
CSE 421 Section 9

P, NP, Reductions



Administrivia



Announcements & Reminders

● HW 6

○ If you think something was graded incorrectly, submit a regrade request!

● HW 7 

○ Was due yesterday, Wednesday 11/29

● HW 8

○ It’s the last homework, woohoo!

○ Due Wednesday 12/6

● Final Exam

○ Scheduled for Monday 12/11 @ 2:30-4:20 in our normal room, CSE2 G20



Problems, P, & NP



First, some Definitions:

● Problem: a set of inputs and the correct outputs

● Instance: a single input to a problem

● Decision Problem: a problem where the output is “yes” or “no”

● Reduction: � ≤� �

○ Informally: A reduces to B means “we can solve A using a library for B”

○ Formally: � reduces to � in polynomial time if there is an algorithm to solve problem 

�, which, if given access to a library function for solving problem �, calls the library at 

most polynomially-many times and takes at most polynomial-time otherwise excluding 

the calls to the library.



P, NP, and P vs. NP

● P (“polynomial”): The set of all decision problems for which there exists an 

algorithm that runs in time �(��) for some constant 
, where � is the size of the 

input

● NP (“nondeterministic polynomial”): The set of all decision problems such that 

for every YES-instance (of size �), there is a certificate (of size �(��)) for that 

instance which can be verified in polynomial time

● P vs. NP: Are P and NP the same complexity class?

○ That is, can every problem that can be verified in polynomial time also be solved in 

polynomial time?



NP-hard, NP-complete

● NP-hard: The problem � is NP-hard if for all problems � in 

NP, � polytime reduces to �

● NP-complete: The problem � is NP-complete if � is in NP and 

� is NP-hard



3SAT

In simple terms:

Input: expression in CNF (AND of ORs) form, where every term has exactly 3 literals 

involving different variables 

Output: true if there is a variable setting which makes the whole expression true, false 

otherwise.

More formally:

Input:

● A list of Boolean variables ��, … , ��
● A list of constraints, all of which must be met. Each constraint is of the form: 

(�� ∨ �� ∨ ��), where �� is a “literal” (a variable or the negation of a variable). 

Output: true if there is a setting of the variables where all constraints are met, false 

otherwise. 



3SAT

Why is it called 3SAT? 3 because you have 3 variables per constraint, SAT is 

short for “satisfiability”. The problem is asking, can you find an assignment 

that satisfies all of the constraints?

3SAT is an NP-Complete problem. This means every problem in NP can be 

reduced to it (it is NP-Hard) and it is also in NP.



1. SATisfy This



Problem 1 – SATisfy This

Determine whether each instance of 3-SAT is satisfiable. If it is, list a satisfying variable 

assignment.

a) ¬� ∨ ¬� ∨ � ∧ � ∨ � ∨ ¬� ∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ � ∧ (¬� ∨ � ∨ ¬�)

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�

∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)

c) � ∨ ¬� ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ ¬� ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ �

∧ ¬� ∨ � ∨ ¬� ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ (� ∨ � ∨ ¬�)

d) ¬� ∨ ¬� ∨ � ∧ � ∨ � ∨ ¬� ∧ ¬� ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ �

∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (� ∨ ¬� ∨ �)

Work through (a) and (b) with the people around you, and then we’ll 

go over them together!



Problem 1 – SATisfy This

a) ¬� ∨ ¬� ∨ � ∧ � ∨ � ∨ ¬� ∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ � ∧ (¬� ∨ � ∨ ¬�)



Problem 1 – SATisfy This

b) ¬� ∨ � ∨ � ∧ ¬� ∨ � ∨ � ∧ � ∨ ¬� ∨ � ∧ � ∨ ¬� ∨ ¬�

∧ � ∨ ¬� ∨ ¬� ∧ ¬� ∨ � ∨ ¬� ∧ � ∨ � ∨ � ∧ (¬� ∨ ¬� ∨ ¬�)



Reductions



Why do we care about NP-Hard & NP-Complete?

Let � be an NP-hard problem. Remember, this means that every problem in NP 

polytime reduces to �. Suppose you found a polynomial time algorithm for �; you 

now have for free a polynomial time algorithm for every problem in NP, so � = ��. 

On the other hand, if any problem in �� is not in � (any doesn’t have a polynomial 

time algorithm), then no NP-complete problem is in �.



What can we do with NP-Hard & NP-Complete?

We’re pretty sure that there aren’t any efficient algorithms for NP-complete problems. 

When you’re asked to write an algorithm for a problem, it is worthwhile for you to be 

able to tell if the problem is NP-complete or not. How can we do that?

We need to show that a problem that is NP-complete is easier (or at most equal in 

difficulty) to the problem! If it’s harder than an NP-complete problem, then it’s NP-

hard. If the problem is also in NP, then it’s NP-complete as well!

How can we show this? We can write a reduction!



NP-Completeness Reductions

Given problem �, to prove that it is NP-hard, we take a known NP-complete 

problem �, and show that � ≤� �. To prove that � is NP-complete, we also 

show that it is in NP.

Essentially, you need to take the input to the NP-complete problem � and 

transform it into the input to the problem � so that an algorithm for �would 

return true on this modified input if and only if � is true on the original input. 

The reduction algorithm is the process of transforming that input to � into 

the input to �.



NP-Completeness Reductions: which way?

