write The Proof
• To be NP-Complete, 5SAT needs to be in NP. Argue that it is (this argument is usually only 2-3 sentences).

(a) What is the certificate?

(b) How does a verifier check it efficiently? Solution:

A verifier would take in the settings of the variables to true and false. Given a setting, a verifier would
check that each clause (i.e., each constraint) is satisfied. This will take time linear in the length of
the constraints, so it is polynomial time.

• Show your reduction is correct. Remember you need to prove two implications and that the running time is
polynomial.
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(a) Running time: Solution:

Running Time: Our algorithmmakes 4 copies of every clause and adds a constant length set of literals
to each clause, so the running time to create the instance is polynomial (and we call the library only
once, which is also at most polynomial).

(b) Correctness: Solution:

Correctness
Let φ3 be our 3SAT instance and φ5 be our 5SAT instance.

Suppose φ3 is satisfiable, we show that our reduction returns true. Since φ3 is satisfiable, there is a
setting of the variables which causes φ3 to be true. Take that setting, and set d1, d2 arbitrarily. Every
clause of φ5 is a clause of φ3 with extra literals ORed on, so since each clause of φ3 is true, each clause
of φ5 is as well, and this is a satisfying assignment.

Conversely, suppose that our reduction returns true, and therefore φ5 was satisfiable. Consider a sat-
isfying assignment for φ5. We claim that (ignoring d1, d2) the same assignment satisfies φ3. Consider
an arbitrary clause Ci of φ3. In φ5 there were four clauses built from Ci (each ORed with all combi-
nations of literals of d1, d2. One of the created clauses in φ5 had both inserted literals involving d1, d2
being false (since we included all possible combinations). Since φ5 was satisfied, this clause evaluated
to true, which means that Ci evaluated to true. Since Ci was arbitrary, we have that every clause is
true, and therefore a satisfying assignment for φ3, as required.

3. A Reduction between different kinds of problems

Define integer linear programming (ILP) as follows:
Input: An integer matrix A and integer vector b
Output: true if there is an integer vector x such that Ax ≤ b, false otherwise.

And 3SAT as earlier:
Input: expression in CNF form, where every term has exactly 3 literals on different variables.
Output: true if there is a variable setting which makes the whole expression true, false otherwise.

We already know from class that 3SAT ≤P ILP by a long series of reductions. Prove this directly using a single
reduction.

3.1. Read and Understand the Problem
Read the problem and answer these quick-check-questions.

Make sure you understand ILP and 3SAT.

• What is the input type?

• What is the output type?

• Are any words in the problem technical terms? Do you know them all?

Solution:

For ILP

• input: an integer matrix and an integer vector

• output: true or false

• No
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You’re going to design a reduction – what will that reduction look like?

• Which problem are you solving, and which problem are you assuming you have an algorithm for? Make sure
your reduction is “going the right direction”

• What is the output type for your reduction?

Solution:

For the reduction

• We want to show that 3SAT ≤P ILP. Assume we have an algorithm for ILP. We’re trying to solve 3SAT.

• output of the reduction: a boolean which is the answer to the 3SAT (which we get by calling ILP like a
library function)

3.2. Design the Reduction
Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the “certificates” (the
thing that makes it a YES instance), and transform from one type of certificate to the other.

Solution:

With 3SAT, examples are always much clearer to think about down than the general form. So here’s an example
(you wouldn’t actually write this in your solution):

(¬w ∨ ¬x ∨ y) ∧ (w ∨ y ∨ ¬z) ∧ (w ∨ ¬y ∨ ¬z) ∧ (w ∨ x ∨ y)

We need to use the ILP to handle two things: The Boolean part of 3SAT and the clause constraints.

Let’s start with the Boolean part. It seems natural to have the ILP have a variable for each variable for 3SAT. To
make sure that these variables are Boolean, we add the constraints:

w ≤ 1, x ≤ 1, y ≤ 1, z ≤ 1.

And as usual with standard form, we always have the constraints

w ≥ 0, x ≥ 0, y ≥ 0, z ≥ 0.

We now need the clause part:

• To represent the value of the negation of w, we can write 1− w.

• To represent ¬w ∨ ¬x ∨ y, we want to saw that at least one of the literals is true, so we add the constraint
(1− w) + (1− x) + y ≥ 1.

