
CSE 421 Section 9

P, NP, Reductions

Administrivia

Announcements & Reminders

● HW 6

○ If you think something was graded incorrectly, submit a regrade request!

● HW 7

○ Was due yesterday, Wednesday 11/29

● HW 8

○ It’s the last homework, woohoo!

○ Due Wednesday 12/6

● Final Exam

○ Scheduled for Monday 12/11 @ 2:30-4:20 in our normal room, CSE2 G20

Problems, P, & NP

First, some Definitions:

● Problem: a set of inputs and the correct outputs

● Instance: a single input to a problem

● Decision Problem: a problem where the output is “yes” or “no”

● Reduction: � ≤� �
○ Informally: A reduces to B means “we can solve A using a library for B”

○ Formally: � reduces to � in polynomial time if there is an algorithm to solve problem �, which, if given access to a library function for solving problem �, calls the library at

most polynomially-many times and takes at most polynomial-time otherwise excluding

the calls to the library.

P, NP, and P vs. NP

● P (“polynomial”): The set of all decision problems for which there exists an

algorithm that runs in time �(��) for some constant
, where � is the size of the

input

● NP (“nondeterministic polynomial”): The set of all decision problems such that

for every YES-instance (of size �), there is a certificate (of size �(��)) for that

instance which can be verified in polynomial time

● P vs. NP: Are P and NP the same complexity class?

○ That is, can every problem that can be verified in polynomial time also be solved in

polynomial time?

NP-hard, NP-complete

● NP-hard: The problem � is NP-hard if for all problems � in

NP, � polytime reduces to �
● NP-complete: The problem � is NP-complete if � is in NP and � is NP-hard

3SAT

In simple terms:

Input: expression in CNF (AND of ORs) form, where every term has exactly 3 literals

involving different variables

Output: true if there is a variable setting which makes the whole expression true, false

otherwise.

More formally:

Input:

● A list of Boolean variables ��, … , ��
● A list of constraints, all of which must be met. Each constraint is of the form: (�� ∨ �� ∨ ��), where �� is a “literal” (a variable or the negation of a variable).

Output: true if there is a setting of the variables where all constraints are met, false

otherwise.

3SAT

Why is it called 3SAT? 3 because you have 3 variables per constraint, SAT is

short for “satisfiability”. The problem is asking, can you find an assignment

that satisfies all of the constraints?

3SAT is an NP-Complete problem. This means every problem in NP can be

reduced to it (it is NP-Hard) and it is also in NP.

1. SATisfy This

Problem 1 – SATisfy This

Determine whether each instance of 3-SAT is satisfiable. If it is, list a satisfying variable

assignment.

a) ¬� ∨ ¬� ∨ � ∧ � ∨ � ∨ ¬� ∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ � ∧ (¬� ∨ � ∨ ¬�)
b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)
c) � ∨ ¬� ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ �∧ ¬� ∨ � ∨ ¬� ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ (� ∨ � ∨ ¬�)
d) ¬� ∨ ¬� ∨ � ∧ � ∨ � ∨ ¬� ∧ ¬� ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ �∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (� ∨ ¬� ∨ �)

Work through (a) and (b) with the people around you, and then we’ll

go over them together!

Problem 1 – SATisfy This

a) ¬� ∨ ¬� ∨ � ∧ � ∨ � ∨ ¬� ∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ � ∧ (¬� ∨ � ∨ ¬�)

Problem 1 – SATisfy This

a) ¬� ∨ ¬� ∨ � ∧ � ∨ � ∨ ¬� ∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ � ∧ (¬� ∨ � ∨ ¬�)
This is satisfiable.

Problem 1 – SATisfy This

a) ¬� ∨ ¬� ∨ � ∧ � ∨ � ∨ ¬� ∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ � ∧ (¬� ∨ � ∨ ¬�)
This is satisfiable: � = T, � = F, � = T, � = F makes each clause true, so the overall

formula is true.