How do you remember which direction? The core idea of an NP-completeness 

reduction is a proof by contradiction: 

Suppose, for the sake of contradiction, there were a polynomial time algorithm for �. 

But then if there were, I could use that to design a polynomial time algorithm for 

problem �. But we really don’t think there’s a polynomial time algorithm for problem 

�. So we should really think there isn’t one for � either!

Key Idea: Reduce FROM the known hard problem TO the new problem.



Steps to Proving Problem B is NP-complete

● Show � is in NP
a) State what the hint/certificate is.

b) Argue that it is polynomial-time to check.

● Show � is NP-hard:  
State: “Reduction is from NP-hard Problem �”

a) Show what the reduction function � is.

b) Argue that � is polynomial time.

Argue correctness in two directions:

c) � a YES for �⇒ �(�) is a YES for �

■ Do this by showing how to convert a certificate for � being YES for � to a certificate for 

�(�) being a YES for �.

d) �(�) a YES for � ⇒ � is a YES for �

■ … by converting certificates for �(�) to certificates for x



Strategy for Reductions

1. Read and Understand the Problem

2. Design the Reduction 

3. Write the Proof

○ Prove Run-Time

○ Prove correctness; requires TWO implications:

■ If the correct answer is YES, then our algorithm says YES

■ If our algorithm says YES, then the correct answer is YES



2. A Fun Reduction



Problem 2 – A Fun Reduction 

Define 5SAT as the following problem:

Input: An expression in CNF form, where every term has exactly 5 literals on 

different variables. 

Output: true if there is a variable setting which makes the whole expression 

true, false otherwise.

And 3SAT as earlier:

Input: expression in CNF form, where every term has 3 literals on different 

variables. 

Output: true if there is a variable setting which makes the whole expression true, 

false otherwise. 

Prove that 5SAT is NP-complete using 3SAT.



Problem 2.1 – Read and Understand the Problem

First understand 5SAT:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look 

like normal words, but are actually technical terms?

Then think about the reduction:

● Which problem are you solving, and which problem are you assuming you have an algorithm 

for? Make sure your reduction is “going the right direction”

● What is the output type for your reduction?



Problem 2.2 – Design the Reduction

Now write a reduction. Remember a reduction is an algorithm! It often helps 

to think about the “certificates” (the thing that makes it a YES instance) and 

transform from one type of certificate to the other.



Problem 2.2 – Design the Reduction

Now write a reduction. Remember a reduction is an algorithm! It often helps 

to think about the “certificates” (the thing that makes it a YES instance) and 

transform from one type of certificate to the other.

Hint: We want to start with the input to 3SAT and transform it into the 

input to 5SAT so that 5SAT returns true iff 3SAT would also return true!



Problem 2.3 – Write the Proof

a) To be NP-Complete, 5SAT needs to be in NP. Argue that it is (this 

argument is usually only 2-3 sentences).

b) Show your reduction is correct. Remember you need to prove two 

implications and that the running time is polynomial.



Problem 2.3 – Write the Proof

a) To be NP-Complete, 5SAT needs to be in NP. Argue that it is (this 

argument is usually only 2-3 sentences).



Problem 2.3 – Write the Proof

b) Show your reduction is correct. Running Time:



Problem 2.3 – Write the Proof

b) Show your reduction is correct. Suppose correct answer is YES and our 

reduction returns YES:



Problem 2.3 – Write the Proof

b) Show your reduction is correct. Suppose our reduction returns YES and 

correct answer is YES:



2. A Reduction with different types



Problem 3 – A Reduction with different types

Define Integer-Programming (ILP) as follows: 

Input: An integer matrix � and integer vector �

Output: true if there is an integer vector � such that �� ≤ �,  false otherwise. 

And 3SAT as earlier:

Input: expression in CNF form, where every term has 3 literals on different 

variables. 

Output: true if there is a variable setting which makes the whole expression 

true, false otherwise. 

We already know from class that 3SAT ≤�ILP by a long series of reductions.

Prove this directly by a single reduction.



Problem 3.1 – Read and Understand the Problem

First understand ILP:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look 

like normal words, but are actually technical terms?

Then think about the reduction:

● Which problem are you solving, and which problem are you assuming you have an algorithm 

for? Make sure your reduction is “going the right direction”

● What is the output type for your reduction?

Work through these questions with the people around you, and then 

we’ll go over them together!



Problem 3.2 – Design the Reduction

Now write a reduction. Remember a reduction is an algorithm! It often helps 

to think about the “certificates” (the thing that makes it a YES instance) and 

transform from one type of certificate to the other.

Work through this problem with the people around you, and then 

we’ll go over it together!



Problem 3.2 – Design the Reduction

Now write a reduction. Remember a reduction is an algorithm! It often helps 

to think about the “certificates” (the thing that makes it a YES instance) and 

transform from one type of certificate to the other.



Problem 3.3 – Write the Proof

Show your reduction is correct. Remember you need to prove two 

implications and that the running time is polynomial.

Work through this problem with the people around you, and then 

we’ll go over it together!



Problem 3.3 – Write the Proof

b) Running Time:



Problem 3.3 – Write the Proof

c) Show your reduction is correct (⇒). Suppose correct answer is YES, want 

to show our reduction returns YES:



Problem 3.3 – Write the Proof

d) Show your reduction is correct (⇐). Suppose our reduction returns YES, 

want to show correct answer is YES:



That’s All, Folks!

Thanks for coming to section this week!

Any questions?