• We can rearrange this to standard form as w + x− y ≤ 1.

Similarly for the other clauses, we get:

• w + y + (1− z) ≥ 1 −→ −w − y + z ≤ 0

• w + (1− y) + (1− z) ≥ 1 −→ −w + y + z ≤ 1

• w + x+ y ≥ 1 −→ −w − x− y ≤ −1

We now write the general form. Let x1, . . . , xn be the variables of the 3SAT instance and C1, C2, . . . , Cm be the
clauses.

We add the constraints:

(a) xi ≤ 1 for all i = 1, . . . , n

(b) xi ≥ 0 for all i = 1, . . . , n, as always
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(c) For each clause Cj , if the variables are xi1 , xi2 , xi3 , include the constraint:

∑
k=1,2,3

{
xik if the literal xik appears in Cj

1− xik if the literal ¬xik appears in Cj

≥ 1,

which is equivalent to

∑
k=1,2,3

{
−xik if the literal xik appears in Cj

xik if the literal ¬xik appears in Cj

≤ −1 + number of negative literals in Cj

in standard form.

3.3. Write The Proof
(a) To be NP-Complete, ILP needs to be in NP. Argue that it is (this argument is usually only 2-3 sentences).

Solution:

The certificate is the integer vector x that is a supposed solution. We need that the integer vector can be
assumed to have values that aren’t too big or it wouldn’t be a short certificate. This is true because of what
we already showed for LP. (Any LP solution only needs a polynomial number of bits and any ILP solution
satisfies the LP constraints so it does also.)

The verifier would check that Ax ≤ b. If A has m rows (m inequalities) and n columns (n variables), this
takes O(mn) time, so it is polynomial time.

(b) Show your reduction is correct. Remember you need to prove two implications and that the running time is
polynomial.

Solution:

Running Time: The reduction creates one equation for every clause, so it is definitely polynomial time.

Correctness
We need to show that the correct answer is true if and only if our reduction returns true.

( =⇒ ) Let ϕ be a 3-SAT instance and suppose it is satisfiable. We need to show that the system of
inequalities we made has a solution. To show this, we should construct x that satisfies the system of
inequalities.

Because ϕ is satisfiable, consider a satisfying assignment. If xi is assigned true, then in our construction
let xi = 1. If xi is assigned false, let xi = 0.

This assignment clearly satisfies inequalities of the form xi ≤ 1 and xi ≥ 0. It also satisfies our constraints
of the form ∑

k=1,2,3

{
xik if the literal xik appears in Cj

1− xik if the literal ¬xik appears in Cj

≥ 1,

because each clause has at least one literal true, which by our construction means at least one of the
summands is 1, and the remaining summands are at least 0, so their sum is at least 1.

( ⇐= ) Suppose that the ILP obtained from converting a 3SAT formula ϕ returns true, and we need to
show that ϕ is satisfiable. To show this, we need to construct an assignment to the variables of ϕ.

Because the ILP returned true, there is an integer vector x satisfying our inequalities. If xi = 0, assign xi

to be false. Otherwise, assign xi to be true.

To show that this is a satisfying assignment, we need to show that it satisfies all clauses. Suppose for
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contradiction the clause Cj involving variables xi1 , xi2 , xi3 is not satisfied, meaning every literal is false.
By our construction, this is because the ILP told us that every positive literal = 0 and every negative literal
6= 0. Because we had constraints xi ≥ 0 and xi ≤ 1, this means every negative literal = 1. Then,

∑
k=1,2,3

{
xik if the literal xik appears in Cj

1− xik if the literal ¬xik appears in Cj

=
∑

k=1,2,3

{
0 if the literal xik appears in Cj

0 if the literal ¬xik appears in Cj

= 0,

which is a contradiction.

4. Reduce to decision

NP is a set of decision (yes/no) problems, but in practice we’re often interested in optimization problems (instead of
“is there a vertex cover of size k?” we usually want to “find the smallest vertex cover”). Usually, this isn’t a problem,
though; we’ll see an example in this problem.

Let VCD be the problem: Given a graph G and an integer k, return true if and only if G has a vertex cover of size k.
Let VCO be the problem: Given a graphG, return a list containing the vertices in a minimum size vertex cover.