(¬� ∨ ¬� ∨ �) ∧ (� ∨ � ∨ ¬�) ∧ (� ∨ ¬� ∨ ¬�) ∧ (¬� ∨ � ∨ �) ∧ (¬� ∨ � ∨ ¬�)
(¬� ∨ ¬� ∨ �) ∧ (� ∨ � ∨ ¬�) ∧ (� ∨ ¬� ∨ ¬�) ∧ (¬� ∨ � ∨ �) ∧ (¬� ∨ � ∨ ¬�)
(� ∨ � ∨ �) ∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �)

Since every clause has at least one literal that is true, the formula is true!

Problem 1 – SATisfy This

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)

Problem 1 – SATisfy This

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)
This is NOT satisfiable. There is no assignment that makes every clause true, so the

overall formula is false.

Problem 1 – SATisfy This

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)
To confirm, we have to check every possibility: � = T, � = T, � = T, � = T

¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
� ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ �∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �)

Problem 1 – SATisfy This

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)
To confirm, we have to check every possibility: � = F, � = T, � = T, � = T

¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
� ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ �∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �)

Problem 1 – SATisfy This

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)
To confirm, we have to check every possibility: � = T, � = F, � = T, � = T

¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
� ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ �∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �)

Problem 1 – SATisfy This

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)
To confirm, we have to check every possibility: � = T, � = T, � = F, � = T

¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
� ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ �∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �)

Problem 1 – SATisfy This

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)
To confirm, we have to check every possibility: � = T, � = T, � = T, � = F

¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
� ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ �∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �)

Problem 1 – SATisfy This

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)
To confirm, we have to check every possibility: � = F, � = F, � = T, � = T

¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
� ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ �∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �)

Problem 1 – SATisfy This

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)
To confirm, we have to check every possibility: � = F, � = T, � = F, � = T

¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
� ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ �∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �)

Problem 1 – SATisfy This

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)
To confirm, we have to check every possibility: � = F, � = T, � = T, � = F

¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
� ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ �∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �)

Problem 1 – SATisfy This

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)
To confirm, we have to check every possibility: � = T, � = F, � = F, � = T

¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
� ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ �∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �)

Problem 1 – SATisfy This

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)
To confirm, we have to check every possibility: � = T, � = F, � = T, � = F

¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
� ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ �∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �)

Problem 1 – SATisfy This

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)
To confirm, we have to check every possibility: � = T, � = T, � = F, � = F

¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
� ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ �∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �)

Problem 1 – SATisfy This

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)
To confirm, we have to check every possibility: � = F, � = F, � = F, � = T

¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
� ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ �∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �)

Problem 1 – SATisfy This

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)
To confirm, we have to check every possibility: � = F, � = F, � = T, � = F

¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
� ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ �∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �)

Problem 1 – SATisfy This

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)
To confirm, we have to check every possibility: � = F, � = T, � = F, � = F

¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
� ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ �∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �)

Problem 1 – SATisfy This

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)
To confirm, we have to check every possibility: � = T, � = F, � = F, � = F

¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
� ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ �∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �)

Problem 1 – SATisfy This

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)
To confirm, we have to check every possibility: � = F, � = F, � = F, � = F

¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ ¬�∧ (¬� ∨ � ∨ ¬�) ∧ (� ∨ � ∨ �) ∧ (¬� ∨ ¬� ∨ ¬�)
� ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ � ∧ � ∨ � ∨ �∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �) ∧ (� ∨ � ∨ �)

Reductions

Why do we care about NP-Hard & NP-Complete?

Let � be an NP-hard problem. Remember, this means that every problem in NP

polytime reduces to �. Suppose you found a polynomial time algorithm for �; you

now have for free a polynomial time algorithm for every problem in NP, so � = ��.

On the other hand, if any problem in �� is not in � (any doesn’t have a polynomial

time algorithm), then no NP-complete problem is in �.

What can we do with NP-Hard & NP-Complete?

We’re pretty sure that there aren’t any efficient algorithms for NP-complete problems.

When you’re asked to write an algorithm for a problem, it is worthwhile for you to be

able to tell if the problem is NP-complete or not. How can we do that?

We need to show that a problem that is NP-complete is easier (or at most equal in

difficulty) to the problem! If it’s harder than an NP-complete problem, then it’s NP-

hard. If the problem is also in NP, then it’s NP-complete as well!

How can we show this? We can write a reduction!