(a) Show that VCD ≤P VCO (this is the easy direction). Solution:

On input G, k (for k ≤ n) for VCD, run the library for VCO on input G. Count the number of vertices in the
output. If it is k or less, return true, otherwise return false.

If there is a vertex cover of size at most k, then there is a vertex cover of size k (just add vertices until
you hit k). If there is not a vertex cover of size at most k, then a minimum one is larger, and so the VCD
algorithm will give a longer list, and the reduction will return false, as required.

(b) We’ll now start working on the other reduction. Imagine someone came to you and said “See this vertex u, I
promise it is in a minimum vertex cover.” Use this promise to solve VCO on a graph of size n− 1 instead of n.
Solution:

If u is in a minimum vertex cover, then delete u and all edges incident to u from the graph G. Call the
resulting graph G− u. Call the VCO library on G− u. Return u along with the result of the library call.

Let S be a vertex cover ofG−u. Observe that adding u gives a vertex cover ofG, as every edge not incident
to u was covered in G − u, and u was added to the vertex cover to cover all remaining edges. Moreover,
we find a minimum vertex cover; We know that u is in a minimum vertex cover and removing u from any
vertex cover for G gives a cover of G − u; a smaller cover of G including u would give us a smaller cover
for G− u, but we called the VCO library which gives us the minimum.

(c) Now imagine the same person said “See this vertex v, I promise it is not in any minimum vertex cover.” Use
this promise to solve VCO on a graph of size at most n− 1 instead of n. Solution:

If v is not in the vertex cover, then all neighbors w of v must be in the cover (otherwise, we would not cover
the edge (v, w)). So we delete v and all its neighbors denoted N(v) from the graph. Then we can run V C0

on the graph G− v −N(v) and we return the result along with all vertices in N(v).

Let S be a minimum vertex cover of G. Since S does not contain v by our assumption, then every neighbor
w ∈ N(v) has an edge (v, w) that needs to be covered, which means every neighbor must be in S. Then all
edges coming out of v and its neighbors are covered, so we only need to solve the minimum vertex cover
on the graph minus these vertices.

(d) Use the ideas from the last two parts to show VCO ≤P VCD. Solution:
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1: function MinVertexCover(G)
2: Call VCD library for all values of k until you find the size of the min vertex cover of G.
3: Pick an arbitrary vertex u.
4: if VCD library says YES on G− u, k − 1 then
5: return {u} ∪ MinVertexCover(G− u)
6: elsereturn N(u) ∪ MinVertexCover(G− u−N(u)) . N(u) is the neighbors of u

We will skip the proof of correctness, as it is mostly combining the prior parts.

For efficiency, observe that we need polynomial work and n + 1 library calls in each recursive call, and
each recursive call reduces the problem size by at least 1, so we need at most n recursive calls. Thus the
reduction is polynomial.

5. Another Reduction

Consider an undirected graph G, where each vertex has a non-negative integer number of pebbles. A single pebbling
move consists of removing two pebbles from a vertex and adding one pebble to an adjacent vertex, where we can
choose which adjacent vertex. A pebbling move can only be done on a vertex that already has at least two pebbles,
and it will always decrease the total number of pebbles in the graph by exactly one. Our goal is to remove as many
pebbles as we can. Observe that at best, we’ll have at least one pebble remaining in the graph.

Define the PEBBLE problem as the following problem:

Input: An undirected graph and the number of pebbles at each vertex Output: true if there is a sequence of pebbling
moves that leaves exactly one pebble in the graph, false otherwise.

Define the Hamiltonian Path Problem as the following problem:

Input: An undirected graph.

Output: true if there exists a path in the graph visiting every vertex exactly once, false otherwise.

Given that the Hamiltonian Path Problem is NP-complete, show that PEBBLE is as well. You may assume that the
total number of pebbles in a graph is polynomial in terms of the size of the graph.

Hint: A single pebbling move can be represented as an ordered pair of vertices (u, v) where we take two pebbles
from u and place one pebble in its neighbor v. A sequence of pebbling moves can be represented by a sequence of
these pairs. Is there any way we can order these pairs nicely?