NP-Completeness Reductions

Given problem �, to prove that it is NP-hard, we take a known NP-complete

problem �, and show that � ≤ �. To prove that � is NP-complete, we also

show that it is in NP.

Essentially, you need to take the input to the NP-complete problem � and

transform it into the input to the problem � so that an algorithm for � would

return true on this modified input if and only if � is true on the original input.

The reduction algorithm is the process of transforming that input to � into

the input to �.

NP-Completeness Reductions: which way?

How do you remember which direction? The core idea of an NP-completeness

reduction is a proof by contradiction:

Suppose, for the sake of contradiction, there were a polynomial time algorithm for �.

But then if there were, I could use that to design a polynomial time algorithm for

problem �. But we really don’t think there’s a polynomial time algorithm for problem �. So we should really think there isn’t one for � either!

Key Idea: Reduce FROM the known hard problem TO the new problem.

Steps to Proving Problem B is NP-complete

● Show � is in NP
a) State what the hint/certificate is.

b) Argue that it is polynomial-time to check.

● Show � is NP-hard:
State: “Reduction is from NP-hard Problem �”

a) Show what the reduction function ! is.

b) Argue that ! is polynomial time.

Argue correctness in two directions:

c) � a YES for � ⇒ !(�) is a YES for �
■ Do this by showing how to convert a certificate for � being YES for � to a certificate for !(�) being a YES for �.

d) !(�) a YES for � ⇒ � is a YES for �
■ … by converting certificates for !(�) to certificates for x

Strategy for Reductions

1. Read and Understand the Problem

2. Design the Reduction

3. Write the Proof

○ Prove Run-Time

○ Prove correctness; requires TWO implications:

■ If the correct answer is YES, then our algorithm says YES

■ If our algorithm says YES, then the correct answer is YES

2. A Fun Reduction

Problem 2 – A Fun Reduction

Define 5SAT as the following problem:

Input: An expression in CNF form, where every term has exactly 5 literals on

different variables.

Output: true if there is a variable setting which makes the whole expression

true, false otherwise.

And 3SAT as earlier:

Input: expression in CNF form, where every term has 3 literals on different

variables.

Output: true if there is a variable setting which makes the whole expression true,

false otherwise.

Prove that 5SAT is NP-complete using 3SAT.

Problem 2.1 – Read and Understand the Problem

First understand 5SAT:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look

like normal words, but are actually technical terms?

Then think about the reduction:

● Which problem are you solving, and which problem are you assuming you have an algorithm

for? Make sure your reduction is “going the right direction”

● What is the output type for your reduction?

Problem 2.1 – Read and Understand the Problem
First understand 5SAT:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are you solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

an expression in CNF form where each clause has 5 literals

Problem 2.1 – Read and Understand the Problem
First understand 5SAT:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are you solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

an expression in CNF form where each clause has 5 literals

true or false

Problem 2.1 – Read and Understand the Problem
First understand 5SAT:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are you solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

an expression in CNF form where each clause has 5 literals

true or false

CNF form is AND of ORs like (�#∨�$∨�%∨�&∨��)∧...∧(�'∨��∨��∨�(∨��)
literals �� are boolean variables or the negation of boolean variables �� or ¬��

Problem 2.1 – Read and Understand the Problem
First understand 5SAT:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are you solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

an expression in CNF form where each clause has 5 literals

true or false

We need to reduce an NP-complete problem to 5SAT in polynomial time. Assume we have an algorithm for

5SAT. We want to solve 3SAT. In other words, we want to show that 3SAT ≤ 5SAT.

CNF form is AND of ORs like (�#∨�$∨�%∨�&∨��)∧...∧(�'∨��∨��∨�(∨��)
literals �� are boolean variables or the negation of boolean variables �� or ¬��

Problem 2.1 – Read and Understand the Problem
First understand 5SAT:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are you solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

an expression in CNF form where each clause has 5 literals

true or false

We need to reduce an NP-complete problem to 5SAT in polynomial time. Assume we have an algorithm for

5SAT. We want to solve 3SAT. In other words, we want to show that 3SAT ≤ 5SAT.

a Boolean which is the answer to the 3SAT (which we get by calling 5SAT like a library function)

CNF form is AND of ORs like (�#∨�$∨�%∨�&∨��)∧...∧(�'∨��∨��∨�(∨��)
literals �� are boolean variables or the negation of boolean variables �� or ¬��

Problem 2.2 – Design the Reduction

Now write a reduction. Remember a reduction is an algorithm! It often helps

to think about the “certificates” (the thing that makes it a YES instance) and

transform from one type of certificate to the other.