5.1. Read and Understand the Problem
Read the problem and answer these quick-check-questions.

Make sure you understand PEBBLE and the Hamiltonian Path Problem.

• What is the input type?

• What is the output type?

• Are any words in the problem technical terms? Do you know them all?

Solution:

PEBBLE

– Input: An undirected graph where each vertex is labeled with a non-negative integer

– Output: Boolean, can we take all but one pebble from the graph?

Hamiltonian Path Problem

– Input: An undirected graph
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– Output: Boolean, is there a path that visits all vertices exactly once?

You’re going to design a reduction – what will that reduction look like?

• Which problem are use solving, and which problem are you assuming you have an algorithm for? Make sure
your reduction is “going the right direction”

• What is the output type for your reduction?

Solution:

We assume we have an algorithm for the PEBBLE problem. Given a Hamiltonian Path problem, try to turn
it into a PEBBLE problem.

Output of Hamiltonian Path Problem returns true if and only if there is a path that visits all the vertices.

Output of PEBBLE problem is true if and only if there is a sequence of pebble moves that removes all but
one pebble.

5.2. Design the Reduction
Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the “certificates” (the
thing that makes it a YES instance), and transform from one type of certificate to the other.

Solution:

Let G be the graph given in the Hamiltonian Path Problem. Let’s say that G has n vertices.

Observe there are n possible starting vertices, so it’s sufficient to check if there’s a Hamiltonian Path for each of
these n possible starting vertices.

Let that starting vertex be v1.

Let p(v) be the number of pebbles at vertex v. Define p(v1) = 2 and p(v) = 1 otherwise (i.e. all vertices start
with one pebble except the starting vertex, which starts with an additional pebble).

We assert that there is a Hamiltonian Path if and only if any of these n PEBBLE problems is true.

5.3. Write The Proof
(a) to be NP-Complete, PEBBLE needs to be in NP. Argue that it is (this argument is usually only 2-3 sentences).

Solution:

Given a sequence of pebbling moves, we just have to check if it’s valid and if it’s long enough to remove
enough pebbles. At most this will take polynomial time in terms of the number of pebbles.

(b) Show your reduction is correct. Remember you need to prove two implications and that the running time is
polynomial.

Solution:

First Implication:

Suppose there is a Hamiltonian Path v1, ..., vn.

Then consider the sequence of pebble moves: (v1, v2), (v2, v3), ..., (vn−1, vn). Observe for any vi where
1 ≤ i < n, since vi, vi+1 is in the Hamiltonian Path, then (vi, vi+1) must be an edge in G. Since (vi, vi+1) is
the first pebble move that takes away pebbles from vi, and since vi starts with at least one pebble, then vi
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has all of its starting pebbles when we attempt to do that pebble move. In the case that i = 1, then vi has
enough pebbles to do the move since it starts with two pebbles. In the case that 1 < i < n, then (vi−1, vi)
was the previous pebble move, so vi just gained a pebble and started with one pebble. So vi has at least
two pebbles and has enough to pebbles to make the pebble move.

After this sequence, observe vn has not lost any pebbles, so it still has its starting pebble, and it also just
gained a pebble from the move (vn−1, vn), so it has two pebbles. Since the graph started with n+1 pebbles
and we made n − 1 moves, there are only two pebbles left, and vn has both of them. Then, simply add
the move (vn, vn−1), which is valid since vn has two pebbles and the edge (vn, vn−1) exists since (vn−1, vn)
was a valid move. Now we have on pebble left.

So there is indeed a sequence of pebble moves removing all but one pebble.

Second Implication:

Suppose we have a sequence of pebble moves removing all but one pebble. We need to show that there
also exists a Hamiltonian Path.

Since we start with n+ 1 pebbles, and each move removes one pebble, this sequence must have exactly n
moves. Denote the pebbling sequence as (v1, w1), . . . , (vn, wn) where vi sends a pebble to wi at step i.

Define the preposition P (k) for 0 ≤ k < n to be true iff after k moves, for i = 1 . . . , k, vi has zero pebbles,
vk+1 2 pebbles and vi+1 = wi. Furthermore all vertices v1, . . . , vk+1 are distinct. We prove by induction on
k.

For k = 0, we trivially satisfy that v1 is distinct.