Problem 2.2 – Design the Reduction

Now write a reduction. Remember a reduction is an algorithm! It often helps

to think about the “certificates” (the thing that makes it a YES instance) and

transform from one type of certificate to the other.

Hint: We want to start with the input to 3SAT and transform it into the

input to 5SAT so that 5SAT returns true iff 3SAT would also return true!

Problem 2.2 – Design the Reduction

Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the

“certificates” (the thing that makes it a YES instance) and transform from one type of certificate

to the other.

Let ��, . . . �� be the variables in the 3SAT instance and *�, *+, . . . , *(be the clauses.

Create two dummy variables ��, �+. For each clause *� , create four clauses: *�∨ �� ∨ �+*� ∨ ¬�� ∨ �+*� ∨ �� ∨ ¬�+*� ∨ ¬ �� ∨ ¬�+
Our 5SAT instance is: ��, . . . ��, ��, �+
The 4- clauses described above.

Problem 2.3 – Write the Proof

a) To be NP-Complete, 5SAT needs to be in NP. Argue that it is (this

argument is usually only 2-3 sentences).

b) Show your reduction is correct. Remember you need to prove two

implications and that the running time is polynomial.

Problem 2.3 – Write the Proof

a) To be NP-Complete, 5SAT needs to be in NP. Argue that it is (this

argument is usually only 2-3 sentences).

Problem 2.3 – Write the Proof

a) To be NP-Complete, 5SAT needs to be in NP. Argue that it is (this

argument is usually only 2-3 sentences).

A verifier would take in the settings of the variables to true and false. Given a

setting, a verifier would check that each clause (i.e., each constraint) is

satisfied. This will take time linear in the length of the constraints, so it is

polynomial time.

Problem 2.3 – Write the Proof

b) Show your reduction is correct. Running Time:

Problem 2.3 – Write the Proof

b) Show your reduction is correct. Running Time:

Running Time: Our algorithm makes 4 copies of every clause and adds a

constant length set of literals to each clause, so the running time to create

the instance is polynomial (and we call the library only once, which is also at

most polynomial).

Problem 2.3 – Write the Proof

b) Show your reduction is correct. Suppose correct answer is YES and our

reduction returns YES:

Problem 2.3 – Write the Proof

b) Show your reduction is correct. Suppose correct answer is YES and our

reduction returns YES:

Let ./ be our 3SAT instance and .0 be our 5-SAT instance.

Suppose ./ is satisfiable, we show that our reduction returns true. Since ./ is

satisfiable, there is a setting of the variables which causes ./ to be true. Take that

setting, and set ��, �+ arbitrarily. Every clause of .0 is a clause of ./ with extra

literals ORed on, so since each clause of ./ is true, each clause of .0 is as well, and

this is a satisfying assignment.

Problem 2.3 – Write the Proof

b) Show your reduction is correct. Suppose our reduction returns YES and

correct answer is YES:

Problem 2.3 – Write the Proof

b) Show your reduction is correct. Suppose our reduction returns YES and

correct answer is YES:

Conversely, suppose that our reduction returns true, and therefore .0 was

satisfiable. Consider a satisfying assignment for .0. We claim that (ignoring ��, �+)

the same assignment satisfies ./. Consider an arbitrary clause *� of ./. In .0
there were four clauses built from *� (each ORed with all combinations of literals

of ��, �+. One of the created clauses in .0 had both inserted literals involving ��, �+ being false (since we included all possible combinations). Since .0 was

satisfied, this clause evaluated to true, which means that *� evaluated to true.

Since *� was arbitrary, we have that every clause is true, and therefore a satisfying

assignment for ./, as required.

2. A Reduction with different types

Problem 3 – A Reduction with different types

Define Integer-Programming (ILP) as follows:

Input: An integer matrix � and integer vector �
Output: true if there is an integer vector � such that �� ≤ �, false otherwise.