Suppose P (k− 1) holds for some 0 < k− 1 < n− 1, then we look at the kth move (vk, wk). We know that
the k−1st move was (vk−1, vk) and vk has two pebbles, so now consider all possible moves to wk. We know
that since we still have at least another move (vk+1, wk+1) left that wk can only be vk+1, or otherwise we
only have at most 1 pebble at vk+1. Furthermore wk = vk+1 must be a vertex distinct from vi for 1 ≤ i < k
since these all had 0 pebbles up to move k − 1 and can only get 1 more pebble from the kth move. Finally
we can see that vk will now have 0 pebbles after the kth move.

Then by induction, the first n− 1 moves can be written as the sequence (v1, v2), (v2, v3), ..., (vn−1, vn).

Since this removes n− 1 pebbles, there are 2 pebbles remaining after this sequence and by induction again
the last vertex vn contains two pebbles. Also all the vertices are distinct. Hence this sequence of vertices
v1, . . . , vn form a Hamiltonian path as (vi, vi+1) are all valid edges for each i < n.

Polynomial Time: From the reduction, we run the PEBBLE algorithm n times, once for each start vertex,
so this only contributes a polynomial factor. Additionally, to modify the graph each time, we simply label
each vertex in constant time, which takes linear time to do so. So overall, this runtime is polynomial.

6. Vertex Cover and Independent Set

Define IND-SET as follows:
Input: An undirected graph G and a positive integer k
Output: true if there is an independent set in G of size at least k, false otherwise.

Define VER-COVER as follows:
Input: An undirected graph G and a positive integer k
Output: true if there is an vertex cover in G of size at most k, false otherwise.

Prove that VER-COVER is NP-complete using IND-SET.

6.1. Read and Understand the Problem
Read the problem and answer these quick-check-questions.

Make sure you understand IND-SET and VER-COVER.
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• What is the input type?

• What is the output type?

• Are any words in the problem technical terms? Do you know them all?

Solution:

For VER-COVER

• input: a graph

• output: true or false

• A vertex cover is a set S ⊂ G of vertices for every edge (u, v): u ∈ S or v ∈ S

You’re going to design a reduction – what will that reduction look like?

• Which problem are you solving, and which problem are you assuming you have an algorithm for? Make
sure your reduction is “going the right direction”

• What is the output type for your reduction?

Solution:

For the reduction

• We want to show that IND-SET ≤ VER-COVER. Assume we have an algorithm for VER-COVER . We’re
trying to solve IND-SET.

• output of the reduction: a boolean which is the answer to the IND-SET (which we get by calling
VER-COVER like a library function)

6.2. Design the Reduction
Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the “certificates”
(the thing that makes it a YES instance), and transform from one type of certificate to the other.

Solution:

The idea is taking the complement.

For any graph G = (V,E) , S is an independent set if and only if V−S is a vertex cover.

And using the format given in the problem definition, there is an vertex cover in G of size k if and only if
there is an independent set in G of size |V | − k.

6.3. Write The Proof
(i) to be NP-Complete, IND-SET needs to be in NP. Argue that it is (this argument is usually only 2-3 sen-

tences).

Solution:

A verifier would take in the subset of k vertices that are a vertex cover. Given this set of vertices, a
verifier would check that these vertices are actually covering the graph (i.e. are endpoints to each
edge in the graph). This will take time O(|E|+ |V |), so it is polynomial time.

(ii) Show your reduction is correct. Remember you need to prove two implications and that the running time
is polynomial.
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Solution:

Running Time: Our algorithm just returns the output of VER-COVER but with parameter |V | − k,
which is polynomial time.

Correctness
Let G = (V,E) and positive integer k be given by IND-SET.
Suppose G has an independent set of size at least k, we show that our reduction returns true. Let S
be the independent set of size at least k, then every vertex in S touches at most one endpoint of every
edge in G. So V − S touches at least one endpoint of every edge of G. Hence V − S is a vertex cover
of size at most |V | − k and thus our algorithm output true.

For the other direction suppose that our algorithm returns true, meaning there is a vertex cover of
size at least |V | − k in G. Let S be the vertex cover of size at least |V | − k, then S touches at least one
endpoint of every edge in G. So V − S touches at most one endpoint of ever edge in G. Hence V − S
is an independent set of size at least k.
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