And 3SAT as earlier:

Input: expression in CNF form, where every term has 3 literals on different

variables.

Output: true if there is a variable setting which makes the whole expression

true, false otherwise.

We already know from class that 3SAT ≤ ILP by a long series of reductions.

Prove this directly by a single reduction.

Problem 3.1 – Read and Understand the Problem

First understand ILP:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look

like normal words, but are actually technical terms?

Then think about the reduction:

● Which problem are you solving, and which problem are you assuming you have an algorithm

for? Make sure your reduction is “going the right direction”

● What is the output type for your reduction?

Work through these questions with the people around you, and then

we’ll go over them together!

Problem 3.1 – Read and Understand the Problem
First understand ILP:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are you solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

an integer matrix and an integer vector

Problem 3.1 – Read and Understand the Problem
First understand ILP:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are you solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

an integer matrix and an integer vector

true or false

Problem 3.1 – Read and Understand the Problem
First understand ILP:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are you solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

an integer matrix and an integer vector

true or false

No

Problem 3.1 – Read and Understand the Problem
First understand ILP:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are you solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

an integer matrix and an integer vector

true or false

No

We want to show that 3SAT ≤ ILP. Assume we have an algorithm for ILP. We’re trying to solve 3SAT

Problem 3.1 – Read and Understand the Problem
First understand ILP:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are you solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

an integer matrix and an integer vector

true or false

No

We want to show that 3SAT ≤ ILP. Assume we have an algorithm for ILP. We’re trying to solve 3SAT

a Boolean which is the answer to the 3SAT (which we get by calling ILP like a library function)

Problem 3.2 – Design the Reduction

Now write a reduction. Remember a reduction is an algorithm! It often helps

to think about the “certificates” (the thing that makes it a YES instance) and

transform from one type of certificate to the other.

Work through this problem with the people around you, and then

we’ll go over it together!

Problem 3.2 – Design the Reduction

Now write a reduction. Remember a reduction is an algorithm! It often helps

to think about the “certificates” (the thing that makes it a YES instance) and

transform from one type of certificate to the other.

Work through this problem with the people around you, and then

we’ll go over it together!

Hint: We want to start with the input to 3SAT and transform it into the

input to ILP so that ILP returns true iff 3SAT would also return true!

Problem 3.2 – Design the Reduction

Now write a reduction. Remember a reduction is an algorithm! It often helps

to think about the “certificates” (the thing that makes it a YES instance) and

transform from one type of certificate to the other.

Problem 3.2 – Design the Reduction
Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the “certificates”

(the thing that makes it a YES instance) and transform from one type of certificate to the other.

Let’s try an example (don’t write this for your solution): (¬1 ∨ ¬� ∨ 2) ∧ (1 ∨ 2 ∨ ¬�) ∧ (1 ∨ ¬2 ∨ ¬�) ∧ (1 ∨ � ∨ 2)
We need to use the ILP to handle two things: The Boolean part of 3SAT and the clause constraints.

Let’s start with the Boolean part. It seems natural to have the ILP have a variable for each variable for

3SAT. To make sure that these variables are Boolean, we add the constraints:

1 ≤ 1, � ≤ 1, 2 ≤ 1, � ≤ 1 (and 1 ≥ 0, � ≥ 0, 2 ≥ 0, � ≥ 0).

Problem 3.2 – Design the Reduction
Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the “certificates”

(the thing that makes it a YES instance) and transform from one type of certificate to the other.

Let’s start with the Boolean part. It seems natural to have the ILP have a variable for each variable for 3SAT.

To make sure that these variables are Boolean, we add the constraints:

1 ≤ 1, � ≤ 1, 2 ≤ 1, � ≤ 1 (and 1 ≥ 0, � ≥ 0, 2 ≥ 0, � ≥ 0).
We now need the clause part: To represent the value of the negation of 1 we can write 1 − 1.

To represent (¬1 ∨ ¬� ∨ 2) we want to say that at least 1 of the literals is true so

we add the constraint 1 − 1 + 1 − � + 2 ≥ 1, which we rearrange in standard form as 1 + � − 2 ≤ 1.
Similarly for the other clauses we get 1 + 2 + 1 − � ≥ 1 which rearranges to � − 1 − 2 ≤ 0,1 + 1 − 2 + 1 − � ≥ 1 which rearranges to −1 + 2 + � ≤ 1, and1 + � + 2 ≥ 1 which rearranges to −1 − � − 2 ≤ −1.

Let’s try an example (don’t write this for your solution): (¬1 ∨ ¬� ∨ 2) ∧ (1 ∨ 2 ∨ ¬�) ∧ (1 ∨ ¬2 ∨ ¬�) ∧ (1 ∨ � ∨ 2)

Problem 3.2 – Design the Reduction
Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the “certificates”

(the thing that makes it a YES instance) and transform from one type of certificate to the other.

We now write the general form.

Let ��, . . . �� be the variables in the 3SAT instance and *�, *+, . . . , *(be the clauses.

We add the constraints: �� ≤ 1 for all 8 = 1, … , �
And we always have: �� ≥ 0 for all 8 = 1, … , �
For each clause *�, if the variables are ��: , ��; , ��<, include the constraint:

= > ��? if the literal ��? appears in *�1 − ��? if the literal ¬��? appears in *� ≥ 1
�K�,+,/

which is equivalent to

= >−��? if the literal ��? appears in *���? if the literal ¬��? appears in *��K�,+,/
≤ −1 + number of negative literals

in standard form.

Problem 3.3 – Write the Proof

Show your reduction is correct. Remember you need to prove two

implications and that the running time is polynomial.

Work through this problem with the people around you, and then

we’ll go over it together!

Problem 3.3 – Write the Proof

b) Running Time:

Problem 3.3 – Write the Proof

b) Running Time:

Running Time: The reduction creates one equation for every clause, so it is

definitely polynomial time.

Problem 3.3 – Write the Proof

c) Show your reduction is correct (⇒). Suppose correct answer is YES, want

to show our reduction returns YES:

Problem 3.3 – Write the Proof

c) Show your reduction is correct (⇒). Suppose correct answer is YES, want

to show our reduction returns YES:

Let . be a 3-SAT instance and suppose it is satisfiable. We need to show that the system of

inequalities we made has a solution. To show this, we should construct � that satisfies the system

of inequalities.

Because . is satisfiable, consider a satisfying assignment. If �� is assigned true, then in our

construction let �� = 1. If �� is assigned false, let �� = 0.

This assignment clearly satisfies inequalities of the form �� ≤ 1 and �� ≥ 0. It also satisfies our

constraints of the form

= > ��? if the literal ��? appears in *�1 − ��? if the literal ¬��? appears in *� ≥ 1
�K�,+,/

because each clause has at least one literal true, which by our construction means at least one of

the summands is 1, and the remaining summands are at least 0, so their sum is at least 1.

Problem 3.3 – Write the Proof

d) Show your reduction is correct (⇐). Suppose our reduction returns YES,

want to show correct answer is YES:

Problem 3.3 – Write the Proof

d) Show your reduction is correct (⇐). Suppose our reduction returns YES,

want to show correct answer is YES:

Suppose that the ILP obtained from converting a 3SAT formula . returns true, and we need to show that . is satisfiable. To show this, we need to construct an assignment to the variables of ..

Because the ILP returned true, there is an integer vector � satisfying our inequalities. If �� = 0, assign ��
to be false. Otherwise, assign �� to be true.

To show that this is a satisfying assignment, we need to show that it satisfies all clauses. Suppose for

contradiction the clause *� involving variables ��: , ��; , ��< is not satisfied, meaning every literal is false.

By our construction, this is because the ILP told us that every positive literal = 0 and every negative

literal ≠ 0. Because we had constraints �� ≥ 0 and �� ≤ 1, this means every negative literal = 1. Then,

= > ��? if the literal ��? appears in *�1 − ��? if the literal ¬��? appears in *��K�,+,/
= = > 0 if the literal ��? appears in *�0 if the literal ¬��? appears in *� = 0

�K�,+,/
which is a contradiction.

That’s All, Folks!

Thanks for coming to section this week!

Any questions?

